developer
37 TopicsIgnite 2025: Advancing Azure Database for MySQL with Powerful New Capabilities
At Ignite 2025, we’re introducing a wave of powerful new capabilities for Azure Database for MySQL, designed to help organizations modernize, scale, and innovate faster than ever before. From enhanced high availability and seamless serverless integrations to AI-powered insights and greater flexibility for developers, these advancements reflect our commitment to delivering a resilient, intelligent data platform. Join us as we unveil what’s next for MySQL on Azure - and discover how industry leaders are already building the future with confidence. Enhanced Failover Performance with Dedicated SLB for High-Availability Servers We’re excited to announce the General Availability of Dedicated Standard Load Balancer (SLB) for HA-enabled servers in Azure Database for MySQL. This enhancement introduces a dedicated SLB to High Availability configurations for servers created with public access or private link. By managing the MySQL data traffic path, SLB eliminates the need for DNS updates during failover, significantly reducing failover time. Previously, failover relied on DNS changes, which caused delays due to DNS TTL (30 seconds) and client-side DNS caching. What’s new with GA: The FQDN consistently resolves to the SLB IP address before and after failover. Load-balancing rules automatically route traffic to the active node. Removes DNS cache dependency, delivering faster failovers. Note: This feature is not supported for servers using private access with VNet integration. Learn more Build serverless, event-driven apps at scale – now GA with Trigger Bindings for Azure Functions We’re excited to announce the General Availability of Azure Database for MySQL Trigger bindings for Azure Functions, completing the full suite of Input, Output, and Trigger capabilities. This feature lets you build real-time, event-driven applications by automatically invoking Azure Functions when MySQL table rows are created, updated, or deleted - eliminating custom polling and boilerplate code. With native support across multiple languages, developers can now deliver responsive, serverless solutions that scale effortlessly and accelerate innovation. Learn more Enable AI agents to query Azure Database for MySQL using Azure MCP Server We’re excited to announce that Azure MCP Server now supports Azure Database for MySQL, enabling AI agents to query and manage MySQL data using natural language through the open Model Context Protocol (MCP). Instead of writing SQL, you can simply ask questions like “Show the number of new users signed up in the last week in appdb.users grouped by day.”, all secured with Microsoft Entra authentication for enterprise-grade security. This integration delivers a unified, secure interface for building intelligent, context-aware workflows across Azure services - accelerating insights and automation. Learn more Greater networking flexibility with Custom Port Support Custom port support for Azure Database for MySQL is now generally available, giving organizations the flexibility to configure a custom port (between 25001 and 26000) during new server creation. This enhancement streamlines integration with legacy applications, supports strict network security policies, and helps avoid port conflicts in complex environments. Supported across all network configurations - including public access, private access, and Private Link - custom port provisioning ensures every new MySQL server can be tailored to your needs. The managed experience remains seamless, with all administrative capabilities and integrations working as before. Learn more Streamline migrations and compatibility with Lower Case Table Names support Azure Database for MySQL now supports configuring lower_case_table_names server parameter during initial server creation for MySQL 8.0 and above, ensuring seamless alignment with your organization’s naming conventions. This setting is automatically inherited for restores and replicas, and cannot be modified. Key Benefits: Simplifies migrations by aligning naming conventions and reducing complexity. Enhances compatibility with legacy systems that depend on case-insensitive table names. Minimizes support dependency, enabling faster and smoother onboarding. Learn more Unlock New Capabilities with Private Preview Features at Ignite 2025 We’re excited to announce that you can now explore two powerful capabilities in early access - Reader Endpoint for seamless read scaling and Server Rename for greater flexibility in server management. Scale reads effortlessly with Reader Endpoint (Private Preview) We’re excited to announce that the Reader Endpoint feature for Azure Database for MySQL is now ready for private preview. Reader Endpoint provides a dedicated read-only endpoint for read replicas, enabling automatic connection-based load balancing of read-only traffic across multiple replicas. This simplifies application architecture by offering a single endpoint for read operations, improving scalability and fault tolerance. Azure Database for MySQL supports up to 10 read replicas per primary server. By routing read-only traffic through the reader endpoint, application teams can efficiently manage connections and optimize performance without handling individual replica endpoints. Reader endpoints continuously monitor the health of replicas and automatically exclude any replica that exceeds the configured replication lag threshold or becomes unavailable. To enroll in the preview, please submit your details using this form. Limitations During Private Preview: Only performance-based routing is supported in this preview. Certain settings such as routing method and the option to attach new replicas to the reader endpoint can only be configured at creation time. Only one reader endpoint can be created per replica group. Including the primary server as a fallback for read traffic when no replicas are available is not supported in this preview. Get flexibility in server management with Server Rename (Private Preview) We’re excited to announce the Private Preview of Server Rename for Azure Database for MySQL. This feature lets you update the name of an existing MySQL server without recreating it, migrating data, or disrupting applications - making it easier to adopt clear, consistent naming. It provides a near zero-downtime path to a new hostname of the server. To enroll in the preview, please submit your details using this form. Limitations During Private Preview: Primary server with read replicas: Renaming a primary server that has read replicas keeps replication healthy. However, the SHOW SLAVE STATUS output on the replicas will still display the old primary server's name. This is a display inconsistency only and does not affect replication. Renaming is currently unsupported for servers using Customer Managed Key (CMK) encryption or Microsoft Entra Authentication (Entra Id). Real-World Success: Azure Database for MySQL Powers Resilient Applications at Scale Factorial Factorial, a leading HR software provider, uses Azure Database for MySQL alongside Azure Kubernetes Service to deliver secure, scalable HR solutions for thousands of businesses worldwide. By leveraging Azure Database for MySQL’s reliability and seamless integration with cloud-native technologies, Factorial ensures high availability and rapid innovation for its customers. Learn more YES (Youth Employment Service) South Africa’s largest youth employment initiative, YES, operates at national scale by leveraging Azure Database for MySQL to deliver a resilient, centralized platform for real-time job matching, learning management, and career services - connecting thousands of young people and employers, and helping nearly 45 percent of participants secure permanent roles within six months. Learn more Nasdaq At Ignite 2025, Nasdaq will showcase how it uses Azure Database for MySQL - alongside Azure Database for PostgreSQL and other Azure products - to power a secure, resilient architecture that safeguards confidential data while unlocking new agentic AI capabilities. Learn more These examples demonstrate that Azure Database for MySQL is trusted by industry leaders to build resilient, scalable applications - empowering organizations to innovate and grow with confidence. We Value Your Feedback Azure Database for MySQL is built for scale, resilience, and performance - ready to support your most demanding workloads. With every update, we’re focused on simplifying development, migration, and management so you can build with confidence. Explore the latest features and enhancements to see how Azure Database for MySQL meets your data needs today and in the future. We welcome your feedback and invite you to share your experiences or suggestions at AskAzureDBforMySQL@service.microsoft.com Stay up to date by visiting What's new in Azure Database for MySQL, and follow us on YouTube | LinkedIn | X for ongoing updates. Thank you for choosing Azure Database for MySQL!206Views0likes0CommentsPreventing and recovering from accidental deletion of an Azure Database for MySQL flexible server
Accidental deletion of critical Azure resources, such as Azure Database for MySQL flexible servers, can disrupt operations. To help avoid such accidental deletions, you can use a couple of options, including Azure Resource Locks and Azure Policy. This post explains how to implement these mechanisms, and how to revive a dropped MySQL flexible server by using the Azure CLI.989Views2likes1CommentAugust 2025 Recap: Azure Database for MySQL
We're excited to share a summary of the Azure Database for MySQL updates for the month of August 2025. Join us live on our YouTube channel on September 11, 2025 for an exclusive webinar where we’ll dive deeper into these updates and answer your questions! Watch it live here. Azure Database for MySQL 8.4 - General Availability We’re excited to announce that Azure Database for MySQL now supports MySQL 8.4 in General Availability (GA). This means you can create new MySQL 8.4 servers on Azure fully supported for production workloads. MySQL 8.4 is a long-term supported release from the MySQL community, bringing the latest features and improvements while emphasizing stability. With Azure’s managed service, you get these new capabilities backed by Azure’s enterprise-grade reliability and support. In short, MySQL 8.4 GA opens the door for you to upgrade your databases and future-proof your MySQL environment on Azure. Learn more. Cross subscription and cross resource-group placement in restore/replica provisioning workflow You can now restore a server or create a read replica in a different subscription and resource group in Azure Database for MySQL – Flexible Server. This enhancement offers greater flexibility for cross-environment restores, resource organization, and subscription-level separation, helping meet governance and operational requirements. Learn more. Ability to delete on-demand backup You can now delete on-demand backups in Azure Database for MySQL – Flexible Server, giving you greater control over backup management and storage costs. This feature allows you to remove on-demand backups that are no longer needed, helping maintain a cleaner backup inventory and optimize resource usage. Learn more. Unlocking Regional Insights with the Location Based Capabilities REST API Managing MySQL Flexible Server deployments across Azure regions often means choosing the right Azure region for your MySQL deployment is critical. The new Location-Based Capability Set – List API helps you: Retrieve real-time, region-specific capabilities. Compare SKUs, storage options, backup retention, and HA configurations. Integrate insights into automation pipelines for smarter deployments. This API empowers architects and developers to make informed decisions, reduce misconfigurations, and accelerate deployment cycles. Learn more. Stay Connected We look forward to your feedback as you explore these enhancements and continue building with Azure Database for MySQL. If you have any suggestions or queries about our service, please let us know by emailing us at AskAzureDBforMySQL@service.microsoft.com. You can also submit product ideas and feedback at Azure Database for MySQL Community forum. To learn more about what's new with Flexible Server, see What's new in Azure Database for MySQL - Flexible Server. Stay tuned for more updates and announcements by following us on social media: YouTube | LinkedIn | X. Take care, and thanks for being part of our community!238Views0likes0CommentsBoost your MySQL apps: why enterprises are migrating MySQL databases to Azure
MySQL is one of the world’s most popular open-source databases, and for good reason. It’s cost-effective, scalable, and familiar to millions of developers. But if your enterprise is running MySQL on-premises, you might be missing out on huge benefits in cost savings, performance, and agility. Recent findings from an ESG Economic Validation report, commissioned by Microsoft, reveal just how advantageous it is to migrate on-premises MySQL databases to Azure’s fully managed database- as -a -service platform. Read the full MySQL report TL;DR – benefits of migrating to Azure Database for MySQL Managing data security, quality and privacy as well as general database management are among the most significant challenges facing developer teams. Some even report that database technology is evolving faster than they’re able to keep up with. Migrating to Azure’s fully managed service offloads these responsibilities so teams can focus fully on projects that move their business forward. Some benefits of moving from on premises to Azure Database for MySQL highlighted in the report include: 54% lower total cost of ownership 86% lower MySQL admin costs 25% increase in development velocity “Our developers can now focus on their core job: creating code. We now put out 8 releases per year compared to 2 when we were on premises. This gets features and fixes in the hands of our customers sooner.” Review the Azure Database for MySQL Economic Validation Infographic Zooming in – how fully managed open-source databases on Azure deliver economic wins for the enterprise More than 50% lower costs and total cost of ownership Azure’s fully managed MySQL service delivers the same (or better) database capabilities for almost half the cost. By one estimate, a company could save millions over a few years and even see an ROI above 90% from the migration when factoring in both cost savings and new revenue opportunities. These savings come from a few key areas: No more hardware and maintenance expenses: On-premises MySQL deployments require investing in servers, storage, networking gear – plus ongoing power, cooling, and data center space. Azure Database for MySQL eliminates those needs entirely. You don’t buy or maintain hardware; Microsoft handles the infrastructure. Drastically reduced admin overhead: Companies in the study reported an 86% reduction in the cost of MySQL administration after migrating to Azure. All the routine tasks—installing updates, patching OS and MySQL versions, tuning performance, taking backups, managing high availability—are handled by Azure as part of the service. Pay-as-you-go efficiency: On-premises setups often over-provision resources to handle peak loads, which wastes money during lulls. Azure can scale resources on-demand, so you’re never stuck paying for idle capacity. You can also use cost controls like burstable instances for dev/test, stop/start to pause servers, and reserved instances for discounts. Included extras: Many capabilities that would incur extra cost on-premises (or require separate licenses) are bundled into Azure Database for MySQL. For example, security features, monitoring and performance tuning tools, backup storage, and high availability options come built-in at no extra charge in Azure’s service tiers. Improved performance and scalability Beyond cost, Azure Database for MySQL helps your applications run faster and scale seamlessly to meet demand. In on-premises environments, you might need to tune configs, add hardware, or handle sharding as usage grows. Azure takes a lot of that burden away and offers cloud-scale performance out of the box: Better throughput: Azure’s managed MySQL runs on high-performance cloud infrastructure (with fast SSD storage, plenty of memory, and low-latency networking). Microsoft has also added capabilities like accelerated I/O logs and intelligent caching that improve MySQL’s throughput and response times compared to typical on-premises setups. Elastic scaling on demand: With Azure, scaling up a MySQL server is as simple as a configuration change. No new hardware is required. You can scale vertically (bigger machine) or horizontally (add read replicas) in minutes. Azure even supports autoscaling of IOPS and storage based on set thresholds. This flexibility means your database can handle traffic spikes or growth without manual intervention. No wasted capacity: On-premises, you often must deploy extra servers “just in case” future demand increases, and that hardware sits underutilized most of the time. Azure’s model avoids this waste. Enterprises reported that Azure’s ability to fine-tune resources helped them avoid overprovisioning and maintain a better price/performance mix. Reliable high performance at scale: Whether you have 10 users or 10 million, Azure’s global infrastructure can scale to meet your needs. One customer in the study found that after migrating, they could provide MySQL services 5× faster than when they were on-premises. Faster development cycles and greater developer productivity For developers, one of the biggest wins of moving MySQL to Azure is time back to innovate. When you no longer have to babysit your database infrastructure, you can focus on building features and improving your applications. The ESG report highlighted that companies saw significantly improved developer productivity and agility after migrating. Faster development: Organizations reported that their development cycles became 25% faster on average once on Azure. One customer shared that “our developers can now focus on their core job: creating code.” The customer went from shipping two software releases per year to eight releases per year after migrating to Azure. Elimination of toil: Azure’s fully managed platform lifts the burden of routine DB administration from your team. No more worrying about backups, failover, or OS patches. The service continuously applies best practices and optimizations automatically, so your team doesn’t have to. Teams can be more agile because they’re not bogged down by lengthy processes or constant maintenance. Faster time-to-market: ESG modeled that by releasing features earlier and more often, thanks to Azure MySQL, a mid-sized software company could realize an additional $15 million in revenue over three years by being first-to-market with new capabilities can capture customers and market share. Stronger security and high availability Running MySQL in Azure doesn’t just make life easier and cheaper. It also makes your databases more secure and resilient. Enterprises often struggle to keep up with patches, security threats, and high availability when managing databases on-premises. Azure Database for MySQL is hardened with enterprise-grade security and reliability features that can significantly reduce your risk. Fully managed security updates: In the ESG survey, nearly half of organizations (46%) said they needed outside expertise to help manage database platforms on-premises often because of the complexity of securing and tuning them. Azure takes care of patching the MySQL engine and underlying OS for you, ensuring you’re always on a supported, secure version. Enhanced data protection: By default, Azure Database for MySQL encrypts data at rest and in transit. It also offers network isolation options to lock down access to your database. Many customers found that after migrating, their security posture was stronger than before. They could easily implement role-based access control via Azure AD, set up threat detection alerts, and use Azure’s monitoring to audit activity with just a few clicks. High availability and disaster recovery built In: Azure Database for MySQL can be deployed with high availability configurations across availability zones. In case of an outage, it can switch to a standby replica usually in under 60 seconds, dramatically reducing downtime for your apps. Companies in the study experienced 70% less downtime incidents after moving to Azure. Compliance and governance: Azure Database for MySQL is compliant with a broad set of industry standards and certifications, easing the audit burden. Many organizations found that moving to Azure made it simpler to adhere to internal security policies and compliance standards because so many controls are built into the platform. Enterprise-ready MySQL is just a few clicks away Azure provides a hardened, enterprise-ready environment for MySQL that most companies would be hard-pressed to build on their own. By entrusting MySQL to Azure’s managed service, you benefit from Microsoft’s investments in security and infrastructure resiliency. The result is peace of mind: your data is safer, your databases are more stable, and your team has far fewer 3 AM incidents to deal with. Read the full report for more details about the quantified benefits and customer testimonials. If you’re ready to start your journey, check out our migration guides. With Azure’s fully managed open-source databases, you can supercharge your data strategy, empower your developers, and ultimately accelerate your path to an AI-driven future.186Views0likes0CommentsModel Context Protocol (MCP) Server for Azure Database for MySQL
We are excited to introduce a new MCP Server for integrating your AI models with data hosted in Azure Database for MySQL. By utilizing this server, you can effortlessly connect any AI application that supports MCP to your MySQL flexible server (using either MySQL password-based authentication or Microsoft Entra authentication methods), enabling you to provide your business data as meaningful context in a standardized and secure manner.1.9KViews2likes0CommentsAzure Database for MySQL bindings for Azure Functions (General Availability)
We’re thrilled to announce the general availability (GA) of Azure Database for MySQL Input and Output bindings for Azure Functions—a powerful way to build event-driven, serverless applications that seamlessly integrate with your MySQL databases. Key Capabilities With this GA release, your applications can use: Input bindings that allow your function to retrieve data from a MySQL database without writing any connection or query logic. Output bindings that allow your function to insert or update data in a MySQL table without writing explicit SQL commands. In addition you can use both the input and output bindings in the same function to read-modify-write data patterns. For example, retrieve a record, update a field, and write it back—all without managing connections or writing SQL. These bindings are fully supported for both in-process and isolated worker models, giving you flexibility in how you build and deploy your Azure Functions. How It Works Azure Functions bindings abstract away the boilerplate code required to connect to external services. With the MySQL Input and Output bindings, you can now declaratively connect your serverless functions to your Azure Database for MySQL database with minimal configuration. You can configure these bindings using attributes in C#, decorators in Python, or annotations in JavaScript/Java. The bindings use the MySql.Data.MySqlClient library under the hood and support Azure Database for MySQL Flexible Server. Getting Started To use the bindings, install the appropriate NuGet or npm package: # For isolated worker model (C#) dotnet add package Microsoft.Azure.Functions.Worker.Extensions.MySql # For in-process model (C#) dotnet add package Microsoft.Azure.WebJobs.Extensions.MySql Then, configure your function with a connection string and binding metadata. Full samples for all the supported programming frameworks are available in our github repository. Here is a sample C# in-process function example where you want to retrieve a user by ID, increment their login count, and save the updated record back to the MySQL database for lightweight data transformations, modifying status fields or updating counters and timestamps. public class User { public int Id { get; set; } public string Name { get; set; } public int LoginCount { get; set; } } public static class UpdateLoginCountFunction { [FunctionName("UpdateLoginCount")] public static async Task<IActionResult> Run( [HttpTrigger(AuthorizationLevel.Function, "post", Route = "user/{id}/login")] HttpRequest req, [MySql("SELECT * FROM users WHERE id = @id", CommandType = System.Data.CommandType.Text, Parameters = "@id={id}", ConnectionStringSetting = "MySqlConnectionString")] User user, [MySql("users", ConnectionStringSetting = "MySqlConnectionString")] IAsyncCollector<User> userCollector, ILogger log) { if (user == null) { return new NotFoundObjectResult("User not found."); } // Modify the user object user.LoginCount += 1; // Write the updated user back to the database await userCollector.AddAsync(user); return new OkObjectResult($"Login count updated to {user.LoginCount} for user {user. Name}."); } } Learn More Azure Functions MySQL Bindings Azure Functions Conclusion With input and output bindings for Azure Database for MySQL now generally available, building serverless apps on Azure with MySQL has never been simpler or more efficient. By eliminating the need for manual connection management and boilerplate code, these bindings empower you to focus on what matters most: building scalable, event-driven applications with clean, maintainable code. Whether you're building real-time dashboards, automating workflows, or syncing data across systems, these bindings unlock new levels of productivity and performance. We can’t wait to see what you’ll build with them. If you have any feedback or questions about the information provided above, please leave a comment below or email us at AskAzureDBforMySQL@service.microsoft.com. Thank you!Deploying Moodle on Azure – things you should know
Moodle is one of the most popular open-source learning management platform empowering educators and researchers across the world to disseminate their work efficiently. It is also one of the most mature and robust OSS applications that the community has developed and improvised over the years. We have seen customers from small, medium, and large enterprises to schools, public sector, and government organizations deploying Moodle in Azure. In this blog post, I’ll share some best practices and tips for deploying Moodle on Azure based on our experiences working with several of our customers.68KViews14likes25CommentsAzure Database for MySQL triggers for Azure Functions (Public Preview)
Developers can now accelerate development time and focus only on the core business logic of their applications, for developing event-driven applications with Azure Database for MySQL as the backend data store. We are excited to announce that you can now invoke an Azure Function based on changes to an Azure Database for MySQL table. This new capability is made possible through the Azure Database for MySQL triggers for Azure Functions, now available in public preview. Azure Database for MySQL triggers The Azure Database for MySQL trigger uses change tracking functionality to monitor a MySQL table for changes and trigger a function when a row is created, updated, or deleted enabling customers to build highly-scalable event-driven applications. Similar to the Azure Database for MySQL Input and Output bindings for Azure Functions, a connection string for the MySQL database is stored in the application settings of the Azure Function to trigger the function when a change is detected on the tables. Note: In public preview, Azure Database for MySQL triggers for Azure Functions are available only for dedicated and premium plan of Azure Functions To enable change tracking on an existing Azure Database for MySQL table to use trigger bindings for an Azure Function, it is necessary to alter the table structure, for example, enabling change tracking on an employees data table: ALTER TABLE employees ADD COLUMN az_func_updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP; Azure Database for MySQL trigger uses the 'az_func_updated_at' and column's data to monitor the table for any changes on which change tracking is enabled. Changes are then processed in the order that they were made, with the oldest changes being processed first. Important: If changes to multiple rows are made at once, then the exact order they're sent to the function is determined on the ascending order of the az_func_updated_at and the primary key columns. If multiple changes are made to a row in-between an iteration, then only the latest changes for that particular rows are considered. The following example demonstrates a C# function that is triggered when changes occur in the employees table. The MySQL trigger uses attributes for the table name and the connection string. using System.Collections.Generic; using Microsoft.Azure.WebJobs; using Microsoft.Azure.WebJobs.Extensions.MySql; using Microsoft.Extensions.Logging; namespace EmployeeSample.Function { public static class EmployeesTrigger { [FunctionName(nameof(EmployeesTrigger))] public static void Run( [MySqlTrigger("Employees", "MySqlConnectionString")] IReadOnlyList<MySqlChange<Employee>> changes, ILogger logger) { foreach (MySqlChange<Employee> change in changes) { Employee employee= change. Item; logger.LogInformation($"Change operation: {change.Operation}"); logger.LogInformation($"EmployeeId: {employee.employeeId}, FirstName: {employee.FirstName}, LastName: {employee.LastName}, Company: {employee. Company}, Department: {employee. Department}, Role: {employee. Role}"); } } } } Join the preview and share your feedback! We are eager for you to try out the new Azure Database for MySQL triggers for Azure Functions and build highly scalable event-driven and serverless applications. For more information refer https://aka.ms/mysqltriggers about using MySQL triggers for all the supported programming frameworks with detailed step-by-step instructions If you have any feedback or questions about the information provided above, please leave a comment below or email us at AskAzureDBforMySQL@service.microsoft.com. Thank you!Building a Restaurant Management System with Azure Database for MySQL
In this hands-on tutorial, we'll build a Restaurant Management System using Azure Database for MySQL. This project is perfect for beginners looking to understand cloud databases while creating something practical.880Views5likes2Comments