integration
307 TopicsIntroducing native Service Bus message publishing from Azure API Management (Preview)
We’re excited to announce a preview capability in Azure API Management (APIM) — you can now send messages directly to Azure Service Bus from your APIs using a built-in policy. This enhancement, currently in public preview, simplifies how you connect your API layer with event-driven and asynchronous systems, helping you build more scalable, resilient, and loosely coupled architectures across your enterprise. Why this matters? Modern applications increasingly rely on asynchronous communication and event-driven designs. With this new integration: Any API hosted in API Management can publish to Service Bus — no SDKs, custom code, or middleware required. Partners, clients, and IoT devices can send data through standard HTTP calls, even if they don’t support AMQP natively. You stay in full control with authentication, throttling, and logging managed centrally in API Management. Your systems scale more smoothly by decoupling front-end requests from backend processing. How it works The new send-service-bus-message policy allows API Management to forward payloads from API calls directly into Service Bus queues or topics. High-level flow A client sends a standard HTTP request to your API endpoint in API Management. The policy executes and sends the payload as a message to Service Bus. Downstream consumers such as Logic Apps, Azure Functions, or microservices process those messages asynchronously. All configurations happen in API Management — no code changes or new infrastructure are required. Getting started You can try it out in minutes: Set up a Service Bus namespace and create a queue or topic. Enable a managed identity (system-assigned or user-assigned) on your API Management instance. Grant the identity the “Service Bus data sender” role in Azure RBAC, scoped to your queue/ topic. Add the policy to your API operation: <send-service-bus-message queue-name="orders"> <payload>@(context.Request.Body.As<string>())</payload> </send-service-bus-message> Once saved, each API call publishes its payload to the Service Bus queue or topic. 📖 Learn more. Common use cases This capability makes it easy to integrate your APIs into event-driven workflows: Order processing – Queue incoming orders for fulfillment or billing. Event notifications – Trigger internal workflows across multiple applications. Telemetry ingestion – Forward IoT or mobile app data to Service Bus for analytics. Partner integrations – Offer REST-based endpoints for external systems while maintaining policy-based control. Each of these scenarios benefits from simplified integration, centralized governance, and improved reliability. Secure and governed by design The integration uses managed identities for secure communication between API Management and Service Bus — no secrets required. You can further apply enterprise-grade controls: Enforce rate limits, quotas, and authorization through APIM policies. Gain API-level logging and tracing for each message sent. Use Service Bus metrics to monitor downstream processing. Together, these tools help you maintain a consistent security posture across your APIs and messaging layer. Build modern, event-driven architectures With this feature, API Management can serve as a bridge to your event-driven backbone. Start small by queuing a single API’s workload, or extend to enterprise-wide event distribution using topics and subscriptions. You’ll reduce architectural complexity while enabling more flexible, scalable, and decoupled application patterns. Learn more: Get the full walkthrough and examples in the documentation 👉 here2.4KViews2likes4CommentsSelecting the Right Agentic Solution on Azure – Part 2 (Security)
Let’s pick up from where we left off in the previous post — Selecting the Right Agentic Solution on Azure - Part 1. Earlier, we explored a decision tree to help identify the most suitable Azure service for building your agentic solution. Following that discussion, we received several requests to dive deeper into the security considerations for each of these services. In this post, we’ll examine the security aspects of each option, one by one. But before going ahead and looking at the security perspective I highly recommend looking at list of Azure AI Services Technologies made available by Microsoft. This list is inclusive of all those services which were part of erstwhile cognitive services and latest additions. Workflows with AI agents and models in Azure Logic Apps (Preview) – This approach focuses on running your agents as an action or as part of an “agent loop” with multiple actions within Azure Logic Apps. It’s important not to confuse this with the alternative setup, where Azure Logic Apps integrates with AI Agents in the Foundry Agent Service—either as a tool or as a trigger. (Announcement: Power your Agents in Azure AI Foundry Agent Service with Azure Logic Apps | Microsoft Community Hub). In that scenario, your agents are hosted under the Azure AI Foundry Agent Service, which we’ll discuss separately below. Although, to create an agent workflow, you’ll need to establish a connection—either to Azure OpenAI or to an Azure AI Foundry project for connecting to a model. When connected to a Foundry project, you can view agents and threads directly within that project’s lists. Since agents here run as Logic Apps actions, their security is governed by the Logic Apps security framework. Let’s look at the key aspects: Easy Auth or App Service Auth (Preview) - Agent workflows often integrate with a broader range of systems—models, MCPs, APIs, agents, and even human interactions. You can secure these workflows using Easy Auth, which integrates with Microsoft Entra ID for authentication and authorization. Read more here: Protect Agent Workflows with Easy Auth - Azure Logic Apps | Microsoft Learn. Securing and Encrypting Data at Rest - Azure Logic Apps stores data in Azure Storage, which uses Microsoft-managed keys for encryption by default. You can further enhance security by: Restricting access to Logic App operations via Azure RBAC Limiting access to run history data Securing inputs and outputs Controlling parameter access for webhook-triggered workflows Managing outbound call access to external services More info here: Secure access and data in workflows - Azure Logic Apps | Microsoft Learn. Secure Data at transit – When exposing your Logic App as an HTTP(S) endpoint, consider using: Azure API Management for access policies and documentation Azure Application Gateway or Azure Front Door for WAF (Web Application Firewall) protection. I highly recommend the labs provided by Logic Apps Product Group to learn more about Agentic Workflows: https://azure.github.io/logicapps-labs/docs/intro. Azure AI Foundry Agent Service – As of this writing, the Azure AI Foundry Agent Service abstracts the underlying infrastructure where your agents run. Microsoft manages this secure environment, so you don’t need to handle compute, network, or storage resources—though bring-your-own-storage is an option. Securing and Encrypting Data at Rest - Microsoft guarantees that your prompts and outputs remain private—never shared with other customers or AI providers (such as OpenAI or Meta). Data (from messages, threads, runs, and uploads) is encrypted using AES-256. It remains stored in the same region where the Agent Service is deployed. You can optionally use Customer-Managed Keys (CMK) for encryption. Read more here: Data, privacy, and security for Azure AI Agent Service - Azure AI Services | Microsoft Learn. Network Security – The service allows integration with your private virtual network using a private endpoint. Note: There are known limitations, such as subnet IP restrictions, the need for a dedicated agent subnet, same-region requirements, and limited regional availability. Read more here: How to use a virtual network with the Azure AI Foundry Agent Service - Azure AI Foundry | Microsoft Learn. Secure Data at transit – Upcoming enhancements include API Management support (soon in Public Preview) for AI APIs, including Model APIs, Tool APIs/MCP servers, and Agent APIs. Here is another great article about using APIM to safeguard HTTP APIs exposed by Azure OpenAI that let your applications perform embeddings or completions by using OpenAI's language models. Agent Orchestrators – We’ve introduced the Agent Framework, which succeeds both AutoGen and Semantic Kernel. According to the product group, it combines the best capabilities of both predecessors. Support for Semantic Kernel and related documentation for AutoGen will continue to be available for some time to allow users to transition smoothly to the new framework. When discussing the security aspects of agent orchestrators, it’s important to note that these considerations also extend to the underlying services hosting them—whether on AKS or Container Apps. However, this discussion will not focus on the security features of those hosting environments, as comprehensive resources already exist for them. Instead, we’ll focus on common security concerns applicable across different orchestrators, including AutoGen, Semantic Kernel, and other frameworks such as LlamaIndex, LangGraph, or LangChain. Key areas to consider include (but are not limited to): Secure Secrets / Key Management Avoid hard-coding secrets (e.g., API keys for Foundry, OpenAI, Anthropic, Pinecone, etc.). Use secret management solutions such as Azure Key Vault or environment variables. Encrypt secrets at rest and enforce strict limits on scope and lifetime. Access Control & Least Privilege Grant each agent or tool only the minimum required permissions. Implement Role-Based Access Control (RBAC) and enforce least privilege principles. Use strong authentication (e.g., OAuth2, Azure AD) for administrative or tool-level access. Restrict the scope of external service credentials (e.g., read-only vs. write) and rotate them regularly. Isolation / Sandboxing Isolate plugin execution and use inter-process separation as needed. Prevent user inputs from executing arbitrary code on the host. Apply resource limits for model or function execution to mitigate abuse. Sensitive Data Protection Encrypt data both at rest and in transit. Mask or remove PII before sending data to models. Avoid persisting sensitive context unnecessarily. Ensure logs and memory do not inadvertently expose secrets or user data. Prompt & Query Security Sanitize or escape user input in custom query engines or chat interfaces. Protect against prompt injection by implementing guardrails to monitor and filter prompts. Set context length limits and use safe output filters (e.g., profanity filters, regex validators). Observability, Logging & Auditing Maintain comprehensive logs, including tool invocations, agent decisions, and execution paths. Continuously monitor for anomalies or unexpected behaviour. I hope this overview assists you in evaluating and implementing the appropriate security measures for your chosen agentic solution.289Views3likes2Comments[DevOps] dps.sentinel.azure.com no longer responds
Hello, Ive been using Repository connections in sentinel to a central DevOps for almost two years now. Today i got my first automated email on error for a webhook related to my last commit from the central repo to my Sentinel intances. Its a webhook that is automticly created in connections that are made the last year (the once from 2 years ago dont have this webhook automaticly created). The hook is found in devops -> service hooks -> webhooks "run state change" for each connected sentinel However, after todays run (which was successfull, all content deployed) this hook generates alerts. It says it cant reach: (EU in my case) eu.prod.dps.sentinel.azure.com full url: https://eu.prod.dps.sentinel.azure.com/webhooks/ado/workspaces/[REDACTED]/sourceControls/[REDACTED] So, what happened to this domain? why is it no longer responding and when was it going offline? I THINK this is the hook that sets the status under Sentinel -> Repositories in the GUI. this success status in screenshoot is from 2025/02/06, no new success has been registered in the receiving Sentinel instance. For the Sentinel that is 2 year old and dont have a hook in my DevOps that last deployment status says "Unknown" - so im fairly sure thats what the webhook is doing. So a second question would be, how can i set up a new webhook ? (it want ID and password of the "Azure Sentinel Content Deployment App" - i will never know that password....) so i cant manually add ieather (if the URL ever comes back online or if a new one exists?). please let me know.123Views1like3CommentsIssue when ingesting Defender XDR table in Sentinel
Hello, We are migrating our on-premises SIEM solution to Microsoft Sentinel since we have E5 licences for all our users. The integration between Defender XDR and Sentinel convinced us to make the move. We have a limited budget for Sentinel, and we found out that the Auxiliary/Data Lake feature is sufficient for verbose log sources such as network logs. We would like to retain Defender XDR data for more than 30 days (the default retention period). We implemented the solution described in this blog post: https://jeffreyappel.nl/how-to-store-defender-xdr-data-for-years-in-sentinel-data-lake-without-expensive-ingestion-cost/ However, we are facing an issue with 2 tables: DeviceImageLoadEvents and DeviceFileCertificateInfo. The table forwarded by Defender to Sentinel are empty like this row: We created a support ticket but so far, we haven't received any solution. If anyone has experienced this issue, we would appreciate your feedback. Lucas20Views0likes0CommentsSentinel Data Connector: Google Workspace (G Suite) (using Azure Functions)
I'm encountering a problem when attempting to run the GWorkspace_Report workbook in Azure Sentinel. The query is throwing this error related to the union operator: 'union' operator: Failed to resolve table expression named 'GWorkspace_ReportsAPI_gcp_CL' I've double-checked, and the GoogleWorkspaceReports connector is installed and updated to version 3.0.2. Has anyone seen this or know what might be causing the table GWorkspace_ReportsAPI_gcp_CL to be unresolved? Thanks!81Views0likes2CommentsTrend Micro Vision One Connector Not working
Hi All, Before I get nuked in the comments to raise an issue on the Sentinel Repo. Here me out 😇 Around a month ago, the logs stopped ingesting. A quick snoop around revealed the reason. But I'm not sure if I should raise an issue, or try to fix the issue, risking voiding any future support I can get, since the connector and the app that comes with it are market solutions. Function app was not running due to a dependency issue. Spotted this on the diagnostic logs, under the "exceptions" table. "module named _cffi_backend not found" a python package google tells me, thats used to interact with C code. So logically, I need to find the requirement.txt and make sure the dependency is there. Also make sure the python version on the runtime and Azure matches, The logs were initially flowing as usual . I had completed integrating Trend Micro using Azure Functions based connector around 7 months ago. Worked like a toyota helix until now. So once again, would like to know the community's thoughts on it. Thxx120Views1like1CommentHow Azure NetApp Files Object REST API powers Azure and ISV Data and AI services – on YOUR data
This article introduces the Azure NetApp Files Object REST API, a transformative solution for enterprises seeking seamless, real-time integration between their data and Azure's advanced analytics and AI services. By enabling direct, secure access to enterprise data—without costly transfers or duplication—the Object REST API accelerates innovation, streamlines workflows, and enhances operational efficiency. With S3-compatible object storage support, it empowers organizations to make faster, data-driven decisions while maintaining compliance and data security. Discover how this new capability unlocks business potential and drives a new era of productivity in the cloud.430Views0likes0CommentsUnlock the Power of AI with GitHub Models: A Hands-On Guide
Ready to elevate your coding game? Imagine having the power of advanced AI at your fingertips, ready to integrate into your projects with just a few clicks. Whether you're building a smart assistant, automating workflows, or creating the next big thing, GitHub Models are here to make it happen. Dive into our guide and discover how to get started, customize responses, and even build your own AI-powered applications—all from within the familiar GitHub interface. Your journey into the world of AI starts now. Click to explore and let your creativity take flight!4KViews1like1Comment