azure functions
332 TopicsExpanding the Public Preview of the Azure SRE Agent
We are excited to share that the Azure SRE Agent is now available in public preview for everyone instantly – no sign up required. A big thank you to all our preview customers who provided feedback and helped shape this release! Watching teams put the SRE Agent to work taught us a ton, and we’ve baked those lessons into a smarter, more resilient, and enterprise-ready experience. You can now find Azure SRE Agent directly in the Azure Portal and get started, or use the link below. 📖 Learn more about SRE Agent. 👉 Create your first SRE Agent (Azure login required) What’s New in Azure SRE Agent - October Update The Azure SRE Agent now delivers secure-by-default governance, deeper diagnostics, and extensible automation—built for scale. It can even resolve incidents autonomously by following your team’s runbooks. With native integrations across Azure Monitor, GitHub, ServiceNow, and PagerDuty, it supports root cause analysis using both source code and historical patterns. And since September 1, billing and reporting are available via Azure Agent Units (AAUs). Please visit product documentation for the latest updates. Here are a few highlights for this month: Prioritizing enterprise governance and security: By default, the Azure SRE Agent operates with least-privilege access and never executes write actions on Azure resources without explicit human approval. Additionally, it uses role-based access control (RBAC) so organizations can assign read-only or approver roles, providing clear oversight and traceability from day one. This allows teams to choose their desired level of autonomy from read-only insights to approval-gated actions to full automation without compromising control. Covering the breadth and depth of Azure: The Azure SRE Agent helps teams manage and understand their entire Azure footprint. With built-in support for AZ CLI and kubectl, it works across all Azure services. But it doesn’t stop there—diagnostics are enhanced for platforms like PostgreSQL, API Management, Azure Functions, AKS, Azure Container Apps, and Azure App Service. Whether you're running microservices or managing monoliths, the agent delivers consistent automation and deep insights across your cloud environment. Automating Incident Management: The Azure SRE Agent now plugs directly into Azure Monitor, PagerDuty, and ServiceNow to streamline incident detection and resolution. These integrations let the Agent ingest alerts and trigger workflows that match your team’s existing tools—so you can respond faster, with less manual effort. Engineered for extensibility: The Azure SRE Agent incident management approach lets teams reuse existing runbooks and customize response plans to fit their unique workflows. Whether you want to keep a human in the loop or empower the Agent to autonomously mitigate and resolve issues, the choice is yours. This flexibility gives teams the freedom to evolve—from guided actions to trusted autonomy—without ever giving up control. Root cause, meet source code: The Azure SRE Agent now supports code-aware root cause analysis (RCA) by linking diagnostics directly to source context in GitHub and Azure DevOps. This tight integration helps teams trace incidents back to the exact code changes that triggered them—accelerating resolution and boosting confidence in automated responses. By bridging operational signals with engineering workflows, the agent makes RCA faster, clearer, and more actionable. Close the loop with DevOps: The Azure SRE Agent now generates incident summary reports directly in GitHub and Azure DevOps—complete with diagnostic context. These reports can be assigned to a GitHub Copilot coding agent, which automatically creates pull requests and merges validated fixes. Every incident becomes an actionable code change, driving permanent resolution instead of temporary mitigation. Getting Started Start here: Create a new SRE Agent in the Azure portal (Azure login required) Blog: Announcing a flexible, predictable billing model for Azure SRE Agent Blog: Enterprise-ready and extensible – Update on the Azure SRE Agent preview Product documentation Product home page Community & Support We’d love to hear from you! Please use our GitHub repo to file issues, request features, or share feedback with the team1.6KViews1like0CommentsOpenAI Agent SDK Integration with Azure Durable Functions
Picture this: Your agent authored with the OpenAI Agent SDK is halfway through analyzing 10,000 customer reviews when it hits a rate limit and dies. All that progress? Gone. Your multi-agent workflow that took 30 minutes to orchestrate? Back to square one because of a rate limit throttle. If you've deployed AI agents in production, you probably know this frustration first-hand. Today, we're announcing a solution that makes your agents reliable: OpenAI Agent SDK Integration with Azure Durable Functions. This integration provides automatic state persistence, enabling your agents to survive any failure and continue exactly where they stopped. No more lost progress, no more starting over, just reliable agents that work. The Challenge with AI Agents Building AI agents that work reliably in production environments has proven to be one of the most significant challenges in modern AI development. As agent sophistication increases with complex workflows involving multiple LLM calls, tool executions, and agent hand-offs, the likelihood of encountering failures increases. This creates a fundamental problem for production AI systems where reliability is essential. Common failure scenarios include: Rate Limiting: Agents halt mid-process when hitting API rate limits during LLM calls Network Timeouts: workflows terminate due to connectivity issues System Crashes: Multi-agent systems fail when individual components encounter errors State Loss: Complex workflows restart from the beginning after any interruption Traditional approaches force developers to choose between building complex retry logic with significant code changes or accepting unreliable agent behavior. Neither option is suitable for production-grade AI systems that businesses depend on and that’s why we’re introducing this integration. Key Benefits of the OpenAI Agent SDK Integration with Azure Durable Functions Our solution leverages durable execution value propositions to address these reliability challenges while preserving the familiar OpenAI Agents Python SDK developer experience. The integration enables agent invocations hosted on Azure Functions to run within durable orchestration contexts where both agent LLM calls and tool calls are executed as durable operations. This integration delivers significant advantages for production AI systems such as: Enhanced Agent Resilience- Built-in retry mechanisms for LLM calls and tool executions enable agents to automatically recover from failures and continue from their last successful step Multi-Agent Orchestration Reliability- Individual agent failures don't crash entire multi-agent workflows, and complex orchestrations maintain state across system restarts Built-in Observability- Monitor agent progress through the Durable Task Scheduler dashboard with enhanced debugging and detailed execution tracking (only applicable when using the Durable Task Scheduler as the Durable Function backend). Seamless Developer Experience- Keep using the OpenAI Agents SDK interface you already know with minimal code changes required to add reliability Distributed Compute and Scalability – Agent workflow automatically scale across multiple compute instances. Core Integration Components: These powerful capabilities are enabled through just a few simple additions to your AI application: durable_openai_agent_orchestrator: Decorator that enables durable execution for agent invocations run_sync: Uses an existing OpenAI Agents SDK API that executes your agent with built-in durability create_activity_tool: Wraps tool calls as durable activities with automatic retry capabilities State Persistence: Maintains agentic workflow state across failures and restarts Hello World Example Let's see how this works in practice. Here's what code written using the OpenAI Agent SDK looks like: import asyncio from agents import Agent, Runner async def main(): agent = Agent( name="Assistant", instructions="You only respond in haikus.", ) result = await Runner.run(agent, "Tell me about recursion in programming.") print(result.final_output) With our added durable integration, it becomes: from agents import Agent, Runner @app.orchestration_trigger(context_name="context") @app.durable_openai_agent_orchestrator # Runs the agent invocation in the context of a durable orchestration def hello_world(context): agent = Agent( name="Assistant", instructions="You only respond in haikus.", ) result = Runner.run_sync(agent, "Tell me about recursion in programming.") # Provides synchronous execution with built-in durability return result.final_output rable Task Scheduler dashboard showcasing the agent LLM call as a durable operation Notice how little actually changed. We added app.durable_openai_agent_orchestrator decorator but your core agent logic stays the same. The run_sync* method provides execution with built-in durability, enabling your agents to automatically recover from failures with minimal code changes. When using the Durable Task Scheduler as your Durable Functions backend, you gain access to a detailed monitoring dashboard that provides visibility into your agent executions. The dashboard displays detailed inputs and outputs for both LLM calls and tool invocations, along with clear success/failure indicators, making it straightforward to diagnose and troubleshoot any unexpected behavior in your agent processes. A note about 'run_sync' In Durable Functions, orchestrators don’t usually benefit from invoking code asynchronously because their role is to define the workflow—tracking state, scheduling activities, and so on—not to perform actual work. When you call an activity, the framework records the decision and suspends the orchestrator until the result is ready. For example, when you call run_sync, the deterministic part of the call completes almost instantly, and the LLM call activity is scheduled for asynchronous execution. Adding extra asynchronous code inside the orchestrator doesn’t improve performance; it only breaks determinism and complicates replay. Reliable Tool Invocation Example For agents requiring tool interactions, there are two implementation approaches. The first option uses the @function_tool decorator from the OpenAI Agent SDK, which executes directly within the context of the durable orchestration. When using this approach, your tool functions must follow durable functions orchestration deterministic constraints. Additionally, since these functions run within the orchestration itself, they may be replayed as part of normal operations, making cost-conscious implementation necessary. from agents import Agent, Runner, function_tool class Weather(BaseModel): city: str temperature_range: str conditions: str @function_tool def get_weather(city: str) -> Weather: """Get the current weather information for a specified city.""" print("[debug] get_weather called") return Weather( city=city, temperature_range="14-20C", conditions="Sunny with wind." ) @app.orchestration_trigger(context_name="context") @app.durable_openai_agent_orchestrator def tools(context): agent = Agent( name="Hello world", instructions="You are a helpful agent.", tools=[get_weather], ) result = Runner.run_sync(agent, input="What's the weather in Tokyo?") return result.final_output The second approach uses the create_activity_tool function, which is designed for non-deterministic code or scenarios where rerunning the tool is expensive (in terms of performance or cost). This approach executes the tool within the context of a durable orchestration activity, providing enhanced monitoring through the Durable Task Scheduler dashboard and ensuring that expensive operations are not unnecessarily repeated during orchestration replays. from agents import Agent, Runner, function_tool class Weather(BaseModel): city: str temperature_range: str conditions: str @app.orchestration_trigger(context_name="context") @app.durable_openai_agent_orchestrator def weather_expert(context): agent = Agent( name="Hello world", instructions="You are a helpful agent.", tools=[ context.create_activity_tool(get_weather) ], ) result = Runner.run_sync(agent, "What is the weather in Tokio?") return result.final_output @app.activity_trigger(input_name="city") async def get_weather(city: str) -> Weather: weather = Weather( city=city, temperature_range="14-20C", conditions="Sunny with wind." ) return weather Leveraging Durable Functions Stateful App Patterns Beyond basic durability of agents, this integration provides access to the full Durable Functions orchestration context, enabling developers to implement sophisticated stateful application patterns when needed, such as: External Event Handling: Use context.wait_for_external_event() for human approvals, external system callbacks, or time-based triggers Fan-out/Fan-in: Coordinate multiple tasks (including sub orchestrations invoking agents) in parallel. Long-running Workflows: Implement workflows that span hours, days, or weeks with persistent state Conditional Logic: Build dynamic agent workflows based on runtime decisions and external inputs Human Interaction and Approval Workflows Example For scenarios requiring human oversight, you can leverage the orchestration context to implement approval workflows: .durable_openai_agent_orchestrator def agent_with_approval(context): # Run initial agent analysis agent = Agent(name="DataAnalyzer", instructions="Analyze the provided dataset") initial_result = Runner.run_sync(agent, context.get_input()) # Wait for human approval before proceeding approval_event = context.wait_for_external_event("approval_received") if approval_event.get("approved"): # Continue with next phase final_agent = Agent(name="Reporter", instructions="Generate final report") final_result = Runner.run_sync(final_agent, initial_result.final_output) return final_result.final_output else: return "Workflow cancelled by user" This flexibility allows you to build sophisticated agentic applications that combine the power of AI agents with enterprise-grade workflow orchestration patterns, all while maintaining the familiar OpenAI Agents SDK experience. Get Started Today This article only scratches the surface of what's possible with the OpenAI Agent SDK integration for Durable Functions The combination of familiar OpenAI Agents SDK patterns with added reliability opens new possibilities for building sophisticated AI systems that can handle real-world production workloads. The integration is designed for a smooth onboarding experience. Begin by selecting one of your existing agents and applying the transformation patterns demonstrated above (often requiring just a few lines of code changes). Documentation: https://aka.ms/openai-agents-with-reliability-docs Sample Applications: https://aka.ms/openai-agents-with-reliability-samples1KViews2likes2CommentsHow to connect Azure SQL database from Python Function App using managed identity or access token
This blog will demonstrate on how to connect Azure SQL database from Python Function App using managed identity or access token. If you are looking for how to implement it in Windows App Service, you may refer to this post: https://techcommunity.microsoft.com/t5/apps-on-azure-blog/how-to-connect-azure-sql-database-from-azure-app-service-windows/ba-p/2873397. Note that Azure Active Directory managed identity authentication method was added in ODBC Driver since version 17.3.1.1 for both system-assigned and user-assigned identities. In Azure blessed image for Python Function, the ODBC Driver version is 17.8. Which makes it possible to leverage this feature in Linux App Service. Briefly, this post will provide you a step to step guidance with sample code and introduction on the authentication workflow. Steps: 1. Create a Linux Python Function App from portal 2. Set up the managed identity in the new Function App by enable Identity and saving from portal. It will generate an Object(principal) ID for you automatically. 3. Assign role in Azure SQL database. Search for your own account and save as admin. Note: Alternatively, you can search for the function app's name and set it as admin, then that function app would own admin permission on the database and you can skip step 4 and 5 as well. 4. Got to Query editor in database and be sure to login using your account set in previous step rather than username and password. Or step 5 will fail with below exception. "Failed to execute query. Error: Principal 'xxxx' could not be created. Only connections established with Active Directory accounts can create other Active Directory users." 5. Run below queries to create user for the function app and alter roles. You can choose to alter part of these roles per your demand. CREATE USER "yourfunctionappname" FROM EXTERNAL PROVIDER; ALTER ROLE db_datareader ADD MEMBER "yourfunctionappname" ALTER ROLE db_datawriter ADD MEMBER "yourfunctionappname" ALTER ROLE db_ddladmin ADD MEMBER "yourfunctionappname" 6. Leverage below sample code to build your own project and deploy to the function app. Sample Code: Below is the sample code on how to use Azure access token when run it from local and use managed identity when run in Function app. The token part needs to be replaced with your own. Basically, it is using "pyodbc.connect(connection_string+';Authentication=ActiveDirectoryMsi')" to authenticate with managed identity. Also, "MSI_SECRET" is used to tell if we are running it from local or function app, it will be created automatically as environment variable when the function app is enabled with Managed Identity. The complete demo project can be found from: https://github.com/kevin808/azure-function-pyodbc-MI import logging import azure.functions as func import os import pyodbc import struct def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') server="your-sqlserver.database.windows.net" database="your_db" driver="{ODBC Driver 17 for SQL Server}" query="SELECT * FROM dbo.users" # Optional to use username and password for authentication # username = 'name' # password = 'pass' db_token = '' connection_string = 'DRIVER='+driver+';SERVER='+server+';DATABASE='+database #When MSI is enabled if os.getenv("MSI_SECRET"): conn = pyodbc.connect(connection_string+';Authentication=ActiveDirectoryMsi') #Used when run from local else: SQL_COPT_SS_ACCESS_TOKEN = 1256 exptoken = b'' for i in bytes(db_token, "UTF-8"): exptoken += bytes({i}) exptoken += bytes(1) tokenstruct = struct.pack("=i", len(exptoken)) + exptoken conn = pyodbc.connect(connection_string, attrs_before = { SQL_COPT_SS_ACCESS_TOKEN:tokenstruct }) # Uncomment below line when use username and password for authentication # conn = pyodbc.connect('DRIVER='+driver+';SERVER='+server+';DATABASE='+database+';UID='+username+';PWD='+ password) cursor = conn.cursor() cursor.execute(query) row = cursor.fetchone() while row: print(row[0]) row = cursor.fetchone() return func.HttpResponse( 'Success', status_code=200 ) Workflow: Below are the workflow in these two authentication ways, with them in mind, we can understand what happened under the hood. Managed Identity: When we enable the managed identify for function app, a service principal will be generated automatically for it, then it follows the same steps as below to authenticate in database. Function App with managed identify -> send request to database with service principal -> database check the corresponding database user and its permission -> Pass authentication. Access Token: The access toke can be generated by executing ‘az account get-access-token --resource=https://database.windows.net/ --query accessToken’ from local, we then hold this token to authenticate. Please note that the default lifetime for the token is one hour, which means we would need to retrieve it again when it expires. az login -> az account get-access-token -> local function use token to authenticate in SQL database -> DB check if the database user exists and if the permissions granted -> Pass authentication. Thanks for reading. I hope you enjoy it.54KViews6likes18CommentsBlogsite AI Voice Answer machine
Hi all, I wanted to quickly to write to show how I thought about building a system based on Azure to allow my blogsite to answer questions about a blog post that a reader may suddenly have in their mind while reading through the post to extend learning. The basic flow is: -User loads a blog post -On load, the page populates 3 buttons a third of the way in the page, each with randomly AI generated questions related to the page that a reader might ask about the page content -On clicking a button, the question is answered through voice, with the answer being 'just' enough to answer the question without being over-bearing (at least that's my feeling!) The architecture is constructed as the following: I wrote in full on how I did this for my blog here : https://www.imaginarium.dev/voice-ai-for-blog/ I wanted to perhaps hear on if I was missing anything here on the design, security considerations particularly on the Azure side? Any ways to improve on the AI Voice implementation? I'm using the Azure OpenAI neural voices at the moment. Gemini voices lately are really good too!! I even thought about using a custom neural voice of my own but I ran into issues when trying to do that within Azure due to not having an enterprise subscription readily available to be allowed this capability. Thoughts?179Views0likes2CommentsWhat's the secret sauce for getting Functions API to work with static web site?
I'm brand new, got my first Azure static web site up and running so that's good! Now I need to create some images in code and that's fighting me tooth and nail. The code to generate the image looks like this: using Microsoft.Azure.Functions.Worker; using Microsoft.Azure.Functions.Worker.Http; using Microsoft.Extensions.Logging; using SkiaSharp; using System.Diagnostics; using System.IO; using System.Net; namespace Api { public class GenerateImage { private readonly ILogger _logger; public GenerateImage(ILoggerFactory loggerFactory) { Debug.WriteLine($"GenerateImage.GenerateImage()"); _logger = loggerFactory.CreateLogger<GenerateImage>(); } // http://localhost:7071/api/image/124 works [Function("GenerateImage")] public HttpResponseData Run( [HttpTrigger(AuthorizationLevel.Anonymous, "get", Route = "image/{id}")] HttpRequestData req, string id) { int width = 200, height = 100; Debug.WriteLine($"GenerateImage.Run() [id={id}]"); using var bitmap = new SKBitmap(width, height); using var canvas = new SKCanvas(bitmap); canvas.Clear(SKColors.LightBlue); var paint = new SKPaint { Color = SKColors.Black, TextSize = 24, IsAntialias = true }; canvas.DrawText($"ID: {id}", 10, 50, paint); using var ms = new MemoryStream(); bitmap.Encode(ms, SKEncodedImageFormat.Png, 100); ms.Position = 0; var response = req.CreateResponse(HttpStatusCode.OK); response.Headers.Add("Content-Type", "image/png"); response.Headers.Add("Cache-Control", "public, max-age=86400"); // 1 day // response.Body = ms; ms.CopyTo(response.Body); return response; } } } and if I navigate to http://localhost:7071/api/image/124 (for example) it happily generates an image with the number 124 in it. But if I add the HTML tag <img src="/api/image/123" alt="Generated Image"> to one of my other web pages, it says there's no such page. Apparently this is because my web pages are coming from my web site and it's at https://localhost:7154 and it doesn't know how to contact the Functions API. My staticwebapp.config.json looks like this: { "routes": [ { "route": "/api/*", "allowedRoles": [ "anonymous" ] } ], "navigationFallback": { "rewrite": "/index.html", "exclude": [ "/api/*" ] } } What am I missing?55Views0likes1CommentAnnouncing Early Preview: BYO Remote MCP Server on Azure Functions
If you’ve already built Model Context Protocol (MCP) servers with the MCP SDKs and wished you could turn them into world class Remote MCP servers using a hyperscale, serverless platform, then this one’s for you! We’ve published samples showing how to host bring‑your-own (BYO) Remote MCP servers on Azure Functions, so you can run the servers you’ve already built with the MCP SDKs—Python, Node, and .NET—with minimal changes and full serverless goodness. Why this is exciting Keep your code. If you’ve already implemented servers with the MCP SDKs (Python, Node, .NET), deploy them to Azure Functions as remote MCP servers with just one line of code change. Serverless scale when you need it. Functions on the Flex Consumption plan handles bursty traffic, scales out and back to zero automatically, and gives you serverless billing. Secure by default. Your remote server endpoint is protected with function keys out-of- the-box, with option to layer on Azure API Management for added authorization flow. BYO vs. Functions Remote MCP extension—pick the path that fits The BYO option complements the existing Azure Functions MCP extension: Build and host with Functions MCP extension: You can build stateful MCP servers with the MCP tool trigger and binding and host them on Functions. Support for SSE is available today with streamable HTTP coming soon. Host BYO remote MCP Server (this announcement): If you already have a server built with the MCP SDKs, or you prefer those SDKs’ ergonomics, host it as‑is on Functions and keep your current codebase. Either way, you benefit from Functions’ serverless platform: secure access & auth, burst scale, event-driven scale from 0 to N, and pay-for-what-you‑use. What’s supported in this early preview Servers built with the Python, Node, and .NET SDKs Debug locally with func start on Visual Studio or Visual Studio Code; deploy with the Azure Developer CLI (azd up) to get your remote MCP server quickly deployed to Azure Functions Stateless servers using the streamable HTTP transport, with guidance coming soon for stateful servers Hosting on Flex Consumption plan Try it now! Python: https://github.com/Azure-Samples/mcp-sdk-functions-hosting-python Node: https://github.com/Azure-Samples/mcp-sdk-functions-hosting-node .NET: https://github.com/Azure-Samples/mcp-sdk-functions-hosting-dotnet Each repo includes the sample weather MCP server implemented with the MCP SDK for that language. You’ll find instructions on how to run the server locally with Azure Functions Core Tools and deploy with azd up in minutes. Once deployed, you can connect to the remote server from an MCP client. The samples use Visual Studio Code, but other clients like Claude can also be used. Provide feedback to shape feature Tell us what you need next - identity flows, diagnostics, more languages, or any other features. Your feedback will shape how we take this early preview to the next level!1.3KViews3likes0CommentsAnnouncing a flexible, predictable billing model for Azure SRE Agent
Billing for Azure SRE Agent will start on September 1, 2025. Announced at Microsoft Build 2025, Azure SRE Agent is a pre-built AI agent for root cause analysis, uptime improvement, and operational cost reduction. Learn more about the billing model and example scenarios.2.7KViews1like1Comment🚀 New in Azure API Management: MCP in v2 SKUs + external MCP-compliant server support
Your APIs are becoming tools. Your users are becoming agents. Your platform needs to adapt. Azure API Management is becoming the secure, scalable control plane for connecting agents, tools, and APIs — with governance built in. -------------------------------------------------------------------------------------------------------------------------------------------------------------------- Today, we’re announcing two major updates to bring the power of the Model Context Protocol (MCP) in Azure API Management to more environments and scenarios: MCP support in v2 SKUs — now in public preview Expose existing MCP-compliant servers through API Management These features make it easier than ever to connect APIs and agents with enterprise-grade control—without rewriting your backends. Why MCP? MCP is an open protocol that enables AI agents—like GitHub Copilot, ChatGPT, and Azure OpenAI—to discover and invoke APIs as tools. It turns traditional REST APIs into structured, secure tools that agents can call during execution — powering real-time, context-aware workflows. Why API Management for MCP? Azure API Management is the single, secure control plane for exposing and governing MCP capabilities — whether from your REST APIs, Azure-hosted services, or external MCP-compliant runtimes. With built-in support for: Security using OAuth 2.1, Microsoft Entra ID, API keys, IP filtering, and rate limiting. Outbound token injection via Credential Manager with policy-based routing. Monitoring and diagnostics using Azure Monitor, Logs, and Application Insights. Discovery and reuse with Azure API Center integration. Comprehensive policy engine for request/response transformation, caching, validation, header manipulation, throttling, and more. …you get end-to-end governance for both inbound and outbound agent interactions — with no new infrastructure or code rewrites. ✅ What’s New? 1. MCP support in v2 SKUs Previously available only in classic tiers (Basic, Standard, Premium), MCP support is now in public preview for v2 SKUs — Basic v2, Standard v2, and Premium v2 — with no pre-requisites or manual enablement required. You can now: Expose any REST API as an MCP server in v2 SKUs Protect it with Microsoft Entra ID, keys or tokens Register tools in Azure API Center 2. Expose existing MCP-compliant servers (pass-through scenario) Already using tools hosted in Logic Apps, Azure Functions, LangChain or custom runtimes? Now you can govern those external tool servers by exposing them through API Management. Use API Management to: Secure external MCP servers with OAuth, rate limits, and Credential Manager Monitor and log usage with Azure Monitor and Application Insights Unify discovery with internal tools via Azure API Center 🔗 You bring the tools. API Management brings the governance. 🧭 What’s Next We’re actively expanding MCP capabilities in API Management: Tool-level access policies for granular governance Support for MCP resources and prompts to expand beyond tools 📚 Get Started 📘 Expose APIs as MCP servers 🌐 Connect external MCP servers 🔐 Secure access to MCP servers 🔎 Discover tools in API Center Summary Azure API Management is your single control plane for agents, tools and APIs — whether you're building internal copilots or connecting external toolchains. This preview unlocks more flexibility, less friction, and a secure foundation for the next wave of agent-powered applications. No new infrastructure. Secure by default. Built for the future.2.5KViews2likes3Comments