azure blob
50 TopicsBuilding a Scalable Web Crawling and Indexing Pipeline with Azure storage and AI Search
In the ever-evolving world of data management, keeping search indexes up-to-date with dynamic data can be challenging. Traditional approaches, such as manual or scheduled indexing, are resource-intensive, delay-prone, and difficult to scale. Azure Blob Trigger combined with an AI Search Indexer offers a cutting-edge solution to overcome these challenges, enabling real-time, scalable, and enriched data indexing. This blog explores how Blob Trigger, integrated with Azure Cognitive Search, transforms the indexing process by automating workflows and enriching data with AI capabilities. It highlights the step-by-step process of configuring Blob Storage, creating Azure Functions for triggers, and seamlessly connecting with an AI-powered search index. The approach leverages Azure's event-driven architecture, ensuring efficient and cost-effective data management.1.8KViews7likes10CommentsMigrate the critical file data you need to power your applications
When you migrate applications to Azure, you cannot leave file data behind. The Azure File Migration program can help you migrate data from NFS, SMB, and S3 sources to Azure Storage Services in less time, less risk, and no headache! Learn how to take advantage of this program and about the fundamentals of file migration in this post.16KViews6likes8CommentsHybrid File Tiering Addresses Top CIO Priorities of Risk Control and Cost Optimization
Hybrid File Tiering addresses top CIO priorities of risk control and cost optimization This article describes how you can leverage Komprise Intelligent Tiering for Azure with any on-premises file storage platform and Azure Blob Storage to reduce your cost by 70% and shrink your ransomware attack surface. Note: This article has been co-authored by Komprise and Microsoft. Unstructured data plays a big role in today's IT budgets and risk factors Unstructured data, which is any data that does not fit neatly into a database or tabular format, has been growing exponentially and is now projected by analysts to be over 80% of business information. Unstructured data is commonly referred to as file data, which is the terminology used for the rest of this article. File data has caught some IT leaders by surprise because it is now consuming a significant portion of IT budgets with no sign of slowing down. File data is expensive to manage and retain because it is typically stored and protected by replication to an identical storage platform which can be very expensive at scale. We will now review how you can easily identify hot and cold data and transparently tier cold files to Azure to cut costs and shrink ransomware exposure with Komprise. Why file data is factoring into CIO priorities CIOs are prioritizing cost optimization, risk management and revenue improvement as key priorities for their data. 56% chose cost optimization as their top priority according to the 2024 Komprise State of Unstructured Data Management survey. This is because file data is often retained for decades, its growth rate is in double-digits, and it can easily be petabytes of data. Keeping a primary copy, a backup copy and a DR copy means three or more copies of the large volume of file data which becomes prohibitively expensive. On the other hand, file data has largely been untapped in terms of value, but businesses are now realizing the importance of file data to train and fine tune AI models. Smart solutions are required to balance these competing requirements. Why file data is vulnerable to ransomware attacks File data is arguably the most difficult data to protect against ransomware attacks because it is open to many different users, groups and applications. This increases risk because a single user's or group's mistake can lead to a ransomware infection. If the file is shared and accessed again, the infection can quickly spread across the network undetected. As ransomware lurks, the risk increases. For these reasons, you cannot ignore file data when creating a ransomware defense strategy. How to leverage Azure to cut the cost and inherent risk of file data retention You can cut costs and shrink the ransomware attack surface of file data using Azure even when you still require on-premises access to your files. The key is reducing the amount of file data that is actively accessed and thus exposed to ransomware attacks. Since 80% of file data is typically cold and has not been accessed in months (see Demand for cold data storage heats up | TechTarget), transparently offloading these files to immutable storage through hybrid tiering cuts both costs and risks. Hybrid tiering offloads entire files from the data storage, snapshot, backup and DR footprints while your users continue to see and access the tiered files without any change to your application processes or user behavior. Unlike storage tiering which is typically offered by the storage vendor and causes blocks of files to be controlled by the storage filesystem to be placed in Azure, hybrid tiering operates at the file level and transparently offloads the entire file to Azure while leaving behind a link that looks and behaves like the file itself. Hybrid tiering offloads cold files to Azure to cut costs and shrink the ransomware attack surface: Cut 70%+ costs: By offloading cold files and not blocks, hybrid tiering can shrink the amount of data you are storing and backing up by 80%, which cuts costs proportionately. As shown in the example below, you can cut 70% of file storage and backup costs by using hybrid tiering. Assumptions Amount of Data on NAS (TB) 1024 % Cold Data 80% Annual Data Growth Rate 30% On-Prem NAS Cost/GB/Mo $0.07 Backup Cost/GB/Mo $0.04 Azure Blob Cool Cost/GB/Mo $0.01 Komprise Intelligent Tiering for Azure/GB/Mo $0.008 On-Prem NAS On-prem NAS + Azure Intelligent Tiering Data in On-Premises NAS 1024 205 Snapshots 30% 30% Cost of On-Prem NAS Primary Site $1,064,960 $212,992 Cost of On-Prem NAS DR Site $1,064,960 $212,992 Backup Cost $460,800 $42,598 Data on Azure Blob Cool $0 819 Cost of Azure Blob Cool $0 $201,327 Cost of Komprise $100,000 Total Cost for 1PB per Year $2,590,720 $769,909 SAVINGS/PB/Yr $1,820,811 70% Shrink ransomware attack surface by 80%: Offloading cold files to immutable Azure Blob removes cold files from the active attack surface thus eliminating 80% of the storage, DR and backup costs while also providing a potential recovery path if the cold files get infected. By having Komprise tier to immutable Azure Blob with versioning, even if someone tried to infect a cold file, it would be saved as a new version – enabling recovery using an older version. Learn more about Azure Immutable Blob storage here. In addition to cost savings and improved ransomware defense, the benefits of Hybrid Cloud Tiering using Komprise and Azure are: Leverage Existing Storage Investment: You can continue to use your existing NAS storage and Komprise to tier cold files to Azure. Users and applications continue to see and access the files as if they were still on-premises. Leverage Azure Data Services: Komprise maintains file-object duality with its patented Transparent Move Technology (TMT), which means the tiered files can be viewed and accessed in Azure as objects, allowing you to use Azure Data Services natively. This enables you to leverage the full power of Azure with your enterprise file data. Works Across Heterogeneous Vendor Storage: Komprise works across all your file and object storage to analyze and transparently tier data to Azure file and object tiers. Ongoing Lifecycle Management in Azure: Komprise continues to manage data lifecycle in Azure, so as data gets colder, it can move from Azure Blob Cool to Cold to Archive tier based on policies you control. Azure and Komprise customers are already using hybrid tiering to improve their ransomware posture while reducing costs – a great example is Katten. Global law firm saves $900,000 per year and achieves resilient ransomware defense with Komprise and Azure Katten Muchin Rosenman LLP (Katten) is a full-service law firm delivering legal services across more than a dozen practice areas and sectors, including Aviation, Construction, Energy, Education, Entertainment, Healthcare and Real Estate. Like many other large law firms, Katten has been seeing an average 20% annual growth in storage for file related data, resulting in the need to add on-premises storage capacity every 12-18 months. With a focus on managing data storage costs in an environment where data is growing exponentially annually but cannot be deleted, Katten needed a solution that could provide deep data insights and the ability to move file data as it ages to immutable object storage in the cloud for greater cost savings and ransomware protection. Katten Law implemented hybrid tiering using Komprise Intelligent Tiering to Azure and leveraged Immutable Blob storage to not only save $900,000 annually but also improved their ransomware defense posture. Read how Katten Law does hybrid tiering to Azure using Komprise. Summary: Hybrid Tiering helps CIOs to optimize file costs and cut ransomware risks Cost optimization and Risk management are top CIO priorities. File data is a major contributor to both costs and ransomware risks. Organizations are leveraging Komprise to tier cold files to Azure while continuing to use their on-premises file storage NAS. This provides a low risk approach with no disruption to users and apps while cutting 70% costs and shrinking the ransomware attack surface by 80%. Next steps To learn more and get a customized assessment of your savings, visit the Azure Marketplace listing or contact azure@komprise.com.696Views3likes1CommentPublic Preview: Use Azure Blob Storage on Windows as a file share using Network File System(NFS) 3.0
Azure Blob Storage team is announcing the Public Preview of the capability to use Blob storage on Windows using Network File System (NFS) 3.0 protocol, while capability to access Blob Storage using NFS on Linux is generally available (GA).5.8KViews3likes2CommentsProtect your Storage accounts using network security perimeter - now generally available
We are excited to announce the general availability of network security perimeter support for Azure Storage accounts. A network security perimeter allows organizations to define a logical network isolation boundary for Platform-as-a-Service (PaaS) resources like Azure Storage accounts that are deployed outside your organization’s virtual networks. This restricts public network access to PaaS resources by default and provides secure communication between resources within the perimeter. Explicit inbound and outbound rules allow access to authorized resources. Securing data within storage accounts requires a multi-layered approach, encompassing network access controls, authentication, and authorization mechanisms. Network access controls for storage accounts can be defined into two broad categories - access from PaaS resources and from all other resources. For access from PaaS resources, organizations can leverage either broad controls through Azure “trusted services” or granular access using resource instance rul es. For other resources, access control may involve IP-based firewall rules, allowing virtual network access, or by enabling private endpoints. However, the complexity of managing all these can pose significant challenges when scaled across large enterprises. Misconfigured firewalls, public network exposure on storage accounts, or excessively permissive policies heighten the risk of data exfiltration. It is often challenging to audit these risks at the application or storage account level, making it difficult to identify open exfiltration paths throughout all PaaS resources in an environment. Network security perimeters offer an effective solution to these concerns. First, by grouping assets such as Azure Key Vault and Azure Monitor in the same perimeter as your storage accounts, communications between these resources are secured while disabling public access by default, thereby preventing data exfiltration to unauthorized destinations. Then, they centralize the management of network access controls across numerous PaaS resources at scale by providing a single pane of glass. This approach promotes consistency in settings and reduces administrative overhead, thereby minimizing potential for configuration errors. Additionally, they provide comprehensive control over both inbound and outbound access across all the associated PaaS resources to authorized resources. How do network security perimeters protect Azure Storage Accounts? Network security perimeters support granular resource access using profiles. All inbound and outbound rules are defined on a profile, and the profile can be applied to single or multiple resources within the perimeter. Network security perimeters provide two primary operating modes: “Transition” mode (formerly referred to as “Learning” mode) and “Enforced” mode. “Transition” mode acts as an initial phase when onboarding a PaaS resource into any network security perimeter. When combined with logging, this mode enables you to analyze current access patterns without disrupting existing connectivity. “Enforced” mode is when are all defined perimeter rules replace all resource specific rules except private end points. After analyzing logs in “Transition” mode, you can tweak your perimeter rules as necessary and then switch to “Enforced” mode. Benefits of network security perimeters Secure resource-to-resource communication: Resources in the same perimeter communicate securely, keeping data internal and blocking unauthorized transfers. For example, an application’s storage account and its associated database, when part of the same perimeter can communicate securely. However, all communications from another database outside of the perimeter will be blocked to the storage account. Centralized network isolation Administrators can manage firewall and resource access policies centrally in network security perimeters across all their PaaS resources in a single pane of glass, streamlining operations and minimizing errors. Prevent data exfiltration: Centralized access control and logging of inbound and outbound network access attempts across all resources within a perimeter enables comprehensive visibility for compliance and auditing purposes and helps address data exfiltration. Seamless integration with existing Azure features: Network security perimeter works in conjunction with private endpoints by allowing Private endpoint traffic to storage accounts within a perimeter There is no additional cost to using network security perimeter. Real-world customer scenarios Let us explore how network security perimeters specifically strengthen the security and management of Azure Storage accounts through common applications. Create a Secure Boundary for Storage Accounts A leading financial organization sought to enhance the protection of sensitive client data stored in Azure Storage accounts. The company used Azure Monitor with a Log Analytics workspace to collect and centralize logs from all storage accounts, enabling constant monitoring and alerts for suspicious activity. This supported compliance and rapid incident response. They also used Azure Key Vault to access customer-managed encryption keys. They configured network access controls on each communication path from these resources to the storage account. They disabled public network access and employed a combination of Virtual Network (Vnet), firewall rules, private endpoints, and service endpoints. However, this created a huge overhead that had to be continuously managed as and when additional resources required access to the storage account. To address this, the company implemented network security perimeters, and blocked public and untrusted access to their storage account by default. By placing the specific Azure Key Vault and Log Analytics Workspace within the same network security perimeter as the storage account, the organization achieved a secure boundary around their data in an efficient manner. Additionally, to let an authorized application access this data, they defined an inbound access rule in the profile governing their storage account, thereby restricting access for the application to only the required PaaS resources. Prevent Data Exfiltration from Storage Accounts One of the most dangerous data exfiltration attacks is when an attacker obtains the credentials to a user account with access to an Azure Storage account, perhaps through phishing or credential stuffing. In a traditional setup, this attacker could potentially connect from anywhere on the internet and initiate large-scale data exfiltration to external servers, putting sensitive business or customer information at risk. With network security perimeter in place, however, only resources within perimeter or authorized external resources can access the storage account, drastically limiting the attacker’s options. Even if they have valid credentials, network security perimeter rules block the attacker’s attempts to connect from an unapproved network or unapproved machines within a compromised network. Furthermore, the perimeter enforces strict outbound traffic controls: storage accounts inside the perimeter cannot send data to any external endpoint unless a specific outbound rule permits it. Restricting inbound access and tightly controlling outbound data flows enhances the security of sensitive data in Azure Storage accounts. The presence of robust network access control on top of storage account credentials creates multiple hurdles for attackers to overcome and significantly reduces the risk of both unauthorized access and data exfiltration. Unified Access Management across the entire Storage estate A Large retailer found it difficult to manage multiple Azure Storage accounts. Typically, updating firewall rules or access permissions involved making repeated changes for each account or using complex scripts to automate the process. This approach not only increased the workload but also raised the risk of inconsistent settings or misconfigurations, which could potentially expose data. With network security perimeter, the retailed grouped storage accounts under a perimeter and sometimes using subsets of accounts under different perimeters. For accounts requiring special permissions within a single perimeter, the organization created separate profiles to customize inbound and outbound rules specific to them. Administrators could now define and update access policies at the profile level, with rules immediately enforced across every storage account and other resources associated with the profile. The updates consistently applied to all resources for both blocking public internet access and for allowing specific internal subscriptions, thus reducing gaps and simplifying operations. The network security perimeter also provided a centralized log of all network access attempts on storage accounts, eliminating the need for security teams to pull logs separately from each account. It showed what calls accessed accounts, when, and where, starting immediately after enabling logs in the “Transition” mode, and then continuing into Enforced mode. This streamlined approach enhances the organization’s compliance reporting, accelerated incident response, and improved understanding of information flow across the cloud storage environment. Getting started Explore this Quickstart guide, to implement a network security perimeter and configure the right profiles for your storage accounts. For guidance on usage and limitations related to Storage accounts, refer to the documentation. Network security perimeter does not have additional costs for using it. As you begin, consider which storage accounts to group under a perimeter, and how to segment profiles for special access needs within the perimeter.570Views2likes0Comments