github copilot
33 TopicsAnnouncing GitHub Universe Cloud Skills Challenge!
Join the GitHub Universe Cloud Skills Challenge and start your exiting journey in AI! Whether you’re beginning or looking to change your career, this learning experience is designed to introduce you to some of the most requested GitHub tools for AI beginners, and to explore new opportunities. Join the GitHub Universe Cloud Skills Challenge and start your exciting journey in AI!40KViews13likes25CommentsVS Code Day Skills Challenge
Ready to level up your coding skills? Join our #VSCodeDayCSC! Learn about AI, Data Science and more with VS Code! This experience is designed to help you discover the coding-possibilities with this amazing editor. Are you up for the challenge? Join now!15KViews6likes24CommentsGitHub Copilot Fundamentals Learning Path - Your New AI programming friend!
Ready to start coding with the power of AI? Meet GitHub Copilot, your new AI pair programmer that's about to revolutionize your development workflow. Explore our new GitHub Copilot Fundamentals Learning Path and discover how GitHub Copilot can help you code faster, smarter, and with fewer bugs (at least for me!). It's like having a super-smart friend who's always ready to help. Start your AI-powered coding journey today!15KViews4likes1CommentCopilot Explains - Error troubleshooting in Jupyter Notebooks
Data scientists and AI engineers love to work with Jupyter Notebooks because they make so much easier to look at the result of each and every data exploration step or data modeling experiment and take decisions accordingly. However, Jupyter notebooks are not immune to errors and sometimes understanding error messages - in particular if you aren’t a native English speaker or you are a beginner - and troubleshooting code might be painful and time consuming.5.2KViews3likes1CommentReimagining Telco with Microsoft: AI, TM Forum ODA, and Developer Innovation
The telecom industry is undergoing a seismic shift—driven by AI, open digital architectures, and the urgent need for scalable, customer-centric innovation. At the heart of this transformation is TM Forum Innovate Americas 2025, a flagship event bringing together global leaders to reimagine the future of connectivity. Microsoft’s presence at this year’s event is both strategic and visionary. As a key partner in the telecom ecosystem, Microsoft is showcasing how its technologies—spanning AI, cloud, and developer tools—are enabling Communication Service Providers (CSPs) to modernize operations, accelerate innovation, and deliver exceptional customer experiences. 🔑 Key Themes Shaping the Conversation Connected Intelligence: Microsoft is championing a new model of collaboration—one where AI systems, teams, and technologies work together seamlessly to solve real-world problems. This approach breaks down silos and enables intelligent decision-making across the enterprise. AI-First Mindset: From network optimization to customer service, Microsoft is helping telcos embed AI into the fabric of their operations. The focus is on building shared data platforms, connected models, and orchestration frameworks that scale. Customer Experience & Efficiency: With rising expectations and increasing complexity, CSPs must deliver faster, smarter, and more personalized services. Microsoft’s solutions are designed to enhance agility, reduce friction, and elevate the end-user experience. As the event unfolds, Microsoft’s sessions and showcases will highlight how these themes come to life—through real-world implementations, collaborative frameworks, and developer-first tools. Thought Leadership & Sessions At TM Forum Innovate Americas 2025, Microsoft is not just showcasing technology—it’s sharing a bold vision for the future of telecom. Through a series of thought-provoking sessions led by industry experts, Microsoft is demonstrating how AI, open standards, and developer tools can converge to drive meaningful transformation across the telco ecosystem. From enabling intelligent collaboration through the Azure AI Foundry, to operationalizing AI and Open Digital Architecture (ODA) for autonomous networks, and empowering developers with GitHub Copilot, Microsoft’s contributions reflect a deep commitment to innovation, scalability, and interoperability. Each session offers a unique lens into how Microsoft is helping Communication Service Providers (CSPs) modernize their IT stacks, accelerate development, and deliver exceptional customer experiences. Microsoft Thought Leadership Sessions CASE STUDY: Connected Intelligence: multiplying AI value across the enterprise 📅Sep 10 1:30pm CDT Peter Huang, Senior Director, Technology, Network Data and AI T-Mobile Andres Gil, Industry Advisor/Business Developer, Telco, Media and Gaming Industry Microsoft CASE STUDY: From hype to impact: operationalizing AI in telco with TM Forum’s ODA and Open APIs 📅Sep 11 1:30pm CDT Puja Athale, Director - Telco Global Azure AI Lead Microsoft Connected Intelligence & Azure AI Foundry: Scaling AI Across the Telco Enterprise T-Mobile and Microsoft are spotlighting a transformative approach to enterprise AI: Connected Intelligence. The joint session explores how telcos can break down silos and unlock the full potential of AI by enabling strategic collaboration across systems, teams, and technologies. The core challenge they address is clear: AI in isolation cannot answer even the simplest customer questions. Whether it's billing, device performance, or network coverage, fragmented systems lead to blind spots, duplication, and poor customer outcomes. To overcome this, they propose a unified framework that blends technology and culture—because tech alone doesn’t scale, and culture alone doesn’t transform. Azure AI Foundry: The Engine Behind Connected Intelligence At the heart of this vision is Microsoft’s Azure AI Foundry, a shared AI platform designed to scale intelligence across the enterprise and a core component of Microsoft’s recently announced Network Operations Agent Framework. Connected Intelligence integrates: Agent Frameworks and Agent Catalogs for modular AI deployment Hundreds of TBs of daily data from network switches, device logs, and location records Enterprise-grade orchestration and data governance AI/ML models aligned with customer-level time series events This architecture enables reuse, speed, and alignment across people, organizations, and systems—turning data into actionable intelligence. Model Context Protocol (MCP): AI-to-AI Collaboration A standout innovation is the Model Context Protocol (MCP), which goes beyond traditional APIs. While APIs connect systems through data, MCP connects intelligence through context. It allows AI agents to dynamically discover and chain APIs without custom coding, enabling real-time collaboration across network operations, device management, and deployment workflows. By integrating MCP into the API fabric, Microsoft is laying the groundwork for agentic AI—where intelligent systems can autonomously interact, adapt, and scale across the telco ecosystem. From Hype to Impact: Operationalizing AI in Telco with TM Forum’s ODA and Open APIs The telecom industry is moving from hype to impact by operationalizing AI through TM Forum’s Open Digital Architecture (ODA) and Open APIs. The session, From hype to impact: operationalizing AI in telco with TM Forum’s ODA and Open APIs, explores how telcos can build AI-ready architectures, unlock data value for automation and AI agents, and scale responsibly with governance and ethics at the core. Microsoft’s collaboration with TM Forum is enabling telcos to modernize OSS/BSS systems using the ODA Canvas—a modular, cloud-native execution environment orchestrated with AI and powered by Microsoft Azure. This architecture supports plug-and-play integration of differentiated services, reduces integration costs by over 30%, and boosts developer productivity by more than 40% with GitHub Copilot. Learn how leading telcos like Telstra are scaling AI solutions such as “One Sentence Summary” and “Ask Telstra” across their contact centers and retail teams. These solutions, built on Azure AI Foundry, have delivered measurable impact: 90% of employees reported time savings and increased effectiveness, with a 20% reduction in follow-up contacts. Telstra’s success is underpinned by a modernized data ecosystem and strong governance frameworks that ensure ethical and secure AI deployment. From Chaos to Clarity with Observability Despite advances in operational tooling, fragmented observability remains a persistent challenge. Vendors often capture telemetry in incompatible formats, forcing operations teams to rely on improvised log aggregators and custom parsers that drive up costs and hinder rapid incident resolution. Microsoft’s latest contribution to the Open Digital Architecture (ODA) initiative directly tackles this issue with the ODA Observability Operator, now available as open source on GitHub. By enforcing a standardized logging contract, integrating seamlessly with Azure Monitor, and surfacing health metrics through TM Forum nonfunctional APIs, the operator streamlines telemetry across systems. Early trials have shown promising results—carriers significantly reduced the time needed to detect billing anomalies, enabling teams to shift from reactive troubleshooting to proactive optimization. Accelerating TM Forum Open API Development with GitHub Copilot As the telecom industry embraces open standards and modular architectures, Microsoft is empowering developers to move faster and smarter with GitHub Copilot—an AI-powered coding assistant that’s transforming how TM Forum (TMF) Open APIs are built and deployed. Why GitHub Copilot for TM Forum Open APIs? TMF Open APIs are a cornerstone of interoperability in telecom, offering over 100 standardized RESTful interfaces across domains like customer management, product catalog, and billing. But implementing these APIs can be time-consuming and repetitive. GitHub Copilot streamlines this process by: Autocompleting boilerplate code for TMF endpoints Suggesting API handlers and data models aligned with TMF specs Generating test plans and documentation Acting as an AI pair programmer that understands your code context This means developers can focus on business logic while Copilot handles the heavy lifting. Real-World Uses Telco developers benefit from powerful features in GitHub Copilot that streamline the development of TMF Open API services. One such feature is Agent Mode, which automates complex, multi-step tasks such as implementing TMF API flows, running tests, and correcting errors—saving developers significant time and effort. Another key capability is Copilot Chat, which provides conversational support directly within the IDE, helping developers debug code, validate against TMF specifications, and follow best practices with ease. Together, these tools enhance productivity and reduce friction in building compliant, scalable telecom solutions. For example, when building a Customer Management microservice using the TMF629 API, Copilot can suggest endpoint handlers, validate field names against the spec, and even help write README documentation or unit tests. 📈 Proven Productivity Gains CSPs like Proximus have reported significant productivity improvements using GitHub Copilot in their Network IT functions: 20–30% faster code writing 25–35% faster refactoring 80–90% improvement in documentation 40–50% gains in code compliance Other telcos like Vodafone, NOS, Orange, TELUS, and Lumen Technologies are also leveraging Copilot to accelerate innovation and reduce development friction. Best Practices for TMF API Projects To get the most out of Copilot: Use it for repetitive tasks and pattern recognition Always validate generated code against TMF specs Keep relevant spec files open to improve suggestion accuracy Use Copilot Chat for guidance on security, error handling, and optimization GitHub Copilot is more than a coding assistant—it’s a catalyst for telco transformation. By combining AI with TMF’s open standards, Microsoft is helping developers build faster, smarter, and more consistently across the telecom ecosystem. Learn more about how to configure and use GitHub Copilot in your own TMF Open API projects in our latest tech community blog. Microsoft’s Broader Vision for Telco Transformation Microsoft’s contributions reflect a comprehensive strategy to reshape the telecom landscape through scalable intelligence, open collaboration, and developer empowerment. At the core of Microsoft’s vision is the idea that AI must be connected, contextual, and reusable. The Azure AI Foundry and Model Context Protocol (MCP) exemplify this approach by enabling telcos to: Harness massive volumes of time-series data from networks, devices, and customer interactions Deploy modular AI agents that can collaborate across systems Orchestrate workflows that adapt in real time to changing conditions This architecture transforms fragmented data into actionable insights, allowing CSPs to move from reactive operations to proactive intelligence. Conclusion: Microsoft’s Strategic Alignment with TM Forum Microsoft’s participation at TM Forum Innovate Americas 2025 reflects a deep commitment to transforming the telecom industry through AI-first innovation, open collaboration, and developer empowerment. From T-Mobile’s vision for Connected Intelligence, to Microsoft’s roadmap for operationalizing AI and ODA, and the developer-centric acceleration enabled by GitHub Copilot, Microsoft is helping Communication Service Providers (CSPs) move faster, scale smarter, and deliver better customer experiences. By aligning with TM Forum’s goals—standardization, interoperability, and autonomous operations—Microsoft is not just participating in the conversation; it’s helping lead it. 📣 Call to Action Join Microsoft and other industry leaders at TM Forum Innovate Americas 2025 to explore the future of telco transformation. Whether you're a strategist, technologist, or developer, this is your opportunity to connect, learn, and shape what’s next.315Views2likes0CommentsFix Broken Migrations with AI Powered Debugging in VS Code Using GitHub Copilot
Data is at the heart of every application. But evolving your schema is risky business. One broken migration, and your dev or prod environment can go down. We've all experienced it: mismatched columns, orphaned constraints, missing fields, or that dreaded "table already exists" error. But what if debugging migrations didn’t have to be painful? What if you could simply describe the error or broken state, and AI could fix your migration in seconds? In this blog, you’ll learn how to: Use GitHub Copilot to describe and fix broken migrations with natural language Catch schema issues like incorrect foreign keys before they block your workflow Validate and deploy your database changes using GibsonAI CLI Broken migrations are nothing new. Whether you're working on a side project or part of a large team, it’s all too easy to introduce schema issues that can block deployments or corrupt local environments. Traditionally, fixing them means scanning SQL files, reading error logs, and manually tracking down what went wrong. But what if you could skip all that? What if you could simply describe the issue in plain English and AI would fix it for you? That’s exactly what GitHub Copilot let you do, right from within VS Code. What You Need: Visual Studio Code Installed Account in GitHub Sign up with GitHub Copilot GibsonAI CLI installed and logged in Let’s Break (and Fix) a Migration: Here’s a common mistake. Say you create two tables: users and posts. CREATE TABLE users ( id UUID PRIMARY KEY, name TEXT, email TEXT UNIQUE ); CREATE TABLE posts ( id UUID PRIMARY KEY, title TEXT, user_id UUID REFERENCES user(id) ); The problem? The posts table refers to a table called user, but you named it users. This one-word mistake breaks the migration. If you've worked with relational databases, you’ve probably run into this exact thing. Just Ask a GitHub Copilot: Instead of troubleshooting manually, open Copilot Chat and ask: “My migration fails because posts.user_id references a missing user table. Can you fix the foreign key?” Copilot understands what you're asking. It reads the context and suggests the fix: CREATE TABLE posts ( id UUID PRIMARY KEY, title TEXT, user_id UUID REFERENCES users(id) ); It even explains what changed, so you learn along the way. Wait — how does Copilot know what I mean? GitHub Copilot is smart enough to understand your code, your errors, and even what you’re asking in plain English. It doesn’t directly connect to GibsonAI. You’ll use the GibsonAI CLI for that, but Copilot helps you figure things out and fix your code faster. Validating with GibsonAI Once Copilot gives you the fixed migration, it’s time to test it. Run: gibson validate This checks your migration and schema consistency. When you're ready to apply it, just run: gibson deploy GibsonAI handles the rest so no broken chains, no surprises. Why This Works Manual debugging of migrations is frustrating and error prone. GibsonAI with GitHub Copilot: Eliminates guesswork in debugging You don’t need to Google every error Reduces time to fix production schema issues You stay in one tool: VS Code You learn while debugging Whether you're a student learning SQL or a developer on a fast moving team, this setup helps you recover faster and ship safer. Fixing migrations used to be all trial and error, digging through files and hoping nothing broke. It was time-consuming and stressful. Now with GitHub Copilot and GibsonAI, fixing issues is fast and simple. Copilot helps you write and correct migrations. GibsonAI lets you validate and deploy with confidence. So next time your migration fails, don’t panic. Just describe the issue to GitHub Copilot, run a quick check with GibsonAI, and get back to building. Ready to try it yourself? Sign up atgibsonai.com Want to Go Further? If you’re ready to explore more powerful workflows with GibsonAI, here are two great next steps: GibsonAI MCP Server – Enable Copilot Agent Mode to integrate schema intelligence directly into your dev environment. Automatic PR Creation for Schema Changes – The in-depth guide on how to automate pull requests for database updates using GibsonAI. Want to Know More About GitHub Copilot? Explore these resources to get the most out of Copilot: Get Started with GitHub Copilot Introduction to prompt engineering with GitHub Copilot GitHub Copilot Agent Mode GitHub Copilot Customization Use GitHub Copilot Agent Mode to create a Copilot Chat application in 5 minutes Deploy Your First App Using GitHub Copilot for Azure: A Beginner’s Guide That's it, folks! But the best part? You can become part of a thriving community of learners and builders by joining the Microsoft Student Ambassadors Community. Connect with like minded individuals, explore hands-on projects, and stay updated with the latest in cloud and AI. 💬 Join the community on Discord here and explore more benefits on the Microsoft Learn Student Hub.190Views2likes2Comments