github
331 TopicsEdge AI for Beginners : Getting Started with Foundry Local
In Module 08 of the EdgeAI for Beginners course, Microsoft introduces Foundry Local a toolkit that helps you deploy and test Small Language Models (SLMs) completely offline. In this blog, I’ll share how I installed Foundry Local, ran the Phi-3.5-mini model on my windows laptop, and what I learned through the process. What Is Foundry Local? Foundry Local allows developers to run AI models locally on their own hardware. It supports text generation, summarization, and code completion — all without sending data to the cloud. Unlike cloud-based systems, everything happens on your computer, so your data never leaves your device. Prerequisites Before starting, make sure you have: Windows 10 or 11 Python 3.10 or newer Git Internet connection (for the first-time model download) Foundry Local installed Step 1 — Verify Installation After installing Foundry Local, open Command Prompt and type: foundry --version If you see a version number, Foundry Local is installed correctly. Step 2 — Start the Service Start the Foundry Local service using: foundry service start You should see a confirmation message that the service is running. Step 3 — List Available Models To view the models supported by your system, run: foundry model list You’ll get a list of locally available SLMs. Here’s what I saw on my machine: Note: Model availability depends on your device’s hardware. For most laptops, phi-3.5-mini works smoothly on CPU. Step 4 — Run the Phi-3.5 Model Now let’s start chatting with the model: foundry model run phi-3.5-mini-instruct-generic-cpu:1 Once it loads, you’ll enter an interactive chat mode. Try a simple prompt: Hello! What can you do? The model replies instantly — right from your laptop, no cloud needed. To exit, type: /exit How It Works Foundry Local loads the model weights from your device and performs inference locally.This means text generation happens using your CPU (or GPU, if available). The result: complete privacy, no internet dependency, and instant responses. Benefits for Students For students beginning their journey in AI, Foundry Local offers several key advantages: No need for high-end GPUs or expensive cloud subscriptions. Easy setup for experimenting with multiple models. Perfect for class assignments, AI workshops, and offline learning sessions. Promotes a deeper understanding of model behavior by allowing step-by-step local interaction. These factors make Foundry Local a practical choice for learning environments, especially in universities and research institutions where accessibility and affordability are important. Why Use Foundry Local Running models locally offers several practical benefits compared to using AI Foundry in the cloud. With Foundry Local, you do not need an internet connection, and all computations happen on your personal machine. This makes it faster for small models and more private since your data never leaves your device. In contrast, AI Foundry runs entirely on the cloud, requiring internet access and charging based on usage. For students and developers, Foundry Local is ideal for quick experiments, offline testing, and understanding how models behave in real-time. On the other hand, AI Foundry is better suited for large-scale or production-level scenarios where models need to be deployed at scale. In summary, Foundry Local provides a flexible and affordable environment for hands-on learning, especially when working with smaller models such as Phi-3, Qwen2.5, or TinyLlama. It allows you to experiment freely, learn efficiently, and better understand the fundamentals of Edge AI development. Optional: Restart Later Next time you open your laptop, you don’t have to reinstall anything. Just run these two commands again: foundry service start foundry model run phi-3.5-mini-instruct-generic-cpu:1 What I Learned Following the EdgeAI for Beginners Study Guide helped me understand: How edge AI applications work How small models like Phi 3.5 can run on a local machine How to test prompts and build chat apps with zero cloud usage Conclusion Running the Phi-3.5-mini model locally with Foundry Localgave me hands-on insight into edge AI. It’s an easy, private, and cost-free way to explore generative AI development. If you’re new to Edge AI, start with the EdgeAI for Beginners course and follow its Study Guide to get comfortable with local inference and small language models. Resources: EdgeAI for Beginners GitHub Repo Foundry Local Official Site Phi Model Link126Views0likes0CommentsStep-by-Step: Setting Up GitHub Student and GitHub Copilot as an Authenticated Student Developer
To become an authenticated GitHub Student Developer, follow these steps: create a GitHub account, verify student status through a school email or contact GitHub support, sign up for the student developer pack, connect to Copilot and activate the GitHub Student Developer Pack benefits. The GitHub Student Developer Pack offers 100s of free software offers and other benefits such as Azure credit, Codespaces, a student gallery, campus experts program, and a learning lab. Copilot provides autocomplete-style suggestions from AI as you code. Visual Studio Marketplace also offers GitHub Copilot Labs, a companion extension with experimental features, and GitHub Copilot for autocomplete-style suggestions. Setting up your GitHub Student and GitHub Copilot as an authenticated Github Student Developer399KViews14likes16CommentsAnnouncing Public Preview: AI Toolkit for GitHub Copilot Prompt-First Agent Development
This week at GitHub Universe, we’re announcing the Public Preview of the GitHub Copilot prompt-first agent development in the AI Toolkit for Visual Studio Code. With this release, building powerful AI agents is now simpler and faster - no need to wrestle with complex frameworks or orchestrators. Just start with natural language prompts and let GitHub Copilot guide you from concept to working agent code. Accelerate Agent Development in VS Code The AI Toolkit embeds agent development workflows directly into Visual Studio Code and GitHub Copilot, enabling you to transform ideas into production-ready agents within minutes. This unified experience empowers developers and product teams to: Select the best model for your agent scenario Build and orchestrate agents using Microsoft Agent Framework Trace agent behaviors Evaluate agent response quality Select the best model for your scenario Models are the foundation for building powerful agents. Using the AI Toolkit, you can already explore and experiment with a wide range of local and remote models. Copilot now recommends models tailored to your agent’s needs, helping you make informed choices quickly. Build and orchestrate agents Whether you’re creating a single agent or designing a multi-agent workflow, Copilot leverages the latest Microsoft Agent Framework to generate robust agent code. You can initiate agent creation with simple prompts and visualize workflows for greater clarity and control. Create a single agent using Copilot Create a multi-agent workflow using Copilot and visualize workflow execution Trace agent behaviors As agents become more sophisticated, understanding their actions is crucial. The AI Toolkit enables tracing via Copilot, collecting local traces and displaying detailed agent calls, all within VS Code. Evaluate agent response quality Copilot guides you through structured evaluation, recommending metrics and generating test datasets. Integrate evaluations into your CI/CD pipeline for continuous quality assurance and confident deployments. Get started and share feedback This release marks a significant step toward making AI agent development easier and more accessible in Visual Studio Code. Try out the AI Toolkit for Visual Studio Code, share your thoughts, and file issues and suggest features on our GitHub repo. Thank you for being a part of this journey with us!Implementing MCP Remote Servers with Azure Function App and GitHub Copilot Integration
Introduction In the evolving landscape of AI-driven applications, the ability to seamlessly connect large language models (LLMs) with external tools and data sources is becoming a cornerstone of intelligent system design. Model Context Protocol (MCP) — a specification that enables AI agents to discover and invoke tools dynamically, based on context. While MCP is powerful, implementing it from scratch can be daunting !!! That’s where Azure Functions comes in handy. With its event-driven, serverless architecture, Azure Functions now supports a preview extension for MCP, allowing developers to build remote MCP servers that are scalable, secure, and cloud-native. Further, In VS Code, GitHub Copilot Chat in Agent Mode can connect to your deployed Azure Function App acting as an MCP server. This connection allows Copilot to leverage the tools and services exposed by your function app. Why Use Azure Functions for MCP? Serverless Simplicity: Deploy MCP endpoints without managing infrastructure. Secure by Design: Leverage HTTPS, system keys, and OAuth via EasyAuth or API Management. Language Flexibility: Build in .NET, Python, or Node.js using QuickStart templates. AI Integration: Enable GitHub Copilot, VS Code, or other AI agents to invoke your tools via SSE endpoints. Prerequisites Python version 3.11 or higher Azure Functions Core Tools >= 4.0.7030 Azure Developer CLI To use Visual Studio Code to run and debug locally: Visual Studio Code Azure Functions extension An storage emulator is needed when developing azure function app in VScode. you can deploy Azurite extension in VScode to meet this requirement. Press enter or click to view image in full size You can run the Azurite in VS Code as shown below. C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\IDE\Extensions\Microsoft\Azure Storage Emulator> .\azurite.exe Press enter or click to view image in full size alternatively, you can also run Azurite in docker container as shown below. docker run -p 10000:10000 -p 10001:10001 -p 10002:10002 \ mcr.microsoft.com/azure-storage/azurite For more information about setting up Azurite, visit Use Azurite emulator for local Azure Storage development | Microsoft Learn Github Repositories Following Github repos are needed to setup this PoC. Repository for MCP server using Azure Function App https://github.com/mafzal786/mcp-azure-functions-python.git Repository for AI Foundry agent as MCP Client https://github.com/mafzal786/ai-foundry-agent-with-remote-mcp-using-azure-functionapp.git Clone the repository Run the following command to clone the repository to start building your MCP server using Azure function app. git clone https://github.com/mafzal786/mcp-azure-functions-python.git Run the MCP server in VS Code Once cloned. Open the folder in VS Code. Create a virtual environment in VS Code. Change directory to “src” in a new terminal window, install the python dependencies and start the function host locally as shown below. cd src pip install -r requirements.txt func start Note: by default this will use the webhooks route: /runtime/webhooks/mcp/sse. Later we will use this in Azure to set the key on client/host calls: /runtime/webhooks/mcp/sse?code=<system_key> Press enter or click to view image in full size MCP Inspector In a new terminal window, install and run MCP Inspector. npx @modelcontextprotocol/inspector Click to load the MCP inspector. Also provide the generated proxy session token. http://127.0.0.1:6274/#resources In the URL type and click “Connect”: http://localhost:7071/runtime/webhooks/mcp/sse Once connected, click List Tools under Tools and select “hello_mcp” tool and click “Run Tool” for testing as shown below. Press enter or click to view image in full size Select another tool such as get_stockprice and run it as shown below. Press enter or click to view image in full size Deploy Function App to Azure from VS Code For deploying function app to azure from vs code, make sure you have Azure Tools extension enabled in VS Code. To learn more about Azure Tools extension, visit the following Azure Extensions if your VS code environment is not setup for Azure development, follow Configure Visual Studio Code for Azure development with .NET — .NET | Microsoft Learn Once Azure Tools are setup, sign in to Azure account with Azure Tools Press enter or click to view image in full size Once Sign-in is completed, you should be able to see all of your existing resources in the Resources view. These resources can be managed directly in VS Code. Look for Function App in Resource, right click and click “Deploy to Function App”. Press enter or click to view image in full size If you already have it deployed, you will get the following pop-up. Click “Deploy” Press enter or click to view image in full size This will start deploying your function app to Azure. In VS Code, Azure tab will display the following. Press enter or click to view image in full size Once the deployment is completed, you can view the function app and all the tools in Azure portal under function app as shown below. Press enter or click to view image in full size Get the mcp_extension key from Functions → App Keys in Function App. Press enter or click to view image in full size This mcp_extension key would be needed in mcp.json file in VS code, if you would like to test the MCP server using Github Copilot in VS Code. Your entries in mcp.json file will look like as below for example. { "inputs": [ { "type": "promptString", "id": "functions-mcp-extension-system-key", "description": "Azure Functions MCP Extension System Key", "password": true }, { "type": "promptString", "id": "functionapp-name", "description": "Azure Functions App Name" } ], "servers": { "remote-mcp-function": { "type": "sse", "url": "https://${input:functionapp-name}.azurewebsites.net/runtime/webhooks/mcp/sse", "headers": { "x-functions-key": "${input:functions-mcp-extension-system-key}" } }, "local-mcp-function": { "type": "sse", "url": "http://0.0.0.0:7071/runtime/webhooks/mcp/sse" } } } Test Azure Function MCP Server in MCP Inspector Launch MCP Inspector and provide the Azure Function in MCP inspector URL. Provide authentication as shown below. Bearer token is mcp_extension key. Testing an MCP server with GitHub Copilot Testing an MCP server with GitHub Copilot involves configuring and utilizing the server within your development environment to provide enhanced context and capabilities to Copilot Chat. Steps to Test an MCP Server with GitHub Copilot: Ensure Agent Mode is Enabled: Open Copilot Chat in Visual Studio Code and select “Agent” mode. This mode allows Copilot to interact with external tools and services, including MCP servers. Add the MCP Server: Open the Command Palette (Ctrl+Shift+P or Cmd+Shift+P) and run the command MCP: Add Server. Press enter or click to view image in full size Follow the prompts to configure the server. You can choose to add it to your workspace settings (creating a .vscode/mcp.json file) . Select HTTP or Server-Sent events Press enter or click to view image in full size Specify the URL and click Enter Press enter or click to view image in full size Provide a name of your choice Press enter or click to view image in full size Select scope as Global or workspace. I selected Workspace Press enter or click to view image in full size This will generate mcp.json file in .vscode or create a new entry if mcp.json already exists as shown below. Click Start to “start” the server. Also make sure your Azure function app is locally running with func start command. Press enter or click to view image in full size Now Type the prompt as shown below. Press enter or click to view image in full size Try another tool as below. Press enter or click to view image in full size VS code terminal output for reference. Press enter or click to view image in full size Testing an MCP server with Claude Desktop Claude Desktop is a standalone AI application that allows users to interact with Claude AI models directly from their desktop, providing a seamless and efficient experience. you can download Claude desktop at Download Claude In this article, I have added another tool to utilize to test your MCP server running in Azure Function app. Modify claude_desktop_config.json with the following. you can find this file in window environment at C:\Users\<username>\AppData\Roaming\Claude { "mcpServers": { "my mcp": { "command": "npx", "args": [ "mcp-remote", "http://localhost:7071/runtime/webhooks/mcp/sse" ] } } } Note: If claude_desktop_config.json does not exists, click on setting in Claude desktop under user and visit developer tab. You will see you MCP server in Claude Desktop as shown below. Press enter or click to view image in full size Type the prompt such as “What is the stock price of Tesla” . After submitting, you will notice that it is invoking the tool “get_stockprice” from the MCP server running locally and configured in the .json earlier. Click Allow once or Allow always as shown below. Following output will be displayed. Press enter or click to view image in full size Now lets try weather related prompt. As you can see, it has invoked “get_weatheralerts” tool from MCP server. Press enter or click to view image in full size Azure AI Foundry agent as MCP Client Use the following Github repo to set up Azure AI Foundry agent as MCP client. git clone https://github.com/mafzal786/ai-foundry-agent-with-remote-mcp-using-azure-functionapp.git Open the code in VS code and follow the instructions mentioned in README.md file at Github repo. Once you execute the code, following output will show up in VS code. Press enter or click to view image in full size In this code, message is hard coded. Change the content to “what is weather advisory for Florida” and rerun the program. It will call get_weatheralerts tool and output will look like as below. Press enter or click to view image in full size Conclusion The integration of Model Context Protocol (MCP) with Azure Functions marks a pivotal step in democratizing AI agent development. By leveraging Azure’s serverless architecture, developers can now build remote MCP servers that scale automatically, integrate seamlessly with other Azure services, and expose modular tools to intelligent agents like GitHub Copilot. This setup not only simplifies the deployment and management of MCP servers but also enhances the developer experience — allowing tools to be invoked contextually by AI agents in environments like VS Code, GitHub Codespaces, or Copilot Studio[2]. Whether you’re building a tool to query logs, calculate metrics, or manage data, Azure Functions provides the flexibility, security, and scalability needed to bring your AI-powered workflows to life. As the MCP spec continues to evolve, and GitHub Copilot expands its agentic capabilities, this architecture positions you to stay ahead — offering a robust foundation for cloud-native AI tooling that’s both powerful and future-proof.613Views1like1CommentRedeeming Azure for Student from your GitHub Student Pack when you do not have an Academic Email
GitHub Student Developer Pack Learn to ship software like a pro. There's no substitute for hands-on experience. But for most students, real world tools can be cost-prohibitive. That's why we created the GitHub Student Developer Pack with some of our partners and friends. Sign up for Student Developer Pack22KViews1like3CommentsInteractive AI Avatars: Building Voice Agents with Azure Voice Live API
Azure Voice Live API recently reached General Availability, marking a significant milestone in conversational AI technology. This unified API surface doesn't just enable speech-to-speech capabilities for AI agents—it revolutionizes the entire experience by streaming interactions through lifelike avatars. Built on the powerful speech-to-speech capabilities of the GPT-4 Realtime model, Azure Voice Live API offers developers unprecedented flexibility: - Out-of-the-box or custom avatars from Azure AI Services - Wide range of neural voices, including Indic languages like the one featured in this demo - Single API interface that handles both audio processing and avatar streaming - Real-time responsiveness with sub-second latency In this post, I'll walk you through building a retail e-commerce voice agent that demonstrates this technology. While this implementation focuses on retail apparel, the architecture is entirely generic and can be adapted to any domain—healthcare, banking, education, or customer support—by simply changing the system prompt and implementing domain-specific tools integration. The Challenge: Navigating Uncharted Territory At the time of writing, documentation for implementing avatar features with Azure Voice Live API is minimal. The protocol-specific intricacies around avatar video streaming and the complex sequence of steps required to establish a live avatar connection were quite overwhelming. This is where Agent mode in GitHub Copilot in Visual Studio Code proved extremely useful. Through iterative conversations with the AI agent, I successfully discovered the approach to implement avatar streaming without getting lost in low-level protocol details. Here's how different AI models contributed to this solution: - Claude Sonnet 4.5: Rapidly architected the application structure, designing the hybrid WebSocket + WebRTC architecture with TypeScript/Vite frontend and FastAPI backend - GPT-5-Codex (Preview): Instrumental in implementing the complex avatar streaming components, handling WebRTC peer connections, and managing the bidirectional audio flow Architecture Overview: A Hybrid Approach The architecture comprises of these components 🐳 Container Application Architecture Vite Server: Node.js-based development server that serves the React application. In development, it provides hot module replacement and proxies API calls to `FastAPI`. In production, the React app is built into static files served by FastAPI. FastAPI with ASGI: Python web framework running on `uvicorn ASGI server`. ASGI (Asynchronous Server Gateway Interface) enables handling multiple concurrent connections efficiently, crucial for WebSocket connections and real-time audio processing. 🤖 AI & Voice Services Integration Azure Voice Live API: Primary service that manages the connection to GPT-4 Realtime Model, provides avatar video generation, neural text-to-speech, and WebSocket gateway functionality GPT-4 Realtime Model: Accessed through Azure Voice Live API for real-time audio processing, function calling, and intelligent conversation management 🔄 Communication Flows Audio Flow: Browser → WebSocket → FastAPI → WebSocket → Azure Voice Live API → GPT-4 Realtime Model Video Flow: Browser ↔ WebRTC Direct Connection ↔ Azure Voice Live API (bypasses backend for performance) Function Calls: GPT-4 Realtime (via Voice Live) → FastAPI Tools → Business APIs → Response → GPT-4 Realtime (via Voice Live) 🤖 Business process automation Workflows / RAG Shipment Logic App Agent: Analyzes orders, validates data, creates shipping labels, and updates tracking information Conversation Analysis Agent: Azure Logic App Reviews complete conversations, performs sentiment analysis, generates quality scores with justification, and stores insights for continuous improvement Knowledge Retrieval: Azure AI Search is used to reason over manuals and help respond to Customer queries on policies, products The solution implements a hybrid architecture that leverages both WebSocket proxying and direct WebRTC connections for optimal performance. This design ensures the conversational audio flow remains manageable and secure through the backend, while the bandwidth-intensive avatar video streams directly to the browser for optimal performance. The flow used in the Avatar communication: ``` Frontend FastAPI Backend Azure Voice Live API │ │ │ │ 1. Request Session │ │ │─────────────────────────►│ │ │ │ 2. Create Session │ │ │─────────────────────────►│ │ │ │ │ │ 3. Session Config │ │ │ (with avatar settings)│ │ │─────────────────────────►│ │ │ │ │ │ 4. session.updated │ │ │ (ICE servers) │ │ 5. ICE servers │◄─────────────────────────│ │◄─────────────────────────│ │ │ │ │ │ 6. Click "Start Avatar" │ │ │ │ │ │ 7. Create RTCPeerConn │ │ │ with ICE servers │ │ │ │ │ │ 8. Generate SDP Offer │ │ │ │ │ │ 9. POST /avatar-offer │ │ │─────────────────────────►│ │ │ │ 10. Encode & Send SDP │ │ │─────────────────────────►│ │ │ │ │ │ 11. session.avatar. │ │ │ connecting │ │ │ (SDP answer) │ │ 12. SDP Answer │◄─────────────────────────│ │◄─────────────────────────│ │ │ │ │ │ 13. setRemoteDescription │ │ │ │ │ │ 14. WebRTC Handshake │ │ │◄─────────────────────────┼─────────────────────────►│ │ (Direct Connection) │ │ │ │ │ │ 15. Video/Audio Stream │ │ │◄────────────────────────────────────────────────────│ │ (Bypasses Backend) │ │ ``` For more technical details, refer to the technical details behind the implementation, refer to the GitHub Repo shared in this post. Here is a video of the demo of the application in action.393Views2likes0CommentsCI/CD GitHub Deployment from Dev to UAT Synapse Workspace not Picking Up UAT Resources
Hello, I am setting up CI/CD for Azure Synapse Analytics using GitHub Actions with multiple environments (Dev, UAT, Prod). My Synapse resources are: Dev: ************-dev, azcalsbdatalakedev, calsbvaultdev, SQL DB azcalsbazuresqldev / MetaData UAT: ************-uat, azcalsbdatalakeuat, calsbvaultuat, SQL DB azcalsbazuresqluat / MetaData Prod: ***********-prod, azcalsbdatalakeprod, azcalsbvaultprod, SQL DB azcalsbazuresqlprod / MetaData I have environment-specific parameter override files like uat.json and prod.json. My GitHub workflows (synapse-dev.yml, synapse-uat.yml, etc.) deploy the Synapse publish artifacts (TemplateForWorkspace.json and TemplateParametersForWorkspace.json) with those overrides. Issue: When I run the UAT workflow, deployment completes successfully but the UAT Synapse workspace still shows Dev resources. For example, linked services like LS_ADLS still point to azcalsbdatalakedev instead of azcalsbdatalakeuat. What I have tried: Created overrides for UAT (uat.json) with correct workspace name and connection strings Checked GitHub workflow YAML to confirm the override file is being passed in the az deployment group create step Verified that Dev deployment works fine Tried changing default values in linked services JSON but behavior is inconsistent Questions: Is there a specific way to structure override files (uat.json) for Synapse CI/CD deployments so environment values are correctly replaced? Do I need separate branches in GitHub for Dev, UAT, and Prod, or can I deploy to all environments from main with overrides? Has anyone else seen linked services or parameters still pointing to Dev even after a UAT deployment? Any guidance, best practices, or sample YAML and override examples would be very helpful. Thanks in advance.62Views0likes1CommentUnlock the Power of AI with GitHub Models: A Hands-On Guide
Ready to elevate your coding game? Imagine having the power of advanced AI at your fingertips, ready to integrate into your projects with just a few clicks. Whether you're building a smart assistant, automating workflows, or creating the next big thing, GitHub Models are here to make it happen. Dive into our guide and discover how to get started, customize responses, and even build your own AI-powered applications—all from within the familiar GitHub interface. Your journey into the world of AI starts now. Click to explore and let your creativity take flight!4KViews1like1CommentStudy Buddy: Learning Data Science and Machine Learning with an AI Sidekick
If you've ever wished for a friendly companion to guide you through the world of data science and machine learning, you're not alone. As part of the "For Beginners" curriculum, I recently built a Study Buddy Agent, an AI-powered assistant designed to help learners explore data science interactively, intuitively, and joyfully. Why a Study Buddy? Learning something new can be overwhelming, especially when you're navigating complex topics like machine learning, statistics, or Python programming. The Study Buddy Agent is here to change that. It brings the curriculum to life by answering questions, offering explanations, and nudging learners toward deeper understanding, all in a conversational format. Think of it as your AI-powered lab partner: always available, never judgmental, and endlessly curious. Built with chatmodes, Powered by Purpose The agent lives inside a .chatmodes file in the https://github.com/microsoft/Data-Science-For-Beginners/blob/main/.github/chatmodes/study-mode.chatmode.md. This file defines how the agent behaves, what tone it uses, and how it interacts with learners. I designed it to be friendly, encouraging, and beginner-first—just like the curriculum itself. It’s not just about answering questions. The Study Buddy is trained to: Reinforce key concepts from the curriculum Offer hints and nudges when learners get stuck Encourage exploration and experimentation Celebrate progress and milestones What’s Under the Hood? The agent uses GitHub Copilot's chatmode, which allows developers to define custom behaviors for AI agents. By aligning the agent’s responses with the curriculum’s learning objectives, we ensure that learners stay on track while enjoying the flexibility of conversational learning. How You Can Use It YouTube Video here: Study Buddy - Data Science AI Sidekick Clone the repo: Head to the https://github.com/microsoft/Data-Science-For-Beginners and clone it locally or use Codespaces. Open the GitHub Copilot Chat, and select Study Buddy: This will activate the Study Buddy. Start chatting: Ask questions, explore topics, and let the agent guide you. What’s Next? This is just the beginning. I’m exploring ways to: Expand the agent to other beginner curriculums (Web Dev, AI, IoT) Integrate feedback loops so learners can shape the agent’s evolution Final Thoughts In my role, I believe learning should be inclusive, empowering, and fun. The Study Buddy Agent is a small step toward that vision, a way to make data science feel less like a mountain and more like a hike with a good friend. Try it out, share your feedback, and let’s keep building tools that make learning magical. Join us on Discord to share your feedback.Safeguard data on third-party collaboration platforms
I am exploring options to safeguard sensitive data in third-party collaboration platforms like GitHub and Confluence. Does Microsoft Purview provide any native integration for these platforms? Do I need to rely on third-party connectors/integrations to extend Purview’s capabilities into these environments?100Views0likes2Comments