github
83 TopicsAgents League: Two Weeks, Three Tracks, One Challenge
We're inviting all developers to join Agents League, running February 16-27. It's a two-week challenge where you'll build AI agents using production-ready tools, learn from live coding sessions, and get feedback directly from Microsoft product teams. We've put together starter kits for each track to help you get up and running quickly that also includes requirements and guidelines. Whether you want to explore what GitHub Copilot can do beyond autocomplete, build reasoning agents on Microsoft Foundry, or create enterprise integrations for Microsoft 365 Copilot, we have a track for you. Important: Register first to be eligible for prizes and your digital badge. Without registration, you won't qualify for awards or receive a badge when you submit. What Is Agents League? It's a 2-week competition that combines learning with building: 📽️ Live coding battles – Watch Product teams, MVPs and community members tackle challenges in real-time on Microsoft Reactor 💻 Async challenges – Build at your own pace, on your schedule 💬 Discord community – Connect with other participants, join AMAs, and get help when you need it 🏆 Prizes – $500 per track winner, plus GitHub Copilot Pro subscriptions for top picks The Three Tracks 🎨 Creative Apps — Build with GitHub Copilot (Chat, CLI, or SDK) 🧠 Reasoning Agents — Build with Microsoft Foundry 💼 Enterprise Agents — Build with M365 Agents Toolkit (or Copilot Studio) More details on each track below, or jump straight to the starter kits. The Schedule Agents League starts on February 16th and runs through Feburary 27th. Within 2 weeks, we host live battles on Reactor and AMA sessions on Discord. Week 1: Live Battles (Feb 17-19) We're kicking off with live coding battles streamed on Microsoft Reactor. Watch experienced developers compete in real-time, explaining their approach and architectural decisions as they go. Tue Feb 17, 9 AM PT — 🎨 Creative Apps battle Wed Feb 18, 9 AM PT — 🧠 Reasoning Agents battle Thu Feb 19, 9 AM PT — 💼 Enterprise Agents battle All sessions are recorded, so you can watch on your own schedule. Week 2: Build + AMAs (Feb 24-26) This is your time to build and ask questions on Discord. The async format means you work when it suits you, evenings, weekends, whatever fits your schedule. We're also hosting AMAs on Discord where you can ask questions directly to Microsoft experts and product teams: Tue Feb 24, 9 AM PT — 🎨 Creative Apps AMA Wed Feb 25, 9 AM PT — 🧠 Reasoning Agents AMA Thu Feb 26, 9 AM PT — 💼 Enterprise Agents AMA Bring your questions, get help when you're stuck, and share what you're building with the community. Pick Your Track We've created a starter kit for each track with setup guides, project ideas, and example scenarios to help you get started quickly. 🎨 Creative Apps Tool: GitHub Copilot (Chat, CLI, or SDK) Build innovative, imaginative applications that showcase the potential of AI-assisted development. All application types are welcome, web apps, CLI tools, games, mobile apps, desktop applications, and more. The starter kit walks you through GitHub Copilot's different modes and provides prompting tips to get the best results. View the Creative Apps starter kit. 🧠 Reasoning Agents Tool: Microsoft Foundry (UI or SDK) and/or Microsoft Agent Framework Build a multi-agent system that leverages advanced reasoning capabilities to solve complex problems. This track focuses on agents that can plan, reason through multi-step problems, and collaborate. The starter kit includes architecture patterns, reasoning strategies (planner-executor, critic/verifier, self-reflection), and integration guides for tools and MCP servers. View the Reasoning Agents starter kit. 💼 Enterprise Agents Tool: M365 Agents Toolkit or Copilot Studio Create intelligent agents that extend Microsoft 365 Copilot to address real-world enterprise scenarios. Your agent must work on Microsoft 365 Copilot Chat. Bonus points for: MCP server integration, OAuth security, Adaptive Cards UI, connected agents (multi-agent architecture). View the Enterprise Agents starter kit. Prizes & Recognition To be eligible for prizes and your digital badge, you must register before submitting your project. Category Winners ($500 each): 🎨 Creative Apps winner 🧠 Reasoning Agents winner 💼 Enterprise Agents winner GitHub Copilot Pro subscriptions: Community Favorite (voted by participants on Discord) Product Team Picks (selected by Microsoft product teams) Everyone who registers and submits a project wins: A digital badge to showcase their participation. Beyond the prizes, every participant gets feedback from the teams who built these tools, a valuable opportunity to learn and improve your approach to AI agent development. How to Get Started Register first — This is required to be eligible for prizes and to receive your digital badge. Without registration, your submission won't qualify for awards or a badge. Pick a track — Choose one track. Explore the starter kits to help you decide. Watch the battles — See how experienced developers approach these challenges. Great for learning even if you're still deciding whether to compete. Build your project — You have until Feb 27. Work on your own schedule. Submit via GitHub — Open an issue using the project submission template. Join us on Discord — Get help, share your progress, and vote for your favorite projects on Discord. Links Register: https://aka.ms/agentsleague/register Starter Kits: https://github.com/microsoft/agentsleague/starter-kits Discord: https://aka.ms/agentsleague/discord Live Battles: https://aka.ms/agentsleague/battles Submit Project: Project submission templateChoosing the Right Model in GitHub Copilot: A Practical Guide for Developers
AI-assisted development has grown far beyond simple code suggestions. GitHub Copilot now supports multiple AI models, each optimized for different workflows, from quick edits to deep debugging to multi-step agentic tasks that generate or modify code across your entire repository. As developers, this flexibility is powerful… but only if we know how to choose the right model at the right time. In this guide, I’ll break down: Why model selection matters The four major categories of development tasks A simplified, developer-friendly model comparison table Enterprise considerations and practical tips This is written from the perspective of real-world customer conversations, GitHub Copilot demos, and enterprise adoption journeys Why Model Selection Matters GitHub Copilot isn’t tied to a single model. Instead, it offers a range of models, each with different strengths: Some are optimized for speed Others are optimized for reasoning depth Some are built for agentic workflows Choosing the right model can dramatically improve: The quality of the output The speed of your workflow The accuracy of Copilot’s reasoning The effectiveness of Agents and Plan Mode Your usage efficiency under enterprise quotas Model selection is now a core part of modern software development, just like choosing the right library, framework, or cloud service. The Four Task Categories (and which Model Fits) To simplify model selection, I group tasks into four categories. Each category aligns naturally with specific types of models. 1. Everyday Development Tasks Examples: Writing new functions Improving readability Generating tests Creating documentation Best fit: General-purpose coding models (e.g., GPT‑4.1, GPT‑5‑mini, Claude Sonnet) These models offer the best balance between speed and quality. 2. Fast, Lightweight Edits Examples: Quick explanations JSON/YAML transformations Small refactors Regex generation Short Q&A tasks Best fit: Lightweight models (e.g., Claude Haiku 4.5) These models give near-instant responses and keep you “in flow.” 3. Complex Debugging & Deep Reasoning Examples: Analyzing unfamiliar code Debugging tricky production issues Architecture decisions Multi-step reasoning Performance analysis Best fit: Deep reasoning models (e.g., GPT‑5, GPT‑5.1, GPT‑5.2, Claude Opus) These models handle large context, produce structured reasoning, and give the most reliable insights for complex engineering tasks. 4. Multi-step Agentic Development Examples: Repo-wide refactors Migrating a codebase Scaffolding entire features Implementing multi-file plans in Agent Mode Automated workflows (Plan → Execute → Modify) Best fit: Agent-capable models (e.g., GPT‑5.1‑Codex‑Max, GPT‑5.2‑Codex) These models are ideal when you need Copilot to execute multi-step tasks across your repository. GitHub Copilot Models - Developer Friendly Comparison The set of models you can choose from depends on your Copilot subscription, and the available options may evolve over time. Each model also has its own premium request multiplier, which reflects the compute resources it requires. If you're using a paid Copilot plan, the multiplier determines how many premium requests are deducted whenever that model is used. Model Category Example Models (Premium request Multiplier for paid plans) What they’re best at When to Use Them Fast Lightweight Models Claude Haiku 4.5, Gemini 3 Flash (0.33x) Grok Code Fast 1 (0.25x) Low latency, quick responses Small edits, Q&A, simple code tasks General-Purpose Coding Models GPT‑4.1, GPT‑5‑mini (0x) GPT-5-Codex, Claude Sonnet 4.5 (1x) Reliable day‑to‑day development Writing functions, small tests, documentation Deep Reasoning Models GPT-5.1 Codex Mini (0.33x) GPT‑5, GPT‑5.1, GPT-5.1 Codex, GPT‑5.2, Claude Sonnet 4.0, Gemini 2.5 Pro, Gemini 3 Pro (1x) Claude Opus 4.5 (3x) Complex reasoning and debugging Architecture work, deep bug diagnosis Agentic / Multi-step Models GPT‑5.1‑Codex‑Max, GPT‑5.2‑Codex (1x) Planning + execution workflows Repo-wide changes, feature scaffolding Enterprise Considerations For organizations using Copilot Enterprise or Business: Admins can control which models employees can use Model selection may be restricted due to security, regulation, or data governance You may see fewer available models depending on your organization’s Copilot policies Using "Auto" Model selection in GitHub Copilot GitHub Copilot’s Auto model selection automatically chooses the best available model for your prompts, reducing the mental load of picking a model and helping you avoid rate‑limiting. When enabled, Copilot prioritizes model availability and selects from a rotating set of eligible models such as GPT‑4.1, GPT‑5 mini, GPT‑5.2‑Codex, Claude Haiku 4.5, and Claude Sonnet 4.5 while respecting your subscription level and any administrator‑imposed restrictions. Auto also excludes models blocked by policies, models with premium multipliers greater than 1, and models unavailable in your plan. For paid plans, Auto provides an additional benefit: a 10% discount on premium request multipliers when used in Copilot Chat. Overall, Auto offers a balanced, optimized experience by dynamically selecting a performant and cost‑efficient model without requiring developers to switch models manually. Read more about the 'Auto' Model selection here - About Copilot auto model selection - GitHub Docs Final Thoughts GitHub Copilot is becoming a core part of the developer workflows. Choosing the right model can dramatically improve your productivity, the accuracy of Copilot’s responses, your experience with multi-step agentic tasks, your ability to navigate complex codebases Whether you’re building features, debugging complex issues, or orchestrating repo-wide changes, picking the right model helps you get the best out of GitHub Copilot. References and Further Reading To explore each model further, visit the GitHub Copilot model comparison documentation or try switching models in Copilot Chat to see how they impact your workflow. AI model comparison - GitHub Docs Requests in GitHub Copilot - GitHub Docs About Copilot auto model selection - GitHub DocsDemystifying GitHub Copilot Security Controls: easing concerns for organizational adoption
At a recent developer conference, I delivered a session on Legacy Code Rescue using GitHub Copilot App Modernization. Throughout the day, conversations with developers revealed a clear divide: some have fully embraced Agentic AI in their daily coding, while others remain cautious. Often, this hesitation isn't due to reluctance but stems from organizational concerns around security and regulatory compliance. Having witnessed similar patterns during past technology shifts, I understand how these barriers can slow adoption. In this blog, I'll demystify the most common security concerns about GitHub Copilot and explain how its built-in features address them, empowering organizations to confidently modernize their development workflows. GitHub Copilot Model Training A common question I received at the conference was whether GitHub uses your code as training data for GitHub Copilot. I always direct customers to the GitHub Copilot Trust Center for clarity, but the answer is straightforward: “No. GitHub uses neither Copilot Business nor Enterprise data to train the GitHub model.” Notice this restriction also applies to third-party models as well (e.g. Anthropic, Google). GitHub Copilot Intellectual Property indemnification policy A frequent concern I hear is, since GitHub Copilot’s underlying models are trained on sources that include public code, it might simply “copy and paste” code from those sources. Let’s clarify how this actually works: Does GitHub Copilot “copy/paste”? “The AI models that create Copilot’s suggestions may be trained on public code, but do not contain any code. When they generate a suggestion, they are not “copying and pasting” from any codebase.” To provide an additional layer of protection, GitHub Copilot includes a “duplicate detection filter”. This feature helps prevent suggestions that closely match public code from being surfaced. (Note: This duplicate detection currently does not apply to the Copilot coding agent.) More importantly, customers are protected by an Intellectual Property indemnification policy. This means that if you receive an unmodified suggestion from GitHub Copilot and face a copyright claim as a result, Microsoft will defend you in court. GitHub Copilot Data Retention Another frequent question I hear concerns GitHub Copilot’s data retention policies. For organizations on GitHub Copilot Business and Enterprise plans, retention practices depend on how and where the service is accessed from: Access through IDE for Chat and Code Completions: Prompts and Suggestions: Not retained. User Engagement Data: Kept for two years. Feedback Data: Stored for as long as needed for its intended purpose. Other GitHub Copilot access and use: Prompts and Suggestions: Retained for 28 days. User Engagement Data: Kept for two years. Feedback Data: Stored for as long as needed for its intended purpose. For Copilot Coding Agent, session logs are retained for the life of the account in order to provide the service. Excluding content from GitHub Copilot To prevent GitHub Copilot from indexing sensitive files, you can configure content exclusions at the repository or organization level. In VS Code, use the .copilotignore file to exclude files client-side. Note that files listed in .gitignore are not indexed by default but may still be referenced if open or explicitly referenced (unless they’re excluded through .copilotignore or content exclusions). The life cycle of a GitHub Copilot code suggestion Here are the key protections at each stage of the life cycle of a GitHub Copilot code suggestion: In the IDE: Content exclusions prevent files, folders, or patterns from being included. GitHub proxy (pre-model safety): Prompts go through a GitHub proxy hosted in Microsoft Azure for pre-inference checks: screening for toxic or inappropriate language, relevance, and hacking attempts/jailbreak-style prompts before reaching the model. Model response: With the public code filter enabled, some suggestions are suppressed. The vulnerability protection feature blocks insecure coding patterns like hardcoded credentials or SQL injections in real time. Disable access to GitHub Copilot Free Due to the varying policies associated with GitHub Copilot Free, it is crucial for organizations to ensure it is disabled both in the IDE and on GitHub.com. Since not all IDEs currently offer a built-in option to disable Copilot Free, the most reliable method to prevent both accidental and intentional access is to implement firewall rule changes, as outlined in the official documentation. Agent Mode Allow List Accidental file system deletion by Agentic AI assistants can happen. With GitHub Copilot agent mode, the "Terminal auto approve” setting in VS Code can be used to prevent this. This setting can be managed centrally using a VS Code policy. MCP registry Organizations often want to restrict access to allow only trusted MCP servers. GitHub now offers an MCP registry feature for this purpose. This feature isn’t available in all IDEs and clients yet, but it's being developed. Compliance Certifications The GitHub Copilot Trust Center page lists GitHub Copilot's broad compliance credentials, surpassing many competitors in financial, security, privacy, cloud, and industry coverage. SOC 1 Type 2: Assurance over internal controls for financial reporting. SOC 2 Type 2: In-depth report covering Security, Availability, Processing Integrity, Confidentiality, and Privacy over time. SOC 3: General-use version of SOC 2 with broad executive-level assurance. ISO/IEC 27001:2013: Certification for a formal Information Security Management System (ISMS), based on risk management controls. CSA STAR Level 2: Includes a third-party attestation combining ISO 27001 or SOC 2 with additional cloud control matrix (CCM) requirements. TISAX: Trusted Information Security Assessment Exchange, covering automotive-sector security standards. In summary, while the adoption of AI tools like GitHub Copilot in software development can raise important questions around security, privacy, and compliance, it’s clear that existing safeguards in place help address these concerns. By understanding the safeguards, configurable controls, and robust compliance certifications offered, organizations and developers alike can feel more confident in embracing GitHub Copilot to accelerate innovation while maintaining trust and peace of mind.GitHub Copilot SDK and Hybrid AI in Practice: Automating README to PPT Transformation
Introduction In today's rapidly evolving AI landscape, developers often face a critical choice: should we use powerful cloud-based Large Language Models (LLMs) that require internet connectivity, or lightweight Small Language Models (SLMs) that run locally but have limited capabilities? The answer isn't either-or—it's hybrid models—combining the strengths of both to create AI solutions that are secure, efficient, and powerful. This article explores hybrid model architectures through the lens of GenGitHubRepoPPT, demonstrating how to elegantly combine Microsoft Foundry Local, GitHub Copilot SDK, and other technologies to automatically generate professional PowerPoint presentations from GitHub README files. 1. Hybrid Model Scenarios and Value 1.1 What Are Hybrid Models? Hybrid AI Models strategically combine locally-running Small Language Models (SLMs) with cloud-based Large Language Models (LLMs) within the same application, selecting the most appropriate model for each task based on its unique characteristics. Core Principles: Local Processing for Sensitive Data: Privacy-critical content analysis happens on-device Cloud for Value Creation: Complex reasoning and creative generation leverage cloud power Balancing Cost and Performance: High-frequency, simple tasks run locally to minimize API costs 1.2 Typical Hybrid Model Use Cases Use Case Local SLM Role Cloud LLM Role Value Proposition Intelligent Document Processing Text extraction, structural analysis Content refinement, format conversion Privacy protection + Professional output Code Development Assistant Syntax checking, code completion Complex refactoring, architecture advice Fast response + Deep insights Customer Service Systems Intent recognition, FAQ handling Complex issue resolution Reduced latency + Enhanced quality Content Creation Platforms Keyword extraction, outline generation Article writing, multilingual translation Cost control + Creative assurance 1.3 Why Choose Hybrid Models? Three Core Advantages: Privacy and Security Sensitive data never leaves local devices Compliant with GDPR, HIPAA, and other regulations Ideal for internal corporate documents and personal information Cost Optimization Reduces cloud API call frequency Local models have zero usage fees Predictable operational costs Performance and Reliability Local processing eliminates network latency Partial functionality in offline environments Cloud models ensure high-quality output 2. Core Technology Analysis 2.1 Large Language Models (LLMs): Cloud Intelligence Representatives What are LLMs? Large Language Models are deep learning-based natural language processing models, typically with billions to trillions of parameters. Through training on massive text datasets, they've acquired powerful language understanding and generation capabilities. Representative Models: Claude Sonnet 4.5: Anthropic's flagship model, excelling at long-context processing and complex reasoning GPT-5.2 Series: OpenAI's general-purpose language models Gemini: Google's multimodal large models LLM Advantages: ✅ Exceptional text generation quality ✅ Powerful contextual understanding ✅ Support for complex reasoning tasks ✅ Continuous model updates and optimization Typical Applications: Professional document writing (technical reports, business plans) Code generation and refactoring Multilingual translation Creative content creation 2.2 Small Language Models (SLMs) and Microsoft Foundry Local 2.2.1 SLM Characteristics Small Language Models typically have 1B-7B parameters, designed specifically for resource-constrained environments. Mainstream SLM Model Families: Microsoft Phi Family (Phi Family): Inference-optimized efficient models Alibaba Qwen Family (Qwen Family): Excellent Chinese language capabilities Mistral Series: Outstanding performance with small parameter counts SLM Advantages: ⚡ Low-latency response (millisecond-level) 💰 Zero API costs 🔒 Fully local, data stays on-device 📱 Suitable for edge device deployment 2.2.2 Microsoft Foundry Local: The Foundation of Local AI Foundry Local is Microsoft's local AI runtime tool, enabling developers to easily run SLMs on Windows or macOS devices. Core Features: OpenAI-Compatible API # Using Foundry Local is like using OpenAI API from openai import OpenAI from foundry_local import FoundryLocalManager manager = FoundryLocalManager("qwen2.5-7b-instruct") client = OpenAI( base_url=manager.endpoint, api_key=manager.api_key ) Hardware Acceleration Support CPU: General computing support GPU: NVIDIA, AMD, Intel graphics acceleration NPU: Qualcomm, Intel AI-specific chips Apple Silicon: Neural Engine optimization Based on ONNX Runtime Cross-platform compatibility Highly optimized inference performance Supports model quantization (INT4, INT8) Convenient Model Management # View available models foundry model list # Run a model foundry model run qwen2.5-7b-instruct-generic-cpu:4 # Check running status foundry service ps Foundry Local Application Value: 🎓 Educational Scenarios: Students can learn AI development without cloud subscriptions 🏢 Enterprise Environments: Process sensitive data while maintaining compliance 🧪 R&D Testing: Rapid prototyping without API cost concerns ✈️ Offline Environments: Works on planes, subways, and other no-network scenarios 2.3 GitHub Copilot SDK: The Express Lane from Agent to Business Value 2.3.1 What is GitHub Copilot SDK? GitHub Copilot SDK, released as a technical preview on January 22, 2026, is a game-changer for AI Agent development. Unlike other AI SDKs, Copilot SDK doesn't just provide API calling interfaces—it delivers a complete, production-grade Agent execution engine. Why is it revolutionary? Traditional AI application development requires you to build: ❌ Context management systems (multi-turn conversation state) ❌ Tool orchestration logic (deciding when to call which tool) ❌ Model routing mechanisms (switching between different LLMs) ❌ MCP server integration ❌ Permission and security boundaries ❌ Error handling and retry mechanisms Copilot SDK provides all of this out-of-the-box, letting you focus on business logic rather than underlying infrastructure. 2.3.2 Core Advantages: The Ultra-Short Path from Concept to Code Production-Grade Agent Engine: Battle-Tested Reliability Copilot SDK uses the same Agent core as GitHub Copilot CLI, which means: ✅ Validated in millions of real-world developer scenarios ✅ Capable of handling complex multi-step task orchestration ✅ Automatic task planning and execution ✅ Built-in error recovery mechanisms Real-World Example: In the GenGitHubRepoPPT project, we don't need to hand-write the "how to convert outline to PPT" logic—we simply tell Copilot SDK the goal, and it automatically: Analyzes outline structure Plans slide layouts Calls file creation tools Applies formatting logic Handles multilingual adaptation # Traditional approach: requires hundreds of lines of code for logic def create_ppt_traditional(outline): slides = parse_outline(outline) for slide in slides: layout = determine_layout(slide) content = format_content(slide) apply_styling(content, layout) # ... more manual logic return ppt_file # Copilot SDK approach: focus on business intent session = await client.create_session({ "model": "claude-sonnet-4.5", "streaming": True, "skill_directories": [skills_dir] }) session.send_and_wait({"prompt": prompt}, timeout=600) Custom Skills: Reusable Encapsulation of Business Knowledge This is one of Copilot SDK's most powerful features. In traditional AI development, you need to provide complete prompts and context with every call. Skills allow you to: Define once, reuse forever: # .copilot_skills/ppt/SKILL.md # PowerPoint Generation Expert Skill ## Expertise You are an expert in business presentation design, skilled at transforming technical content into easy-to-understand visual presentations. ## Workflow 1. **Structure Analysis** - Identify outline hierarchy (titles, subtitles, bullet points) - Determine topic and content density for each slide 2. **Layout Selection** - Title slide: Use large title + subtitle layout - Content slides: Choose single/dual column based on bullet count - Technical details: Use code block or table layouts 3. **Visual Optimization** - Apply professional color scheme (corporate blue + accent colors) - Ensure each slide has a visual focal point - Keep bullets to 5-7 items per page 4. **Multilingual Adaptation** - Choose appropriate fonts based on language (Chinese: Microsoft YaHei, English: Calibri) - Adapt text direction and layout conventions ## Output Requirements Generate .pptx files meeting these standards: - 16:9 widescreen ratio - Consistent visual style - Editable content (not images) - File size < 5MB Business Code Generation Capability This is the core value of this project. Unlike generic LLM APIs, Copilot SDK with Skills can generate truly executable business code. Comparison Example: Aspect Generic LLM API Copilot SDK + Skills Task Description Requires detailed prompt engineering Concise business intent suffices Output Quality May need multiple adjustments Professional-grade on first try Code Execution Usually example code Directly generates runnable programs Error Handling Manual implementation required Agent automatically handles and retries Multi-step Tasks Manual orchestration needed Automatic planning and execution Comparison of manual coding workload: Task Manual Coding Copilot SDK Processing logic code ~500 lines ~10 lines configuration Layout templates ~200 lines Declared in Skill Style definitions ~150 lines Declared in Skill Error handling ~100 lines Automatically handled Total ~950 lines ~10 lines + Skill file Tool Calling & MCP Integration: Connecting to the Real World Copilot SDK doesn't just generate code—it can directly execute operations: 🗃️ File System Operations: Create, read, modify files 🌐 Network Requests: Call external APIs 📊 Data Processing: Use pandas, numpy, and other libraries 🔧 Custom Tools: Integrate your business logic 3. GenGitHubRepoPPT Case Study 3.1 Project Overview GenGitHubRepoPPT is an innovative hybrid AI solution that combines local AI models with cloud-based AI agents to automatically generate professional PowerPoint presentations from GitHub repository README files in under 5 minutes. Technical Architecture: 3.2 Why Adopt a Hybrid Model? Stage 1: Local SLM Processes Sensitive Data Task: Analyze GitHub README, extract key information, generate structured outline Reasons for choosing Qwen-2.5-7B + Foundry Local: Privacy Protection README may contain internal project information Local processing ensures data doesn't leave the device Complies with data compliance requirements Cost Effectiveness Each analysis processes thousands of tokens Cloud API costs are significant in high-frequency scenarios Local models have zero additional fees Performance Qwen-2.5-7B excels at text analysis tasks Outstanding Chinese support Acceptable CPU inference latency (typically 2-3 seconds) Stage 2: Cloud LLM + Copilot SDK Creates Business Value Task: Create well-formatted PowerPoint files based on outline Reasons for choosing Claude Sonnet 4.5 + Copilot SDK: Automated Business Code Generation Traditional approach pain points: Need to hand-write 500+ lines of code for PPT layout logic Require deep knowledge of python-pptx library APIs Style and formatting code is error-prone Multilingual support requires additional conditional logic Copilot SDK solution: Declare business rules and best practices through Skills Agent automatically generates and executes required code Zero-code implementation of complex layout logic Development time reduced from 2-3 days to 2-3 hours Ultra-Short Path from Intent to Execution Comparison: Different ways to implement "Generate professional PPT" 3. Production-Grade Reliability and Quality Assurance Battle-tested Agent engine: Uses the same core as GitHub Copilot CLI Validated in millions of real-world scenarios Automatically handles edge cases and errors Consistent output quality: Professional standards ensured through Skills Automatic validation of generated files Built-in retry and error recovery mechanisms 4. Rapid Iteration and Optimization Capability Scenario: Client requests PPT style adjustment The GitHub Repo https://github.com/kinfey/GenGitHubRepoPPT 4. Summary 4.1 Core Value of Hybrid Models + Copilot SDK The GenGitHubRepoPPT project demonstrates how combining hybrid models with Copilot SDK creates a new paradigm for AI application development. Privacy and Cost Balance The hybrid approach allows sensitive README analysis to happen locally using Qwen-2.5-7B, ensuring data never leaves the device while incurring zero API costs. Meanwhile, the value-creating work—generating professional PowerPoint presentations—leverages Claude Sonnet 4.5 through Copilot SDK, delivering quality that justifies the per-use cost. From Code to Intent Traditional AI development required writing hundreds of lines of code to handle PPT generation logic, layout selection, style application, and error handling. With Copilot SDK and Skills, developers describe what they want in natural language, and the Agent automatically generates and executes the necessary code. What once took 3-5 days now takes 3-4 hours, with 95% less code to maintain. Automated Business Code Generation Copilot SDK doesn't just provide code examples—it generates complete, executable business logic. When you request a multilingual PPT, the Agent understands the requirement, selects appropriate fonts, generates the implementation code, executes it with error handling, validates the output, and returns a ready-to-use file. Developers focus on business intent rather than implementation details. 4.2 Technology Trends The Shift to Intent-Driven Development We're witnessing a fundamental change in how developers work. Rather than mastering every programming language detail and framework API, developers are increasingly defining what they want through declarative Skills. Copilot SDK represents this future: you describe capabilities in natural language, and AI Agents handle the code generation and execution automatically. Edge AI and Cloud AI Integration The evolution from pure cloud LLMs (powerful but privacy-concerning) to pure local SLMs (private but limited) has led to today's hybrid architectures. GenGitHubRepoPPT exemplifies this trend: local models handle data analysis and structuring, while cloud models tackle complex reasoning and professional output generation. This combination delivers fast, secure, and professional results. Democratization of Agent Development Copilot SDK dramatically lowers the barrier to building AI applications. Senior engineers see 10-20x productivity gains. Mid-level engineers can now build sophisticated agents that were previously beyond their reach. Even junior engineers and business experts can participate by writing Skills that capture domain knowledge without deep technical expertise. The future isn't about whether we can build AI applications—it's about how quickly we can turn ideas into reality. References Projects and Code GenGitHubRepoPPT GitHub Repository - Case study project Microsoft Foundry Local - Local AI runtime GitHub Copilot SDK - Agent development SDK Copilot SDK Getting Started Tutorial - Official quick start Deep Dive: Copilot SDK Build an Agent into Any App with GitHub Copilot SDK - Official announcement GitHub Copilot SDK Cookbook - Practical examples Copilot CLI Official Documentation - CLI tool documentation Learning Resources Edge AI for Beginners - Edge AI introductory course Azure AI Foundry Documentation - Azure AI documentation GitHub Copilot Extensions Guide - Extension development guideRethinking Documentation Translation: Treating Translations as Versioned Software Assets
Rethinking Documentation Translation: Treating Translations as Versioned Software Assets This article is written from the perspective of maintaining large, open-source documentation repositories in the Microsoft ecosystem. I am the maintainer of Co-op Translator, an open-source tool for automating multilingual documentation translation, used across multiple large documentation repositories, including Microsoft’s For Beginners series. In large documentation repositories, translation problems rarely fail loudly. They fail quietly, and they accumulate over time. Recently, we made a fundamental design decision in how Co-op Translator handles translations. Translations are treated as versioned software assets, not static outputs. This article explains why we reached that conclusion, and what this perspective enables for teams maintaining large, fast-moving documentation repositories. When translations quietly become a liability In most documentation projects, translations are treated as finished outputs. Once a file is translated, it is assumed to remain valid until someone explicitly notices a problem. But documentation rarely stands still. Text changes. Code examples evolve. Screenshots are replaced. Notebooks are updated to reflect new behavior. The problem is that these changes are often invisible in translated content. A translation may still read fluently, while the information it contains is already out of date. At that point, the issue is no longer about translation quality. It becomes a maintenance problem. Reframing the question Most translation workflows implicitly ask: Is this translation correct? In practice, maintainers struggle with a different question: Is this translation still synchronized with the current source? This distinction matters. A translation can be correct and still be out of sync. Once we acknowledged this, it became clear that treating translations as static content was no longer sufficient. The design decision: translations as versioned assets Starting with Co-op Translator 0.16.2, we made a deliberate design decision: Translations are treated as versioned software assets. This applies not only to Markdown files, but also to images, notebooks, and any other translated artifacts. Translated content is not just text. It is an artifact generated from a specific version of a source. To make this abstraction operational rather than theoretical, we did not invent a new mechanism. Instead, we looked to systems that already solve a similar problem: pip, poetry, and npm. These tools are designed to track artifacts as their sources evolve. We applied the same thinking to translated content. Closer to dependency management than translation jobs The closest analogy is software dependency management. When a dependency becomes outdated: it is not suddenly “wrong,” it is simply no longer aligned with the current version. Translations behave the same way. When the source document changes: the translated file does not immediately become incorrect, it becomes out of sync with its source version. This framing shifts the problem away from translation output and toward state and synchronization. Why file-level versioning matters Many translation systems operate at the string or segment level. That model works well for UI text and relatively stable resources. Documentation is different. A Markdown file is an artifact. A screenshot is an artifact. A notebook is an artifact. They are consumed as units, not as isolated strings. Managing translation state at the file level allows maintainers to reason about translations using the same mental model they already apply to other repository assets. What changed in practice From embedded markers to explicit state Previously, translation metadata lived inside translated files as embedded comments or markers. This approach had clear limitations: translation state was fragmented, difficult to inspect globally, and easy to miss as repositories grew. We moved to language-scoped JSON state files that explicitly track: the source version, the translated artifact, and its synchronization status. Translation state is no longer hidden inside content. It is a first-class, inspectable part of the repository. Extending the model to images and notebooks The same model now applies consistently to: translated images, localized notebooks, and other non-text artifacts. If an image changes in the source language, the translated image becomes out of sync. If a notebook is updated, its translated versions are evaluated against the new source version. The format does not matter. The lifecycle does. Once translations are treated as versioned assets, the system remains consistent across all content types. What this enables This design enables: Explicit drift detection See which translations are out of sync without guessing. Consistent maintenance signals Text, images, and notebooks follow the same rules. Clear responsibility boundaries The system reports state. Humans decide action. Scalability for fast-moving repositories Translation maintenance becomes observable, not reactive. In large documentation sets, this difference determines whether translation maintenance is sustainable at all. What this is not This system does not: judge translation quality, determine semantic correctness, or auto-approve content. It answers one question only: Is this translated artifact synchronized with its source version? Who this is for This approach is designed for teams that: maintain multilingual documentation, update content frequently, and need confidence in what is actually up to date. When documentation evolves faster than translations, treating translations as versioned assets becomes a necessity, not an optimization. Closing thought Once translations are modeled as software assets, long-standing ambiguities disappear. State becomes visible. Maintenance becomes manageable. And translations fit naturally into existing software workflows. At that point, the question is no longer whether translation drift exists, but: Can you see it? Reference Co-op Translator repository https://github.com/Azure/co-op-translatorThe Perfect Fusion of GitHub Copilot SDK and Cloud Native
In today's rapidly evolving AI landscape, we've witnessed the transformation from simple chatbots to sophisticated agent systems. As a developer and technology evangelist, I've observed an emerging trend—it's not about making AI omnipotent, but about enabling each AI Agent to achieve excellence in specific domains. Today, I want to share an exciting technology stack: GitHub Copilot SDK (a development toolkit that embeds production-grade agent engines into any application) + Agent-to-Agent (A2A) Protocol (a communication standard enabling standardized agent collaboration) + Cloud Native Deployment (the infrastructure foundation for production systems). Together, these three components enable us to build truly collaborative multi-agent systems. 1. From AI Assistants to Agent Engines: Redefining Capability Boundaries Traditional AI assistants often pursue "omnipotence"—attempting to answer any question you throw at them. However, in real production environments, this approach faces serious challenges: Inconsistent Quality: A single model trying to write code, perform data analysis, and generate creative content struggles to achieve professional standards in each domain Context Pollution: Mixing prompts from different tasks leads to unstable model outputs Difficult Optimization: Adjusting prompts for one task type may negatively impact performance on others High Development Barrier: Building agents from scratch requires handling planning, tool orchestration, context management, and other complex logic GitHub proposed a revolutionary approach—instead of forcing developers to build agent frameworks from scratch, provide a production-tested, programmable agent engine. This is the core value of the GitHub Copilot SDK. Evolution from Copilot CLI to SDK GitHub Copilot CLI is a powerful command-line tool that can: Plan projects and features Modify files and execute commands Use custom agents Delegate tasks to cloud execution Integrate with MCP servers The GitHub Copilot SDK extracts the agentic core behind Copilot CLI and offers it as a programmable layer for any application. This means: You're no longer confined to terminal environments You can embed this agent engine into GUI applications, web services, and automation scripts You gain access to the same execution engine validated by millions of users Just like in the real world, we don't expect one person to be a doctor, lawyer, and engineer simultaneously. Instead, we provide professional tools and platforms that enable professionals to excel in their respective domains. 2. GitHub Copilot SDK: Embedding Copilot CLI's Agentic Core into Any App Before diving into multi-agent systems, we need to understand a key technology: GitHub Copilot SDK. What is GitHub Copilot SDK? GitHub Copilot SDK (now in technical preview) is a programmable agent execution platform. It allows developers to embed the production-tested agentic core from GitHub Copilot CLI directly into any application. Simply put, the SDK provides: Out-of-the-box Agent Loop: No need to build planners, tool orchestration, or context management from scratch Multi-model Support: Choose different AI models (like GPT-4, Claude Sonnet) for different task phases Tool and Command Integration: Built-in file editing, command execution, and MCP server integration capabilities Streaming Real-time Responses: Support for progress updates on long-running tasks Multi-language Support: SDKs available for Node.js, Python, Go, and .NET Why is the SDK Critical for Building Agents? Building an agentic workflow from scratch is extremely difficult. You need to handle: Context management across multiple conversation turns Orchestration of tools and commands Routing between different models MCP server integration Permission control, safety boundaries, and error handling GitHub Copilot SDK abstracts away all this underlying complexity. You only need to focus on: Defining agent professional capabilities (through Skill files) Providing domain-specific tools and constraints Implementing business logic SDK Usage Examples Python Example (from actual project implementation): from copilot import CopilotClient # Initialize client copilot_client = CopilotClient() await copilot_client.start() # Create session and load Skill session = await copilot_client.create_session({ "model": "claude-sonnet-4.5", "streaming": True, "skill_directories": ["/path/to/skills/blog/SKILL.md"] }) # Send task await session.send_and_wait({ "prompt": "Write a technical blog about multi-agent systems" }, timeout=600) Skill System: Professionalizing Agents While the SDK provides a powerful execution engine, how do we make agents perform professionally in specific domains? The answer is Skill files. A Skill file is a standardized capability definition containing: Capability Declaration: Explicitly tells the system "what I can do" (e.g., blog generation, PPT creation) Domain Knowledge: Preset best practices, standards, and terminology guidelines Workflow: Defines the complete execution path from input to output Output Standards: Ensures generated content meets format and quality requirements Through the combination of Skill files + SDK, we can build truly professional agents rather than generic "jack-of-all-trades assistants." 3. A2A Protocol: Enabling Seamless Agent Collaboration Once we have professional agents, the next challenge is: how do we make them work together? This is the core problem the Agent-to-Agent (A2A) Protocol aims to solve. Three Core Mechanisms of A2A Protocol 1. Agent Discovery (Service Discovery) Each agent exposes its capability card through the standardized /.well-known/agent-card.json endpoint, acting like a business card that tells other agents "what I can do": { "name": "blog_agent", "description": "Blog generation with DeepSearch", "primaryKeywords": ["blog", "article", "write"], "skills": [{ "id": "blog_generation", "tags": ["blog", "writing"], "examples": ["Write a blog about..."] }], "capabilities": { "streaming": true } } 2. Intelligent Routing The Orchestrator matches tasks with agent capabilities through scoring. The project's routing algorithm implements keyword matching and exclusion detection: Positive Matching: If a task contains an agent's primaryKeywords, score +0.5 Negative Exclusion: If a task contains other agents' keywords, score -0.3 This way, when users say "write a blog about cloud native," the system automatically selects the Blog Agent; when they say "create a tech presentation PPT," it routes to the PPT Agent. 3. SSE Streaming (Real-time Streaming) For time-consuming tasks (like generating a 5000-word blog), A2A uses Server-Sent Events to push real-time progress, allowing users to see the agent working instead of just waiting. This is crucial for user experience. 4. Cloud Native Deployment: Making Agent Systems Production-Ready Even the most powerful technology is just a toy if it can't be deployed to production environments. This project demonstrates a complete deployment of a multi-agent system to a cloud-native platform (Azure Container Apps). Why Choose Cloud Native? Elastic Scaling: When blog generation requests surge, the Blog Agent can auto-scale; it scales down to zero during idle times to save costs Independent Evolution: Each agent has its own Docker image and deployment pipeline; updating the Blog Agent doesn't affect the PPT Agent Fault Isolation: If one agent crashes, it won't bring down the entire system; the Orchestrator automatically degrades Global Distribution: Through Azure Container Apps, agents can be deployed across multiple global regions to reduce latency Container Deployment Essentials Each agent in the project has a standardized Dockerfile: FROM python:3.12-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 8001 CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8001"] Combined with the deploy-to-aca.sh script, one-click deployment to Azure: # Build and push image az acr build --registry myregistry --image blog-agent:latest . # Deploy to Container Apps az containerapp create \ --name blog-agent \ --resource-group my-rg \ --environment my-env \ --image myregistry.azurecr.io/blog-agent:latest \ --secrets github-token=$COPILOT_TOKEN \ --env-vars COPILOT_GITHUB_TOKEN=secretref:github-token 5. Real-World Results: From "Works" to "Works Well" Let's see how this system performs in real scenarios. Suppose a user initiates a request: "Write a technical blog about Kubernetes multi-tenancy security, including code examples and best practices" System Execution Flow: Orchestrator receives the request and scans all agents' capability cards Keyword matching: "write" + "blog" → Blog Agent scores 1.0, PPT Agent scores 0.0 Routes to Blog Agent, loads technical writing Skill Blog Agent initiates DeepSearch to collect latest K8s security materials SSE real-time push: "Collecting materials..." → "Generating outline..." → "Writing content..." Returns complete blog after 5 minutes, including code highlighting, citation sources, and best practices summary Compared to traditional "omnipotent" AI assistants, this system's advantages: ✅ Professionalism: Blog Agent trained with technical writing Skills produces content with clear structure, accurate terminology, and executable code ✅ Visibility: Users see progress throughout, knowing what the AI is doing ✅ Extensibility: Adding new agents (video script, data analysis) in the future requires no changes to existing architecture 6. Key Technical Challenges and Solutions Challenge 1: Inaccurate Agent Capability Descriptions Leading to Routing Errors Solution: Define clear primaryKeywords and examples in Agent Cards Implement exclusion detection mechanism to prevent tasks from being routed to unsuitable agents Challenge 2: Poor User Experience for Long-Running Tasks Solution: Fully adopt SSE streaming, pushing working/completed/error status in real-time Display progress hints in status messages so users know what the system is doing Challenge 3: Sensitive Information Leakage Risk Solution: Use Azure Key Vault or Container Apps Secrets to manage GitHub Tokens Inject via environment variables, never hardcode in code or images Check required environment variables in deployment scripts to prevent configuration errors 7. Future Outlook: SDK-Driven Multi-Agent Ecosystem This project is just the beginning. As GitHub Copilot SDK and A2A Protocol mature, we can build richer agent ecosystems: Actual SDK Application Scenarios According to GitHub's official blog, development teams have already used the Copilot SDK to build: YouTube Chapter Generator: Automatically generates timestamped chapter markers for videos Custom Agent GUIs: Visual agent interfaces for specific business scenarios Speech-to-Command Workflows: Control desktop applications through voice AI Battle Games: Interactive competitive experiences with AI Intelligent Summary Tools: Automatic extraction and summarization of key information Multi-Agent System Evolution Directions 🏪 Agent Marketplace: Developers can publish specialized agents (legal documents, medical reports, etc.) that plug-and-play via A2A protocol 🔗 Cascade Orchestration: Orchestrator automatically breaks down complex tasks, calling multiple agents collaboratively (e.g., "write blog + generate images + create PPT") 🌐 Cross-Platform Interoperability: Based on A2A standards, agents developed by different companies can call each other, breaking down data silos ⚙️ Automated Workflows: Delegate routine repetitive work to agent chains, letting humans focus on creative work 🎯 Vertical Domain Specialization: Combined with Skill files, build high-precision agents in professional fields like finance, healthcare, and legal Core Value of the SDK The significance of GitHub Copilot SDK lies in: it empowers every developer to become a builder of agent systems. You don't need deep learning experts, you don't need to implement agent frameworks yourself, and you don't even need to manage GPU clusters. You only need to: Install the SDK (npm install github/copilot-sdk) Define your business logic and tools Write Skill files describing professional capabilities Call the SDK's execution engine And you can build production-grade intelligent agent applications. Summary: From Demo to Production GitHub Copilot SDK + A2A + Cloud Native isn't three independent technology stacks, but a complete methodology: GitHub Copilot SDK provides an out-of-the-box agent execution engine—handling planning, tool orchestration, context management, and other underlying complexity Skill files enable agents with domain-specific professional capabilities—defining best practices, workflows, and output standards A2A Protocol enables standardized communication and collaboration between agents—implementing service discovery, intelligent routing, and streaming Cloud Native makes the entire system production-ready—containerization, elastic scaling, fault isolation For developers, this means we no longer need to build agent frameworks from scratch or struggle with the black magic of prompt engineering. We only need to: Use GitHub Copilot SDK to obtain a production-grade agent execution engine Write domain-specific Skill files to define professional capabilities Follow A2A protocol to implement standard interfaces between agents Deploy to cloud platforms through containerization And we can build AI Agent systems that are truly usable, well-designed, and production-ready. 🚀 Start Building Complete project code is open source: https://github.com/kinfey/Multi-AI-Agents-Cloud-Native/tree/main/code/GitHubCopilotAgents_A2A Follow the README guide and deploy your first Multi-Agent system in 30 minutes! References GitHub Copilot SDK Official Announcement - Build an agent into any app with the GitHub Copilot SDK GitHub Copilot SDK Repository - github.com/github/copilot-sdk A2A Protocol Official Specification - a2a-protocol.org/latest/ Project Source Code - Multi-AI-Agents-Cloud-Native Azure Container Apps Documentation - learn.microsoft.com/azure/container-apps565Views0likes0CommentsBuilding Agents with GitHub Copilot SDK: A Practical Guide to Automated Tech Update Tracking
Introduction In the rapidly evolving tech landscape, staying on top of key project updates is crucial. This article explores how to leverage GitHub's newly released Copilot SDK to build intelligent agent systems, featuring a practical case study on automating daily update tracking and analysis for Microsoft's Agent Framework. GitHub Copilot SDK: Embedding AI Capabilities into Any Application SDK Overview On January 22, 2026, GitHub officially launched the GitHub Copilot SDK technical preview, marking a new era in AI agent development. The SDK provides these core capabilities: Production-grade execution loop: The same battle-tested agentic engine powering GitHub Copilot CLI Multi-language support: Node.js, Python, Go, and .NET Multi-model routing: Flexible model selection for different tasks MCP server integration: Native Model Context Protocol support Real-time streaming: Support for streaming responses and live interactions Tool orchestration: Automated tool invocation and command execution Core Advantages Building agentic workflows from scratch presents numerous challenges: Context management across conversation turns Orchestrating tools and commands Routing between models Handling permissions, safety boundaries, and failure modes The Copilot SDK encapsulates all this complexity. As Mario Rodriguez, GitHub's Chief Product Officer, explains: "The SDK takes the agentic power of Copilot CLI and makes it available in your favorite programming language... GitHub handles authentication, model management, MCP servers, custom agents, and chat sessions plus streaming. That means you are in control of what gets built on top of those building blocks." Quick Start Examples Here's a simple TypeScript example using the Copilot SDK: import { CopilotClient } from "@github/copilot-sdk"; const client = new CopilotClient(); await client.start(); const session = await client.createSession({ model: "gpt-5", }); await session.send({ prompt: "Hello, world!" }); And in Python, it's equally straightforward: from copilot import CopilotClient client = CopilotClient() await client.start() session = await client.create_session({ "model": "claude-sonnet-4.5", "streaming": True, "skill_directories": ["./.copilot_skills/pr-analyzer/SKILL.md"] }) await session.send_and_wait({ "prompt": "Analyze PRs from microsoft/agent-framework merged yesterday" }) Real-World Case Study: Automated Agent Framework Daily Updates Project Background agent-framework-update-everyday is an automated system built with GitHub Copilot SDK and CLI that tracks daily code changes in Microsoft's Agent Framework and generates high-quality technical blog posts. System Architecture The project leverages the following technology stack: GitHub Copilot CLI (@github/copilot): Command-line AI capabilities GitHub Copilot SDK (github-copilot-sdk): Programmatic AI interactions Copilot Skills: Custom PR analysis behaviors GitHub Actions: CI/CD automation pipeline Core Workflow The system runs fully automated via GitHub Actions, executing Monday through Friday at UTC 00:00 with these steps: Step Action Description 1 Checkout repository Clone the repo using actions/checkout@v4 2 Setup Node.js Configure Node.js 22 environment for Copilot CLI 3 Install Copilot CLI Install via npm i -g github/copilot 4 Setup Python Configure Python 3.11 environment 5 Install Python dependencies Install github-copilot-sdk package 6 Run PR Analysis Execute pr_trigger_v2.py with Copilot authentication 7 Commit and push Auto-commit generated blog posts to repository Technical Implementation Details 1. Copilot Skill Definition The project uses a custom Copilot Skill (.copilot_skills/pr-analyzer/SKILL.md) to define: PR analysis behavior patterns Blog post structure requirements Breaking changes priority strategy Code snippet extraction rules This skill-based approach enables the AI agent to focus on domain-specific tasks and produce higher-quality outputs. 2. Python SDK Integration The core script pr_trigger_v2.py demonstrates Python SDK usage: from copilot import CopilotClient # Initialize client client = CopilotClient() await client.start() # Create session with model and skill specification session = await client.create_session({ "model": "claude-sonnet-4.5", "streaming": True, "skill_directories": ["./.copilot_skills/pr-analyzer/SKILL.md"] }) # Send analysis request await session.send_and_wait({ "prompt": "Analyze PRs from microsoft/agent-framework merged yesterday" }) 3. CI/CD Integration The GitHub Actions workflow (.github/workflows/daily-pr-analysis.yml) ensures automated execution: name: Daily PR Analysis on: schedule: - cron: '0 0 * * 1-5' # Monday-Friday at UTC 00:00 workflow_dispatch: # Support manual triggers jobs: analyze: runs-on: ubuntu-latest steps: - name: Setup and Run Analysis env: COPILOT_GITHUB_TOKEN: ${{ secrets.COPILOT_GITHUB_TOKEN }} run: | npm i -g github/copilot pip install github-copilot-sdk --break-system-packages python pr_trigger_v2.py Output Results The system automatically generates structured blog posts saved in the blog/ directory with naming convention: blog/agent-framework-pr-summary-{YYYY-MM-DD}.md Each post includes: Breaking Changes (highlighted first) Major Updates (with code examples) Minor Updates and Bug Fixes Summary and impact assessment Latest Advancements in GitHub Copilot CLI Released alongside the SDK, Copilot CLI has also received major updates, making it an even more powerful development tool: Enhanced Core Capabilities Persistent Memory: Cross-session context retention and intelligent compaction Multi-Model Collaboration: Choose different models for explore, plan, and review workflows Autonomous Execution: Custom agent support Agent skill system Full MCP support Async task delegation Real-World Applications Development teams have already built innovative applications using the SDK: YouTube chapter generators Custom GUI interfaces for agents Speech-to-command workflows for desktop apps Games where you compete with AI Content summarization tools These examples showcase the flexibility and power of the Copilot SDK. SDK vs CLI: Complementary, Not Competing Understanding the relationship between SDK and CLI is important: CLI: An interactive tool for end users, providing a complete development experience SDK: A programmable layer for developers to build customized applications The SDK essentially provides programmatic access to the CLI's core capabilities, enabling developers to: Integrate Copilot agent capabilities into any environment Build graphical user interfaces Create personal productivity tools Run custom internal agents in enterprise workflows GitHub handles the underlying authentication, model management, MCP servers, and session management, while developers focus on building value on top of these building blocks. Best Practices and Recommendations Based on experience from the agent-framework-update-everyday project, here are practical recommendations: 1. Leverage Copilot Skills Effectively Define clear skill files that specify: Input and output formats for tasks Rules for handling edge cases Quality standards and priorities 2. Choose Models Wisely Use different models for different tasks: Exploratory tasks: Use more powerful models (e.g., GPT-5) Execution tasks: Use faster models (e.g., Claude Sonnet) Cost-sensitive tasks: Balance performance and budget 3. Implement Robust Error Handling AI calls in CI/CD environments need to consider: Network timeout and retry strategies API rate limit handling Output validation and fallback mechanisms 4. Secure Authentication Management Use fine-grained Personal Access Tokens (PAT): Create dedicated Copilot access tokens Set minimum permission scope (Copilot Requests: Read) Store securely using GitHub Secrets 5. Version Control and Traceability Automated systems should: Log metadata for each execution Preserve historical outputs for comparison Implement auditable change tracking Future Outlook The release of GitHub Copilot SDK marks the democratization of AI agent development. Developers can now: Lower Development Barriers: No need to deeply understand complex AI infrastructure Accelerate Innovation: Focus on business logic rather than underlying implementation Flexible Integration: Embed AI capabilities into any application scenario Production-Ready: Leverage proven execution loops and security mechanisms As the SDK moves from technical preview to general availability, we can expect: Official support for more languages Richer tool ecosystem More powerful MCP integration capabilities Community-driven best practice libraries Conclusion This article demonstrates how to build practical automation systems using GitHub Copilot SDK through the agent-framework-update-everyday project. This case study not only validates the SDK's technical capabilities but, more importantly, showcases a new development paradigm: Using AI agents as programmable building blocks, integrated into daily development workflows, to liberate developer creativity. Whether you want to build personal productivity tools, enterprise internal agents, or innovative AI applications, the Copilot SDK provides a solid technical foundation. Visit github/copilot-sdk to start your AI agent journey today! Reference Resources GitHub Copilot SDK Official Repository Agent Framework Update Everyday Project GitHub Copilot CLI Documentation Microsoft Agent Framework Build an agent into any app with the GitHub Copilot SDK3.7KViews3likes0CommentsFrom Cloud to Chip: Building Smarter AI at the Edge with Windows AI PCs
As AI engineers, we’ve spent years optimizing models for the cloud, scaling inference, wrangling latency, and chasing compute across clusters. But the frontier is shifting. With the rise of Windows AI PCs and powerful local accelerators, the edge is no longer a constraint it’s now a canvas. Whether you're deploying vision models to industrial cameras, optimizing speech interfaces for offline assistants, or building privacy-preserving apps for healthcare, Edge AI is where real-world intelligence meets real-time performance. Why Edge AI, Why Now? Edge AI isn’t just about running models locally, it’s about rethinking the entire lifecycle: - Latency: Decisions in milliseconds, not round-trips to the cloud. - Privacy: Sensitive data stays on-device, enabling HIPAA/GDPR compliance. - Resilience: Offline-first apps that don’t break when the network does. - Cost: Reduced cloud compute and bandwidth overhead. With Windows AI PCs powered by Intel and Qualcomm NPUs and tools like ONNX Runtime, DirectML, and Olive, developers can now optimize and deploy models with unprecedented efficiency. What You’ll Learn in Edge AI for Beginners The Edge AI for Beginners curriculum is a hands-on, open-source guide designed for engineers ready to move from theory to deployment. Multi-Language Support This content is available in over 48 languages, so you can read and study in your native language. What You'll Master This course takes you from fundamental concepts to production-ready implementations, covering: Small Language Models (SLMs) optimized for edge deployment Hardware-aware optimization across diverse platforms Real-time inference with privacy-preserving capabilities Production deployment strategies for enterprise applications Why EdgeAI Matters Edge AI represents a paradigm shift that addresses critical modern challenges: Privacy & Security: Process sensitive data locally without cloud exposure Real-time Performance: Eliminate network latency for time-critical applications Cost Efficiency: Reduce bandwidth and cloud computing expenses Resilient Operations: Maintain functionality during network outages Regulatory Compliance: Meet data sovereignty requirements Edge AI Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making. Core Principles: On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs) Offline capability: Functions without persistent internet connectivity Low latency: Immediate responses suited for real-time systems Data sovereignty: Keeps sensitive data local, improving security and compliance Small Language Models (SLMs) SLMs like Phi-4, Mistral-7B, Qwen and Gemma are optimized versions of larger LLMs, trained or distilled for: Reduced memory footprint: Efficient use of limited edge device memory Lower compute demand: Optimized for CPU and edge GPU performance Faster startup times: Quick initialization for responsive applications They unlock powerful NLP capabilities while meeting the constraints of: Embedded systems: IoT devices and industrial controllers Mobile devices: Smartphones and tablets with offline capabilities IoT Devices: Sensors and smart devices with limited resources Edge servers: Local processing units with limited GPU resources Personal Computers: Desktop and laptop deployment scenarios Course Modules & Navigation Course duration. 10 hours of content Module Topic Focus Area Key Content Level Duration 📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs 📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs 🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs 🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs ⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs 🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs 🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs 💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs 🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs Each module includes Jupyter notebooks, code samples, and deployment walkthroughs, perfect for engineers who learn by doing. Developer Highlights - 🔧 Olive: Microsoft's optimization toolchain for quantization, pruning, and acceleration. - 🧩 ONNX Runtime: Cross-platform inference engine with support for CPU, GPU, and NPU. - 🎮 DirectML: GPU-accelerated ML API for Windows, ideal for gaming and real-time apps. - 🖥️ Windows AI PCs: Devices with built-in NPUs for low-power, high-performance inference. Local AI: Beyond the Edge Local AI isn’t just about inference, it’s about autonomy. Imagine agents that: - Learn from local context - Adapt to user behavior - Respect privacy by design With tools like Agent Framework, Azure AI Foundry and Windows Copilot Studio, and Foundry Local developers can orchestrate local agents that blend LLMs, sensors, and user preferences, all without cloud dependency. Try It Yourself Ready to get started? Clone the Edge AI for Beginners GitHub repo, run the notebooks, and deploy your first model to a Windows AI PC or IoT devices Whether you're building smart kiosks, offline assistants, or industrial monitors, this curriculum gives you the scaffolding to go from prototype to production.🚀 Mission Agent Possible: Your Chance to Build, Solve, and Win at Microsoft Ignite 2025!
🔍 What’s Mission Agent Possible? It’s a contest designed for developers who love building intelligent solutions. Your mission: Create an AI Agent Solve a simulated crisis Showcase your skills to the world And yes—there are prizes! Top prizes like an Xbox and hundreds of dollars in Microsoft Store credit are reserved for in-person attendees. Global participants can still win recognition and a chance to be featured on the Model Mondays podcast. 👉 Contest details: https://aka.ms/ignite25/mission-agent 🧠 How Do You Choose the Right AI Model? Model selection is critical for building an effective agent. To help you succeed, check out our Model Selection Adventure blog: Learn how to identify the right problem Explore model strengths and trade-offs Test outputs using GitHub Models Playground This guide will give your agent the competitive edge it needs. 📖 Read more: https://aka.ms/models-blog ✅ Why Join? Showcase your skills to a global audience Learn hands-on techniques for AI agent development Win prizes and earn recognition 🔗 Ready to Accept the Mission? Don’t wait—start preparing now! The contest officially kicks off on November 18 and closes on November 20 (PST): 👉 https://aka.ms/ignite25/mission-agent 👉 https://aka.ms/models-blog Follow the conversation: https://aka.ms/ignite25/agent-contest/discord Share your progress on social with #MissionAgentPossible Please read through the eligibility guidance.Announcing Public Preview: AI Toolkit for GitHub Copilot Prompt-First Agent Development
This week at GitHub Universe, we’re announcing the Public Preview of the GitHub Copilot prompt-first agent development in the AI Toolkit for Visual Studio Code. With this release, building powerful AI agents is now simpler and faster - no need to wrestle with complex frameworks or orchestrators. Just start with natural language prompts and let GitHub Copilot guide you from concept to working agent code. Accelerate Agent Development in VS Code The AI Toolkit embeds agent development workflows directly into Visual Studio Code and GitHub Copilot, enabling you to transform ideas into production-ready agents within minutes. This unified experience empowers developers and product teams to: Select the best model for your agent scenario Build and orchestrate agents using Microsoft Agent Framework Trace agent behaviors Evaluate agent response quality Select the best model for your scenario Models are the foundation for building powerful agents. Using the AI Toolkit, you can already explore and experiment with a wide range of local and remote models. Copilot now recommends models tailored to your agent’s needs, helping you make informed choices quickly. Build and orchestrate agents Whether you’re creating a single agent or designing a multi-agent workflow, Copilot leverages the latest Microsoft Agent Framework to generate robust agent code. You can initiate agent creation with simple prompts and visualize workflows for greater clarity and control. Create a single agent using Copilot Create a multi-agent workflow using Copilot and visualize workflow execution Trace agent behaviors As agents become more sophisticated, understanding their actions is crucial. The AI Toolkit enables tracing via Copilot, collecting local traces and displaying detailed agent calls, all within VS Code. Evaluate agent response quality Copilot guides you through structured evaluation, recommending metrics and generating test datasets. Integrate evaluations into your CI/CD pipeline for continuous quality assurance and confident deployments. Get started and share feedback This release marks a significant step toward making AI agent development easier and more accessible in Visual Studio Code. Try out the AI Toolkit for Visual Studio Code, share your thoughts, and file issues and suggest features on our GitHub repo. Thank you for being a part of this journey with us!