devops
62 TopicsRevolutionising DevOps with AI: From Pipelines to Deployment
AI Meets DevOps: Transforming the Future of Application Delivery 🚀 In today’s rapidly evolving tech landscape, the fusion of AI and DevOps is reshaping how we build, test, and deploy applications. 🌐⚡ Join us for an engaging and insightful session where we dive into the next wave of innovation: ✅ AI-Powered DevOps Pipelines – Enhance workflows, automate tasks, and drive efficiency. ✅ Smart Lint Tests – Maintain top code quality with AI-driven linting. ✅ AI Infrastructure on Azure – Deploy scalable, secure, and production-ready AI models. ✅ PSRule for Azure – Enforce governance & compliance seamlessly in your pipelines. 🔹 Whether you’re a developer, DevOps engineer, or AI enthusiast, this session will equip you with practical strategies to modernise your pipelines with AI on Azure. 📅 Don’t miss this opportunity to upskill and get inspired! 🗓️ Date: 28 August 2025 ⏰ Time: 19:30 (AEST) / 11:30 (CEST) 🎙️ Speaker: AJ Bajada 📌 Topic: Revolutionising DevOps with AI: From Pipelines to Deployment80Views0likes0CommentsTechnical Walkthrough: Deploying a SQL DB like it's Terraform
Introduction This post will be a union of multiple topics. It is part of the SQL CI/CD series and as such will build upon Deploying .dacpacs to Multiple Environments via ADO Pipelines | Microsoft Community Hub and Managed SQL Deployments Like Terraform | Microsoft Community Hub while also crossing over with the YAML Pipeline series This is an advanced topic in regard to both Azure DevOps YAML and SQL CI/CD. If both of these concepts are newer to you, please refer to the links above as this is not designed to be a beginner's approach in either one of these domains. Assumptions To get the most out of this and follow along we are going to assume that you are 1.) On board with templating your Azure DevOps YAML Pipelines. By doing this we will see the benefit of quickly onboarding new pipelines, standardizing our deployment steps, and increasing our security. We also are going to assume you are on board with Managed SQL Deployments Like Terraform | Microsoft Community Hub for deploying your SQL Projects. By adopting this we can increase our data security, confidence in source control, and speed our time to deployment. For this post we will continue to leverage the example cicd-adventureWorks repository for the source of our SQL Project and where the pipeline definition will live. Road mapping the Templates Just like my other YAML posts let's outline the pieces required in this stage and we will then break down each job Build Stage Build .dacpac job run `dotnet build` and pass in appropriate arguments execute a Deploy Report from the dacpac produced by the build and the target environment copy the Deploy Report to the build output directory publish the pipeline artifact Deploy Stage Deploy .dacpac job run Deploy Report from dacpac artifact (optional) deploy dacpac, including pre/postscripts Build Stage For the purposes of this stage, we should think of building our .dacpac similar to a terraform or single page application build. What I am referring to is we will produce an artifact per environment, and this will be generated from the same codebase. Additionally, we will run a 'plan' which will be the proposed result of deploying our dacpac file. Build Job We will have one instance of the build job for each environment. Each instance will produce a different artifact as they will be passing different build configurations which in turn will result in a different .dacpac per environment. If you are familiar with YAML templating, then feel free to jump to the finish job template. One of the key differences with this job structure, as opposed to the one outlined in Deploying .dacpacs to Multiple Environments via ADO Pipelines is the need for a Deploy Report. This is the key to unlocking the CI/CD approach which aligns with Terraform. This Deploy Report detects our changes on build, similar to running a terraform plan. Creating a Deploy Report is achieved by setting the DeployAction attribute in the SQLAzureDacpacDeployment@1 action to 'DeployReport' Now there is one minor "bug" in the Microsoft SQLAzureDacpacDeployment task, which I have raised with the ADO task. It appears the output path for the Deploy Report as well as the Drift Report are hardcoded to the same location. To get around this I had to find out where the Deploy Report was being published and, for our purposes, have a task to copy the Deploy Report to the same location as the .dacpac and then publish them both as a single folder. Here is the code for the for a single environment to build the associated .dacpac and produce the Deploy Repo stages: - stage: adventureworksentra_build variables: - name: solutionPath value: $(Build.SourcesDirectory)// jobs: - job: build_publish_sql_sqlmoveme_dev_dev steps: - task: UseDotNet@2 displayName: Use .NET SDK vlatest inputs: packageType: 'sdk' version: '' includePreviewVersions: true - task: NuGetAuthenticate@1 displayName: 'NuGet Authenticate' - task: DotNetCoreCLI@2 displayName: dotnet build inputs: command: build projects: $(Build.SourcesDirectory)/src/sqlmoveme/*.sqlproj arguments: --configuration dev /p:NetCoreBuild=true /p:DacVersion=1.0.1 - task: SqlAzureDacpacDeployment@1 displayName: DeployReport sqlmoveme on sql-adventureworksentra-dev-cus.database.windows.net inputs: DeploymentAction: DeployReport azureSubscription: AzureDevServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-dev-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\s/src/sqlmoveme/bin/dev/sqlmoveme.dacpac AdditionalArguments: '' DeleteFirewallRule: True - task: CopyFiles@2 inputs: SourceFolder: GeneratedOutputFiles Contents: '**' TargetFolder: $(Build.SourcesDirectory)/src/sqlmoveme/bin/dev/cus - task: PublishPipelineArtifact@1 displayName: 'Publish Pipeline Artifact sqlmoveme_dev_dev ' inputs: targetPath: $(Build.SourcesDirectory)/src/sqlmoveme/bin/dev artifact: sqlmoveme_dev_dev properties: '' The end result will be similar to: (I have two environments in the screenshot below) One can see I have configured this to run a Deploy Report across each regional instance, thus the `cus` folder, of a SQL DB I do this is to identify and catch any potential schema and data issues. The Deploy Reports are the keys to tie this to the thought of deploying and managing SQL Databases like Terraform. These reports will execute when a pull request is created as part of the Build and again at Deployment to ensure changes from PR to deployment that may have occurred. For the purposes of this blog here is a deployment report indicating a schema change: This is an important artifact for organizations whose auditing policy requires documentation around deployments. This information is also available in the ADO job logs: This experience should feel similar to Terraform CI/CD...THAT'S A GOOD THING! It means we are working on developing and refining practices and principals across our tech stacks when it comes to SDLC. If this feels new to you then please read Terraform, CI/CD, Azure DevOps, and YAML Templates - John Folberth Deploy Stage We will have a deploy stage for each environment and within that stage will be a job for each region and/or database we are deploying our dacpac to. This job can be a template because, in theory, our deploying process across environments is identical. We will run a deployment report and deploy the .dacpac which was built for the specific environment and will include any and all associated pre/post scripts. Again this process has already been walked through in Deploying .dacpacs to Multiple Environments via ADO Pipelines | Microsoft Community Hub Deploy Job The deploy job will take what we built in the deployment process in Deploying .dacpacs to Multiple Environments via ADO Pipelines | Microsoft Community Hub and we will add a perquisite job to create a second Deployment Report. This process is to ensure we are aware of any changes in the deployed SQL Database that may have occurred after the original dacpac and Deployment Report were created at the time of the Pull Request. By doing this we now have a tight log identifying any changes that were being made right before we deployed the code. Next, we need to make a few changes to override the default arguments of the .dacpac publish command in order to automatically deploy changes that may result in data loss. Here is a complete list of all the available properties SqlPackage Publish - SQL Server | Microsoft Learn. The ones we are most interested in are DropObjectsNotInSource and BlockOnPossibleDataLoss. DropObjectsNotInSource is defined as: Specifies whether objects that do not exist in the database snapshot (.dacpac) file will be dropped from the target database when you publish to a database. This value takes precedence over DropExtendedProperties. This is important as it will drop and delete objects that are not defined in our source code. As I've written about previously this will drop all those instances of "Shadow Data" or copies of tables we were storing. This value, by default, is set to false as a safeguard from a destructive data action. Our intention though is to ensure our deployed database objects match our definitions in source control, as such we want to enable this. BlockOnPossibleDataLoss is defined as: Specifies that the operation will be terminated during the schema validation step if the resulting schema changes could incur a loss of data, including due to data precision reduction or a data type change that requires a cast operation. The default (True) value causes the operation to terminate regardless if the target database contains data. An execution with a False value for BlockOnPossibleDataLoss can still fail during deployment plan execution if data is present on the target that cannot be converted to the new column type. This is another safeguard that has been put in place to ensure data isn't lost in the situation of type conversion or schema changes such as dropping a column. We want this set to `true` so that our deployment will actually deploy in an automated fashion. If this is set to `false` and we are wanting to update schemas/columns then we would be creating an anti-pattern of a manual deployment to accommodate. When possible, we want to automate our deployments and in this specific case we have already taken the steps of mitigating unintentional data loss through our implementation of a Deploy Report. Again, we should have confidence in our deployment and if we have this then we should be able to automate it. Here is that same deployment process, including now the Deploy Report steps: - stage: adventureworksentra_dev_cus_dacpac_deploy jobs: - deployment: adventureworksentra_app_dev_cus environment: name: dev dependsOn: [] strategy: runOnce: deploy: steps: - task: SqlAzureDacpacDeployment@1 displayName: DeployReport sqlmoveme on sql-adventureworksentra-dev-cus.database.windows.net inputs: DeploymentAction: DeployReport azureSubscription: AzureDevServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-dev-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\sqlmoveme_dev_dev\**\*.dacpac AdditionalArguments: '' DeleteFirewallRule: False - task: CopyFiles@2 inputs: SourceFolder: GeneratedOutputFiles Contents: '**' TargetFolder: postDeploy/sql-adventureworksentra-dev-cus.database.windows.net/sqlmoveme - task: SqlAzureDacpacDeployment@1 displayName: Publish sqlmoveme on sql-adventureworksentra-dev-cus.database.windows.net inputs: DeploymentAction: Publish azureSubscription: AzureDevServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-dev-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\sqlmoveme_dev_dev\**\*.dacpac AdditionalArguments: /p:DropObjectsNotInSource=true /p:BlockOnPossibleDataLoss=false DeleteFirewallRule: True Putting it Together Let's put together all these pieces. This example will show an expanded pipeline that has the following stages and jobs Build a stage Build Dev job Build Tst job Deploy Dev stage Deploy Dev Job Deploy tst stage Deploy tst Job And here is the code: resources: repositories: - repository: templates type: github name: JFolberth/TheYAMLPipelineOne endpoint: JFolberth trigger: branches: include: - none pool: vmImage: 'windows-latest' parameters: - name: projectNamesConfigurations type: object default: - projectName: 'sqlmoveme' environmentName: 'dev' regionAbrvs: - 'cus' projectExtension: '.sqlproj' buildArguments: '/p:NetCoreBuild=true /p:DacVersion=1.0.1' sqlServerName: 'adventureworksentra' sqlDatabaseName: 'moveme' resourceGroupName: adventureworksentra ipDetectionMethod: 'AutoDetect' deployType: 'DacpacTask' authenticationType: 'servicePrincipal' buildConfiguration: 'dev' dacpacAdditionalArguments: '/p:DropObjectsNotInSource=true /p:BlockOnPossibleDataLoss=false' - projectName: 'sqlmoveme' environmentName: 'tst' regionAbrvs: - 'cus' projectExtension: '.sqlproj' buildArguments: '/p:NetCoreBuild=true /p:DacVersion=1.0' sqlServerName: 'adventureworksentra' sqlDatabaseName: 'moveme' resourceGroupName: adventureworksentra ipDetectionMethod: 'AutoDetect' deployType: 'DacpacTask' authenticationType: 'servicePrincipal' buildConfiguration: 'tst' dacpacAdditionalArguments: '/p:DropObjectsNotInSource=true /p:BlockOnPossibleDataLoss=false' - name: serviceName type: string default: 'adventureworksentra' stages: - stage: adventureworksentra_build variables: - name: solutionPath value: $(Build.SourcesDirectory)// jobs: - job: build_publish_sql_sqlmoveme_dev_dev steps: - task: UseDotNet@2 displayName: Use .NET SDK vlatest inputs: packageType: 'sdk' version: '' includePreviewVersions: true - task: NuGetAuthenticate@1 displayName: 'NuGet Authenticate' - task: DotNetCoreCLI@2 displayName: dotnet build inputs: command: build projects: $(Build.SourcesDirectory)/src/sqlmoveme/*.sqlproj arguments: --configuration dev /p:NetCoreBuild=true /p:DacVersion=1.0.1 - task: SqlAzureDacpacDeployment@1 displayName: DeployReport sqlmoveme on sql-adventureworksentra-dev-cus.database.windows.net inputs: DeploymentAction: DeployReport azureSubscription: AzureDevServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-dev-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\s/src/sqlmoveme/bin/dev/sqlmoveme.dacpac AdditionalArguments: '' DeleteFirewallRule: True - task: CopyFiles@2 inputs: SourceFolder: GeneratedOutputFiles Contents: '**' TargetFolder: $(Build.SourcesDirectory)/src/sqlmoveme/bin/dev/cus - task: PublishPipelineArtifact@1 displayName: 'Publish Pipeline Artifact sqlmoveme_dev_dev ' inputs: targetPath: $(Build.SourcesDirectory)/src/sqlmoveme/bin/dev artifact: sqlmoveme_dev_dev properties: '' - job: build_publish_sql_sqlmoveme_tst_tst steps: - task: UseDotNet@2 displayName: Use .NET SDK vlatest inputs: packageType: 'sdk' version: '' includePreviewVersions: true - task: NuGetAuthenticate@1 displayName: 'NuGet Authenticate' - task: DotNetCoreCLI@2 displayName: dotnet build inputs: command: build projects: $(Build.SourcesDirectory)/src/sqlmoveme/*.sqlproj arguments: --configuration tst /p:NetCoreBuild=true /p:DacVersion=1.0 - task: SqlAzureDacpacDeployment@1 displayName: DeployReport sqlmoveme on sql-adventureworksentra-tst-cus.database.windows.net inputs: DeploymentAction: DeployReport azureSubscription: AzureTstServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-tst-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\s/src/sqlmoveme/bin/tst/sqlmoveme.dacpac AdditionalArguments: '' DeleteFirewallRule: True - task: CopyFiles@2 inputs: SourceFolder: GeneratedOutputFiles Contents: '**' TargetFolder: $(Build.SourcesDirectory)/src/sqlmoveme/bin/tst/cus - task: PublishPipelineArtifact@1 displayName: 'Publish Pipeline Artifact sqlmoveme_tst_tst ' inputs: targetPath: $(Build.SourcesDirectory)/src/sqlmoveme/bin/tst artifact: sqlmoveme_tst_tst properties: '' - stage: adventureworksentra_dev_cus_dacpac_deploy jobs: - deployment: adventureworksentra_app_dev_cus environment: name: dev dependsOn: [] strategy: runOnce: deploy: steps: - task: SqlAzureDacpacDeployment@1 displayName: DeployReport sqlmoveme on sql-adventureworksentra-dev-cus.database.windows.net inputs: DeploymentAction: DeployReport azureSubscription: AzureDevServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-dev-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\sqlmoveme_dev_dev\**\*.dacpac AdditionalArguments: '' DeleteFirewallRule: False - task: CopyFiles@2 inputs: SourceFolder: GeneratedOutputFiles Contents: '**' TargetFolder: postDeploy/sql-adventureworksentra-dev-cus.database.windows.net/sqlmoveme - task: SqlAzureDacpacDeployment@1 displayName: Publish sqlmoveme on sql-adventureworksentra-dev-cus.database.windows.net inputs: DeploymentAction: Publish azureSubscription: AzureDevServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-dev-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\sqlmoveme_dev_dev\**\*.dacpac AdditionalArguments: /p:DropObjectsNotInSource=true /p:BlockOnPossibleDataLoss=false DeleteFirewallRule: True - stage: adventureworksentra_tst_cus_dacpac_deploy jobs: - deployment: adventureworksentra_app_tst_cus environment: name: tst dependsOn: [] strategy: runOnce: deploy: steps: - task: SqlAzureDacpacDeployment@1 displayName: DeployReport sqlmoveme on sql-adventureworksentra-tst-cus.database.windows.net inputs: DeploymentAction: DeployReport azureSubscription: AzureTstServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-tst-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\sqlmoveme_tst_tst\**\*.dacpac AdditionalArguments: '' DeleteFirewallRule: False - task: CopyFiles@2 inputs: SourceFolder: GeneratedOutputFiles Contents: '**' TargetFolder: postDeploy/sql-adventureworksentra-tst-cus.database.windows.net/sqlmoveme - task: SqlAzureDacpacDeployment@1 displayName: Publish sqlmoveme on sql-adventureworksentra-tst-cus.database.windows.net inputs: DeploymentAction: Publish azureSubscription: AzureTstServiceConnection AuthenticationType: servicePrincipal ServerName: sql-adventureworksentra-tst-cus.database.windows.net DatabaseName: sqlmoveme deployType: DacpacTask DacpacFile: $(Agent.BuildDirectory)\sqlmoveme_tst_tst\**\*.dacpac AdditionalArguments: /p:DropObjectsNotInSource=true /p:BlockOnPossibleDataLoss=false DeleteFirewallRule: True In ADO it will look like: We can see the important Deploy Report being created and can confirm that there are Deploy Reports for each environment/region combination: Conclusion With the inclusion of deploy reports we now have the ability to create Azure SQL Deployments that adhere to modern DevOps approaches. We can ensure our environments will be in sync with how we have defined them in source control. By doing this we achieve a higher level of security, confidence in our code, and reduction in shadow data. To learn more on these approaches with SQL Deployments be sure to check out my other blog articles on the topic "SQL Database Series" in "Healthcare and Life Sciences Blog" | Microsoft Community Hub and be sure to follow me on LinkedInEngenharia de Prompt com o GitHub Copilot
O GitHub Copilot é uma ferramenta de inteligência artificial que ajuda desenvolvedores a escrever código de forma mais rápida e eficiente. Durante o GitHub Copilot Bootcamp Brasil (acesse as gravações), reunimos conteúdos práticos para ensinar como dominar a engenharia de prompts e explorar as funcionalidades do Copilot, aumentando sua produtividade em tarefas do dia a dia, como criar rotas para APIs, automatizar testes e integrar pipelines com GitHub Actions. O GitHub Copilot é um assistente de programação baseado em IA desenvolvido pelo GitHub em parceria com a OpenAI. Ele utiliza modelos avançados de linguagem, como o GPT-4, para oferecer sugestões contextuais diretamente no editor do desenvolvedor. Seja completando funções, gerando trechos de código ou explicando blocos complexos, o Copilot atua como um parceiro que acelera tarefas repetitivas e permite que os desenvolvedores foquem em problemas estratégicos. Principais benefícios do GitHub Copilot: Sugestões Contextuais: Recomendações baseadas no código existente e nos comentários fornecidos. Compatibilidade com Diversos Editores: Funciona com IDEs populares, como Visual Studio Code, JetBrains IDEs e Neovim. Geração de Código Completo: Cria funções inteiras ou snippets com base em descrições textuais. Documentação Automatizada: Auxilia na criação de comentários e documentação alinhados ao código. Com um plano gratuito disponível, basta ter uma conta no GitHub para ativar o Copilot. Ele pode ser usado no Visual Studio Code (VSCode), via chat integrado, autocomplete enquanto você escreve ou até mesmo pela linha de comando (CLI). Também há uma extensão específica para o Azure (GitHub Copilot for Azure). De acordo com estudos realizados pelo GitHub, desenvolvedores que utilizam o Copilot relatam até 55% mais produtividade e maior satisfação no trabalho. Durante a sessão, utilizamos o GitHub Codespaces, uma versão do Visual Studio Code na nuvem. Essa ferramenta permite configurar um ambiente completo de desenvolvimento em poucos minutos, eliminando a necessidade de configurações locais demoradas. O Codespaces oferece 60 horas gratuitas por mês, permitindo pausar e retomar ambientes conforme necessário para uma gestão eficiente dos recursos. Além disso, ele suporta templates prontos para tecnologias como React, Jupyter Notebooks e .NET. Durante a demonstração, configuramos um projeto FastAPI diretamente no Codespaces e mostramos como ele facilita o desenvolvimento de APIs. O que é Engenharia de Prompts? A engenharia de prompts é a prática de estruturar comandos ou instruções para obter os melhores resultados possíveis de modelos de IA generativa. No caso do GitHub Copilot, isso significa criar descrições claras e detalhadas sobre o que você deseja que ele faça. Por exemplo: """ Crie uma função para listar cidades por país: - A função deve aceitar 'country' como parâmetro. - Retorne as cidades associadas ao país especificado. - Trate erros caso o país não seja encontrado. """ Com base nesse prompt, o Copilot pode gerar automaticamente: @app.get("/cities/{country}") def list_cities(country: str): country_cities = { "Brazil": ["São Paulo", "Rio de Janeiro", "Belo Horizonte"], "USA": ["New York", "Los Angeles", "Chicago"], "Japan": ["Tokyo", "Osaka", "Kyoto"] } if country not in country_cities: raise HTTPException(status_code=404, detail="Country not found") return {"cities": country_cities[country]} Essa abordagem economiza tempo e garante que o código gerado esteja alinhado às especificações fornecidas. Por que Engenharia de Prompts é importante? A qualidade das sugestões geradas pelo GitHub Copilot depende diretamente da clareza dos prompts fornecidos. Prompts bem elaborados ajudam a IA a entender melhor o contexto do problema, resultando em saídas mais úteis e precisas. Alguns benefícios: Maior Controle sobre as Respostas: Reduz ambiguidades e direciona a IA para produzir exatamente o que você precisa. Eficiência no Desenvolvimento: Menos ajustes manuais economizam tempo valioso. Versatilidade: Permite explorar diferentes abordagens para resolver problemas complexos. Por exemplo, ao criar uma API com FastAPI, um prompt detalhado pode gerar rotas completas com tratamento de erros: """ Crie uma rota FastAPI para listar cidades por país: - A rota deve ser '/cities/{country}'. - Aceite 'country' como string. - Retorne uma lista das cidades associadas ao país fornecido. - Trate erros caso o país não seja encontrado no dicionário. """ Resultado gerado pelo Copilot: @app.get("/cities/{country}") def list_cities(country: str): country = country.capitalize() country_cities = { "Brazil": ["São Paulo", "Rio de Janeiro", "Belo Horizonte"], "USA": ["New York", "Los Angeles", "Chicago"], "Japan": ["Tokyo", "Osaka", "Kyoto"] } if country not in country_cities: raise HTTPException(status_code=404, detail="Country not found") return {"cities": country_cities[country]} Durante esta sessão do GitHub Copilot Bootcamp Brasil, você aprenderá: Introdução ao GitHub Copilot e Engenharia de Prompts Como usar prompts eficazes para gerar código relevante. Configuração de Ambientes na Nuvem com GitHub Codespaces Criar ambientes rápidos e flexíveis na nuvem. Criação de APIs com FastAPI Desenvolver rotas robustas utilizando sugestões do Copilot. Automatização de Testes com pytest Criar testes automatizados para validar funcionalidades da API. Integração Contínua com GitHub Actions Configurar pipelines automatizados para rodar testes e builds. Conclusão A combinação entre o GitHub Copilot e a engenharia de prompts representa um salto significativo na forma como desenvolvemos software. Ferramentas como essas permitem não apenas acelerar tarefas repetitivas, mas também melhorar a qualidade do código produzido. Se você deseja aprender mais sobre essas técnicas, assista as gravações do GitHub Copilot Bootcamp disponíveis em português, comece a utilizar o GitHub Copilot gratuito e descubra como transformar sua maneira de programar utilizando inteligência artificial!1KViews1like0CommentsDataEX Bootcamp: Data Women Engineers 2025
DataEX Bootcamp Data Women Engineers 2025: Uma Oportunidade Imperdível para Mulheres que Querem Iniciar na Carreira de Engenharia de Dados Se você é uma mulher apaixonada por tecnologia e busca uma oportunidade para se aprofundar em Data Engineering, o DataEX Bootcamp Data Women Engineers 2025 pode ser o seu ponto de partida. Este programa exclusivo e gratuito foi desenvolvido para capacitar mulheres que desejam ingressar na área de dados, com um foco prático e realista, visando proporcionar uma imersão completa nas habilidades e ferramentas mais requisitadas pelas empresas de tecnologia. O que é o DataEX Bootcamp Data Women Engineers? O DataEX Bootcamp é um programa de capacitação totalmente gratuito que oferece 50 vagas para mulheres cisgêneras e transgêneras com interesse em aprender sobre engenharia de dados. Durante o bootcamp, as participantes terão acesso a aulas teóricas e práticas, onde serão treinadas para atuar na criação e manipulação de grandes volumes de dados, utilizando ferramentas e tecnologias de ponta como SQL Server, Microsoft Fabric, Python, e muito mais. O curso foi projetado para atender a uma demanda crescente por profissionais qualificados em Data Engineering, uma das áreas mais promissoras da tecnologia. As alunas terão a oportunidade de trabalhar com cenários reais, desenvolvendo habilidades essenciais para o mercado de trabalho. Conteúdo Programático O bootcamp vai além das aulas tradicionais. Ele foca no desenvolvimento de competências técnicas essenciais para o trabalho com engenharia de dados. Durante o curso, você aprenderá: Criação e gerenciamento de Data Warehouses e DataMarts; Processamento de dados com tecnologias avançadas; Segurança e otimização de dados em ambientes corporativos; Monitoramento de dados em tempo real; Uso do Microsoft Fabric para análise e manipulação de dados; Fundamentos de Python aplicados ao trabalho com dados. O programa combina teoria e prática, permitindo que as participantes desenvolvam seus próprios projetos e desafios, como seria o caso em um ambiente corporativo. Isso garante que as habilidades adquiridas sejam imediatamente aplicáveis no mercado de trabalho. Etapas do Processo Seletivo O processo seletivo para o DataEX Bootcamp Data Women Engineers 2025 é simples, mas exige comprometimento e dedicação. As etapas são: Inscrição Online: Você deve acessar a página do bootcamp e preencher o formulário de inscrição até o dia 31 de dezembro de 2024. É importante completar todos os campos corretamente para garantir sua candidatura. Desafio Cloud Skills: Após a inscrição, será necessário realizar o Desafio Cloud Skills. Este desafio é um teste introdutório que ajuda a avaliar seu nível de conhecimento e familiaridade com conceitos básicos de cloud computing. A conclusão deste desafio deve ser confirmada até o dia 07 de janeiro de 2025. Seleção: As participantes que cumprirem todas as etapas com sucesso receberão um e-mail de confirmação até 21 de janeiro de 2025. O bootcamp começa em 03 de fevereiro de 2025. Agenda e Modalidade O bootcamp terá aulas de 03 de fevereiro a 14 de fevereiro de 2025, com encontros programados de segunda a sexta-feira, das 13h30 às 17h30. As participantes terão que se comprometer a comparecer a todas as aulas, que ocorrerão de forma 100% online. Durante esse período, será possível aprender em tempo real e tirar dúvidas diretamente com os instrutores. Certificação e Desafio Final Ao final do bootcamp, todas as alunas que completarem o programa com sucesso receberão um certificado de participação, confirmando suas novas habilidades adquiridas. Além disso, todas as participantes serão desafiadas a realizar o Desafio Data Engineer, um teste prático que avaliará seus conhecimentos e habilidades adquiridos ao longo das aulas. O desafio ocorrerá entre 14 e 23 de fevereiro de 2025. Requisitos para Participação Para ser selecionada, você precisa atender aos seguintes critérios: Identificar-se como mulher cis ou trans; Ter mais de 18 anos; Ensino Médio completo; Disponibilidade para participar de todas as aulas durante o período de 03 a 14 de fevereiro de 2025 (exceto 08 e 09 de fevereiro, que são dias de descanso); Acesso a um computador ou notebook com conexão à internet; Interesse em trabalhar no mercado de tecnologia. Por que Participar? Este bootcamp é uma excelente oportunidade para mulheres que buscam entrar no mercado de tecnologia, especialmente em um campo de alta demanda como a engenharia de dados. Ao final do programa, as participantes estarão preparadas para enfrentar os desafios do mercado e poderão se destacar em processos seletivos de grandes empresas. Além disso, o bootcamp proporciona um ambiente de aprendizado colaborativo, onde as alunas terão a oportunidade de interagir com outras mulheres que compartilham os mesmos interesses, criando uma rede de apoio importante para o futuro profissional de cada uma. Como Se Inscrever? A inscrição para o DataEX Bootcamp Data Women Engineers 2025 pode ser feita diretamente na página oficial do programa: DataEX Bootcamp. Lembre-se de que as inscrições vão até o dia 31 de dezembro de 2024 e as vagas são limitadas, então não perca tempo! Dúvidas? Se você tem alguma dúvida ou precisa de mais informações, não hesite em entrar em contato com a equipe organizadora através do e-mail treinamentos@dataex.com.br. A equipe estará disponível para esclarecer todas as suas perguntas.5.6KViews1like3CommentsGitHub Copilot Bootcamp — Inscrições abertas
O GitHub Copilot Bootcamp é uma série de quatro aulas ao vivo em português, que ensina dicas e boas práticas para usar o GitHub Copilot. Aprenda a criar soluções rápidas, automatizar tarefas repetitivas e colaborar eficazmente em projetos. INSCREVA-SE AGORA! Por que participar? O GitHub Copilot não é apenas uma ferramenta de sugestão de código, mas sim um parceiro de programação que compreende suas necessidades e acelera seu trabalho. Participando do bootcamp, você terá a oportunidade de: Dominar a criação de prompts eficazes; Aprender a desenvolver aplicações web utilizando IA; Descobrir como automatizar testes e gerar documentação; Explorar práticas de colaboração e implantação automatizada. Cronograma de aulas 📅 04 de fevereiro de 2025 – 19 horas (Horário de Brasília) Engenharia de Prompts com o GitHub Copilot Aprenda como o Copilot funciona e domine a IA responsável para aumentar sua produtividade. 📅 06 de fevereiro de 2025 – 19 horas (Horário de Brasília) Construindo uma Aplicação Web de IA com Python e Flask Crie projetos incríveis com a integração de IA e explore o uso do Copilot para simplificar tarefas. 📅 11 de fevereiro de 2025 – 19 horas (Horário de Brasília) Crie Testes Unitários e Documentação com GitHub Copilot Automatize a documentação e desenvolva testes com eficiência, aplicando conceitos diretamente em projetos reais. 📅 13 de fevereiro de 2025 – 19 horas (Horário de Brasília) Colaboração e deploy com o GitHub Copilot Saiba como criar GitHub Actions, gerenciar solicitações de pull e usar o Copilot for Azure para implantação. Quem pode participar? Se você é desenvolvedor, estudante ou entusiasta de tecnologia, este bootcamp é para você. As aulas foram projetadas para atender tanto iniciantes quanto profissionais experientes. Como se inscrever? Garanta sua vaga agora e comece sua jornada para dominar o GitHub Copilot! 👉 Inscreva-se aqui438Views0likes0CommentsContinuous Analysis: Enhancing Reproducibility in Scientific Research
Continuous Analysis (CA) enhances reproducibility in scientific research by integrating DevOps principles, such as Continuous Integration (CI) and Continuous Deployment (CD), with DataOps and MLOps. This approach manages data and analysis lifecycles, ensuring consistent replication of results using shared data, code, and methods, thereby addressing challenges in complex workflows, software dependencies, and data sharing practices.Conquiste a Certificação GitHub Foundations
De 1 a 22 de Outubro, prepare-se para certificação GitHub Foundations. Aprenda a automatizar fluxos de trabalho com GitHub Actions, aumentar sua produtividade no desenvolvimento com GitHub Copilot e desenvolver na nuvem com GitHub Codespaces. Descubra como o GitHub Advanced Security pode proteger seus projetos contra ameaças e vulnerabilidades.10KViews4likes6CommentsConfigurando DAPR, KEDA no AKS
A CNCF (Cloud Native Computing Foundation) define Aplicações Cloud-Native como software que consistem em vários serviços pequenos e interdependentes chamados microsserviços. Essas aplicações são projetadas para aproveitar ao máximo as inovações em computação em nuvem, como escalabilidade, segurança, flexibilidade e automação. Alguns dos projetos Cloud-Native mais conhecidos da CNCF são: Kubernetes, Prometheus, Envoy, Jaeger, Helm, DAPR, KEDA e etc. Neste artigo, falaremos sobre DAPR, KEDA e como esta combinação pode trazer eficiência e flexibilidade na construção de aplicações em Kubernetes.1.1KViews2likes0Comments