cost management
91 TopicsAzure VMWare (AVS) Cost Optimization Using Azure Migrate Tool
What is AVS? Azure VMware Solution provides private clouds that contain VMware vSphere clusters built from dedicated bare-metal Azure infrastructure. Azure VMware Solution is available in Azure Commercial and Azure Government. The minimum initial deployment is three hosts, with the option to add more hosts, up to a maximum of 16 hosts per cluster. All provisioned private clouds have VMware vCenter Server, VMware vSAN, VMware vSphere, and VMware NSX. As a result, you can migrate workloads from your on-premises environments, deploy new virtual machines (VMs), and consume Azure services from your private clouds. Learn More: https://learn.microsoft.com/en-us/azure/azure-vmware/introduction What is Azure Migrate Tool? Azure Migrate is a comprehensive service designed to help you plan and execute your migration to Azure. It provides a unified platform to discover, assess, and migrate your on-premises resources, including servers, databases, web apps, and virtual desktops, to Azure. The tool offers features like dependency analysis, cost estimation, and readiness assessments to ensure a smooth and efficient migration process. Learn More: https://learn.microsoft.com/en-us/azure/migrate/migrate-services-overview How Azure Migrate can be used to Discover and Assess AVS? Azure Migrate enables the discovery and assessment of Azure VMware Solution (AVS) environments by collecting inventory and performance data from on-premises VMware environments, either through direct integration with vCenter (via Appliance) or by importing data from tools like RVTools. Using Azure Migrate, organizations can analyze the compatibility of their VMware workloads for migration to AVS, assess costs, and evaluate performance requirements. The process involves creating an Azure Migrate project, discovering VMware VMs, and generating assessments that provide insights into resource utilization, right-sizing recommendations, and estimated costs in AVS. This streamlined approach helps plan and execute migrations effectively while ensuring workloads are optimized for the target AVS environment. Note: We will be narrating the RVtools Import method in this article. What Is RVTools? RVTools is a lightweight, free utility designed for VMware administrators to collect, analyze, and export detailed inventory and performance data from VMware vSphere environments. Developed by Rob de Veij, RVTools connects to vCenter or ESXi hosts using VMware's vSphere Management SDK to retrieve comprehensive information about the virtual infrastructure. Key Features of RVTools: Inventory Management: Provides detailed information about virtual machines (VMs), hosts, clusters, datastores, networks, and snapshots. Includes details like VM names, operating systems, IP addresses, resource allocations (CPU, memory, storage), and more. Performance Insights: Offers visibility into resource utilization, including CPU and memory usage, disk space, and VM states (e.g., powered on/off). Snapshot Analysis: Identifies unused or orphaned snapshots, helping to optimize storage and reduce overhead. Export to Excel: Allows users to export all collected data into an Excel spreadsheet (.xlsx) for analysis, reporting, and integration with tools like Azure Migrate. Health Checks: Identifies configuration issues, such as disconnected hosts, orphaned VMs, or outdated VMware Tools versions. User-Friendly Interface: Displays information in tabular form across multiple tabs, making it easy to navigate and analyze specific components of the VMware environment. Hand-on LAB Disclaimer: The data used for this LAB has no relationship with real world scenarios. This sample data is self-created by the author and purely for understanding the concept. To discover and assess your Azure VMware Solution (AVS) environment using an RVTools extract report in the Azure Migrate tool, follow these steps: Prerequisites RVTools Setup: Download and install RVTools from the RVTools Download Ensure connectivity to your vCenter server. Extract the data by running RVTools and saving the output as an Excel (.xlsx) file Permissions: You need at least the Contributor role on the Azure Migrate project. Ensure that you have appropriate permissions in your vCenter environment to collect inventory and performance data. File Requirements: The RVTools file must be saved in .xlsx format without renaming or modifying the tabs or column headers. Note: Sample Sheet: Please check the attachment included with this article. Note that this is not the complete format; some tabs and columns have been removed for simplicity. During the actual discovery and assessment process, please do not modify the tabs or columns. Procedure Step 1: Export Data from RVTools Follow the steps provided in official website to get RVTools Extract Sample Sheet: Please check the attachment included with this article. Note that this is not the complete format; some tabs and columns have been removed for simplicity. During the actual discovery and assessment process, please do not modify the tabs or columns. Step 2: Discover Log in to the Azure portal. Navigate to Azure Migrate and select your project or create new project. Under Migration goals, select Servers, databases and web apps. On Azure Migrate | Servers, databases and web apps page, under Assessment tools, select Discover and then select Using import. In Discover page, in File type, select VMware inventory (RVTools XLSX). In the Step 1: Import the file section, select the RVTools XLSX file and then select Import. Wait for some time to Import Once import completed check for Error Messages if any and rectify those and re upload, otherwise wait 10-15 minutes to reflect imported VMs in the discovery. Post discovery Reference Link: https://learn.microsoft.com/en-us/azure/migrate/vmware/tutorial-import-vmware-using-rvtools-xlsx?context=%2Fazure%2Fmigrate%2Fcontext%2Fvmware-context Step 3: Assess After the upload is complete, navigate to the Servers tab. Click on Assess -->Azure VMware Solution to assess the discovered machines. Edit assessment settings based on your requirements and Save Target region: Select the Azure region for the migration. Node Type: Specify the Azure VMware Solution series (e.g., AV36, AV36P). Pricing model: Select pay-as-you-go or reserved instance pricing. Discount: Specify any available discounts. Note: We will be explaining all the parameters in optimize session. As of now just review and leave parameters as it is. In Assess Servers, select Next. In Select servers to assess > Assessment name > specify a name for the assessment. In Select or create a group > select Create New and specify a group name. Select the appliance and select the servers you want to add to the group. Then select Next. In Review + create assessment, review the assessment details, and select Create Assessment to create the group and run the assessment. Step 4: Review the Assessment View an assessment In Windows, Linux and SQL Server > Azure Migrate: Discovery and assessment, select the number next to Azure VMware Solution. In Assessments, select an assessment to open it. As an example (estimations and costs, for example, only): Review the assessment summary. You can select Sizing assumptions to understand the assumptions that went in node sizing and resource utilization calculations. You can also edit the assessment properties or recalculate the assessment. Step 5: Optimize We have received a report without any optimization in our previous steps. Now we can follow below steps to optimize the cost and node count even further High level steps: Find limiting factor Find which component in settings are mapped for optimization depending on limiting factor Try to adjust the mapped component according to Scenario and Comfort Find Limiting factor: First understand which component (CPU, memory and storage) is deciding your ESXI Node count. This will be highlighted in the report The limiting factor shown in assessments could be CPU or memory or storage resources based on the utilization on nodes. It is the resource, which is limiting or determining the number of hosts/nodes required to accommodate the resources. For example, in an assessment if it was found that after migrating 8 VMware VMs to Azure VMware Solution, 50% of CPU resources will be utilized, 14% of memory is utilized and 18% of storage will be utilized on the 3 Av36 nodes and thus CPU is the limiting factor. Find which option in the setting can be used to optimize: This is depending on the limiting factor. For eg: If Limiting factor is CPU, which means you have high CPU requirement and CPU oversubscription can be used to optimize ESXI Node. Likewise, if storage is the limiting factor editing FTT, RAID or introducing External storage like ANF will help you to reduce Node count. Even reducing one node count will create a huge impact in dollar value. Let's understand how over commitment or over subscription works with simple example. Let's suppose I have two VMs with below specification Name CPU Memory Storage VM1 9 vCPU 200 GB 500 GB VM2 4 vCPU 200 GB 500 GB Total 13 vCPU 400 GB 1000 GB We have EXSI Node which has below capacity: vCPU 10 Memory 500 GB storage 1024 GB Now without optimization I need two ESXI node to accommodate 13 vCPU of total requirement. But let's suppose VM1 and VM2 doesn't consume entire capacity all the time. The total capacity usage at a time will not go beyond 10. then I can accommodate both VM in same ESXI node, Hence I can reduce my node count and cost. Which means it is possible to share resources among both VMs. Without optimization With optimization Parameters effecting Sizing and Pricing CPU Oversubscription Specifies the ratio of number of virtual cores tied to one physical core in the Azure VMware Solution node. The default value in the calculations is 4 vCPU:1 physical core in Azure VMware Solution. API users can set this value as an integer. Note that vCPU Oversubscription > 4:1 may impact workloads depending on their CPU usage. Memory overcommit factor Specifies the ratio of memory overcommit on the cluster. A value of 1 represents 100% memory use, 0.5, for example is 50%, and 2 would be using 200% of available memory. You can only add values from 0.5 to 10 up to one decimal place. Deduplication and compression factor Specifies the anticipated deduplication and compression factor for your workloads. Actual value can be obtained from on-premises vSAN or storage configurations. These vary by workload. A value of 3 would mean 3x so for 300GB disk only 100GB storage would be used. A value of 1 would mean no deduplication or compression. You can only add values from 1 to 10 up to one decimal place. FTT : How many device failure can be tolerated for a VM RAID : RAID stands for Redundant Arrays of Independent Disks Explains how data should be stored for redundancy Mirroring : Data will be duplicated as it is to another disk E.g.: To protect a 100 GB VM object by using RAID-1 (Mirroring) with an FTT of 1, you consume 200 GB. Erasure Coding : Erasure coding divides data into chunks and calculates parity information (redundant data) across multiple storage devices. This allows data reconstruction even if some chunks are lost, similar to RAID, but typically more space-efficient E.g.: to protect a 100 GB VM object by using RAID-5 (Erasure Coding) with an FTT of 1, you consume 133.33 GB. Comfort Factor: Azure Migrate considers a buffer (comfort factor) during assessment. This buffer is applied on top of server utilization data for VMs (CPU, memory and disk). The comfort factor accounts for issues such as seasonal usage, short performance history, and likely increases in future usage. For example, a 10-core VM with 20% utilization normally results in a 2-core VM. However, with a comfort factor of 2.0x, the result is a 4-core VM instead. AVS SKU Sizes Optimization Result In this example we got to know that CPU is my limiting factor hence I have adjusted CPU over subscription value from 4:1 to 8:1 Reduced node count from 6 (3 AV36P+3 AV64) to 5 AV36P Reduced Cost by 31% Note: Over-provisioning or over-committing can put your VMs at risk. However, in Azure Cloud, you can create alarms to warn you of unexpected demand increases and add new ESXi nodes on demand. This is the beauty of the cloud: if your resources are under-provisioned, you can scale up or down at any time. Running your resources in an optimized environment not only saves your budget but also allows you to allocate funds for more innovative ideas.2.6KViews1like1Commentneed to create monitoring queries to track the health status of data connectors
I'm working with Microsoft Sentinel and need to create monitoring queries to track the health status of data connectors. Specifically, I want to: Identify unhealthy or disconnected data connectors, Determine when a data connector last lost connection Get historical connection status information What I'm looking for: A KQL query that can be run in the Sentinel workspace to check connector status OR a PowerShell script/command that can retrieve this information Ideally, something that can be automated for regular monitoring Looking at the SentinelHealth table, but unsure about the exact schema,connector, etc Checking if there are specific tables that track connector status changes Using Azure Resource Graph or management APIs Ive Tried multiple approaches (KQL, PowerShell, Resource Graph) however I somehow cannot get the information I'm looking to obtain. Please assist with this, for example i see this microsoft docs page, https://learn.microsoft.com/en-us/azure/sentinel/monitor-data-connector-health#supported-data-connectors however I would like my query to state data such as - Last ingestion of tables? How much data has been ingested by specific tables and connectors? What connectors are currently connected? The health of my connectors? Please help65Views2likes1CommentProvider-Managed Azure Subscriptions: Cost Control and Commitment Clarity
As a Microsoft Cloud Solution Architect supporting enterprise customers, I occasionally encounter a specific scenario where customers with an Enterprise Agreement (EA) or Microsoft Customer Agreement (MCA-E) allow a service provider (SP) to manage one or more of their Azure subscriptions via the SP’s tenant. This setup has notable implications for cost and commitment management, which I’ll explore in this article. Recommended prerequisite reading: Microsoft Cost Management: Billing & Trust Relationships Explained Scenario Overview A customer signs a contract with a service provider to outsource the management of certain resources. The customer retains full control over resource pricing and expects the usage of these resources to contribute towards their Microsoft Azure Consumption Commitment (MACC). To achieve this, the customer associates one or more Azure subscriptions with a Microsoft Entra ID tenant owned and managed by the SP. In our example, this is “Subscription B.” The SP gains full RBAC access to the subscription and its resources, while the billing relationship remains tied to the customer’s billing account (EA) or billing profile (MCA-E). Let’s have a look at the implications from both the customers and the service providers perspective: Customers perspective Cost & Pricing All cost in Subscription B that occurs because of resource usage are tied and therefore billed to the customers billing account (EA) or billing profile (MCA-E). The prices used for the usage are based on the negotiated customer price list associated with the billing account (EA) /profile (MCA-E). The Azure resource consumption of Subscription B plus any eligible Marketplace offer consumption within the subscription contributes to the MACC of the customer. Customer has full cost visibility of Subscription B via Azure Cost Analysis on the billing account/billing profile level. Commitments (Reservations / Savings Plans) Shared commitments at the billing account/billing profile level are utilized by matching resources in Subscription B. Commitments scoped to Subscription B or lower can only be purchased by the customer, if the customer has RBAC rights on the subscription and the global billing policy allows purchases for subscription owner / reservation purchasers. Service Provider Perspective Cost & Pricing The service provider is responsible for managing Subscription B’s resources and the associated costs. Subscription B’s actual and amortized cost view is limited for the service provider as they have only access at the subscription level. The service provider has no direct access to the customer price (Price Sheet) or invoice information. Commitments (Reservations / Savings Plans) The service provider can purchase commitments scoped at Subscription B or lower (resource group) if the global customer’s billing policy allows purchases for subscription owners / reservation purchasers. The associated costs of the commitment are attributed to the customer’s billing account/profile. Shared or management group scoped commitments purchased by the service provider based on their own billing account / billing profile do not apply to Subscription B. Key take aways Decoupled Ownership: Customers can separate subscription management from billing ownership, enabling flexible operational models. Cost Control: Customers retain full visibility and control over pricing, cost allocation, and commitment utilisation—even when subscriptions are managed by a service provider. Governance and Policy Alignment: Successful implementation depends on clear billing policies and RBAC configurations that align with both customer and provider responsibilities.474Views1like0CommentsWhat’s new in FinOps toolkit 12 – July 2025
This month, you’ll find support for FOCUS 1.2, autostart in FinOps hubs which can reduce your hub costs, a new page in the Cost summary Power BI report, and various small fixes, improvements, and documentation updates across the board. Read on for details.604Views3likes0CommentsUnderstanding the Total Cost of Ownership
Whether you're just beginning your journey in Azure or are already managing workloads in the cloud, it's essential to ground your strategy in proven guidance. The Microsoft Cloud Adoption Framework for Azure offers a comprehensive set of best practices, documentation, and tools to help you align your cloud adoption efforts with business goals. One of the foundational steps in this journey is understanding the financial implications of cloud migration. When evaluating the migration of workloads to Azure, calculating the Total Cost of Ownership (TCO) is a crucial step. TCO is a comprehensive metric that includes all cost components over the life of the resource. A well-constructed TCO analysis can provide valuable insights that aid in decision-making and drive financial efficiencies. By understanding the comprehensive costs associated with moving to Azure, you can make informed choices that align with your business goals and budget. Here is a breakdown of the main elements that you need to build your own TCO: 1. Current infrastructure configuration: Servers: details about your existing servers, including the number of servers, their specifications (CPU, memory, storage), and operating systems. Databases: information about your current databases, such as the type, size, and any associated licensing costs. Storage: type and amount of storage you are currently using, including any redundancy or backup solutions. Network Traffic: Account for outbound network traffic and any associated costs. 2. Azure Environment Configuration: Virtual Machines (VMs): appropriate Azure VMs that match your current server specifications. This has to be based on CPU, memory, storage, and region. Storage Options: type of storage (e.g., Standard HDD, Premium SSD), access tiers, and redundancy options that align with your needs. Networking: networking components, including virtual networks, load balancers, and bandwidth requirements. 3. Operational Costs: Power and Cooling: Estimate the costs associated with power and cooling for your on-premises infrastructure. IT Labor: Include the costs of IT labor required to manage and maintain your current infrastructure. Software Licensing: Account for any software licensing costs that will be incurred in both the current and Azure environments. Once you have more clarity of these inputs you can complement your analysis with other tools depending on your needs. The Azure Pricing Calculator is well suited to providing granular cost estimation for different Azure services and products. However, if the intent is to estimate cost and savings during migrations, Azure Migrate business case feature should be the preferred approach as it will allow the user to perform detailed financial analysis (TCO/ROI) for the best path forward and assess readiness to move workloads to Azure with confidence. Understand your Azure costs The Azure pricing calculator is a free cost management tool that allows users to understand and estimate costs of Azure Services and products. It serves as the only unauthenticated experience that allows you to configure and budget the expected cost of deploying solutions in Azure The Azure pricing calculator is key for properly adopting Azure. Whether you are in a discovery phase and trying to figure out what to use, what offers to apply or in a post purchase phase where you are trying to optimize your environment and see your negotiated prices, the azure pricing calculator fulfills both new users and existing customers' needs. The Azure pricing calculator allows organizations to plan and forecast cloud expenses, evaluate different configurations and pricing models, and make informed decisions about service selection and deployment options. Decide, plan, and execute your migration to Azure Azure Migrateis Microsoft’s free platform for migrating to and modernizing in Azure. It provides capabilities for discovery, business case (TCO/ROI), assessments, planning and migration in a workload agnostic manner. Customers must have an Azure account and create a migration project within the Azure portal to get started. Azure Migrate supports various migration scenarios, including for VMware and Hyper-V virtual machines (VM), physical servers, databases, and web apps. The service offers accurate appliance based and manual discovery options, to cater to customer needs. The Azure Migrate process consists of three main phases: Decide, Plan, and Execute. In the Decide phase, organizations discover their IT estate through several supported methods and can get a dependency map for their applications to help collocate all resources belonging to an application. Using the data discovered, one can also estimate costs and savings through the business case (TCO/ROI) feature. In the Plan phase, customers can assess for readiness to migrate, get right-sized recommendations for targets in Azure and tools to use for their migration strategy (IaaS/PaaS). Users can also create a migration plan consisting of iterative “waves” where each wave has all dependent workloads for applications to be moved during a maintenance window. Finally, the Execute phase focuses on the actual migration of workloads to a test environment in Azure in a phased manner to ensure a non-disruptive and efficient transition to Azure. A crucial step in the Azure Migrate process is building a business case prior to the move, which helps organizations understand the value Azure can bring to their business. The business case capability highlights the total cost of ownership (TCO) with discounts and compares cost and savings between on-premises and Azure including end-of-support (EOS) Windows OS and SQL versions. It provides year-on-year cash flow analysis with resource utilization insights and identifies quick wins for migration and modernization with an emphasis on long-term cost savings by transitioning from a capital expenditure model to an operating expenditure model, paying only for what is used. Understanding the Total Cost of Ownership (TCO) is essential for making informed decisions when migrating workloads to Azure. By thoroughly evaluating all cost components, including infrastructure, operational, facilities, licensing and migration costs, organizations can optimize their cloud strategy and achieve financial efficiencies. Utilize tools like the Azure Pricing Calculator and Azure Migrate to gain comprehensive insights and ensure a smooth transition to the cloud.16KViews0likes2CommentsNews and updates from FinOps X 2024: How Microsoft is empowering organizations
Last year, I shared a broad set of updates that showcased how Microsoft is embracing FinOps practitioners through education, product improvements, and innovative solutions that help organizations achieve more. with AI-powered experiences like Copilot and Microsoft Fabric. Whether you’re an engineer working in the Azure portal or part of a business or finance team collaborating in Microsoft 365 or analyzing data in Power BI, Microsoft Cloud has the tools you need to accelerate business value for your cloud investments.11KViews8likes0CommentsFOCUS: An open specification for cloud cost transparency
When it comes to FinOps, the data is of the utmost importance. Data is the key to understanding your cloud cost and usage patterns, and pivotal to making smart decisions about your cloud strategy and operations. This is why Microsoft is proud to be a founding member of the FinOps Open Cost and Usage Specification (FOCUS) project and why we’re dedicated to defining and evolving the specification alongside our customers, partners, and industry peers. And with FOCUS 1.0 support in Cost Management exports being announced at FinOps X 2024, you may be wondering what FOCUS is, why you should care, and where to get started. Look no further. I’ll give you a crash course in FOCUS 1.0.6KViews2likes0CommentsMoving from FOCUS 1.0 preview to FOCUS 1.0
Using FOCUS 1.0 preview in Cost Management already? Curious about what's changed in the 1.0 release? We've got you covered! Read on to learn about the changes to regions, cost, usage, and charge categorization in the latest FOCUS release.1.9KViews2likes0Comments