azure app service
452 TopicsAnnouncing the Public Preview of the New App Service Quota Self-Service Experience
Update 10/30/2025: The App Service Quota Self-Service experience is back online after a short period where we were incorporating your feedback and making needed updates. As this is public preview, availability and features are subject to change as we receive and incorporate feedback. What’s New? The updated experience introduces a dedicated App Service Quota blade in the Azure portal, offering a streamlined and intuitive interface to: View current usage and limits across the various SKUs Set custom quotas tailored to your App Service plan needs This new experience empowers developers and IT admins to proactively manage resources, avoid service disruptions, and optimize performance. Quick Reference - Start here! If your deployment requires quota for ten or more subscriptions, then file a support ticket with problem type Quota following the instructions at the bottom of this post. If any subscription included in your request requires zone redundancy (note that most Isolated v2 deployments require ZR), then file a support ticket with problem type Quota following the instructions at the bottom of this post. Otherwise, leverage the new self-service experience to increase your quota automatically. Self-service Quota Requests For non-zone-redundant needs, quota alone is sufficient to enable App Service deployment or scale-out. Follow the provided steps to place your request. 1. Navigate to the Quotas resource provider in the Azure portal 2. Select App Service (Pubic Preview) Navigating the primary interface: Each App Service VM size is represented as a separate SKU. If the intention is to be able to scale up or down within a specific offering (e.g., Premium v3), then equivalent number of VMs need to be requested for each applicable size of that offering (e.g., request 5 instances for both P1v3 and P3v3). As with other quotas, you can filter by region, subscription, provider, or usage. Note that your portal will now show "App Service (Public Preview)" for the Provider name. You can also group the results by usage, quota (App Service VM type), or location (region). Current usage is represented as App Service VMs. This allows you to quickly identify which SKUs are nearing their quota limits. Adjustments can be made inline: no need to visit another page. This is covered in detail in the next section. Total Regional VMs: There is a SKU in each region called Total Regional VMs. This SKU summarizes your usage and available quota across all individual SKUs in that region. There are three key points about using Total Regional VMs. You should never request Total Regional VMs quota directly - it will automatically increase in response to your request for individual SKU quota. If you are unable to deploy a given SKU, then you must request more quota for that SKU to unblock deployment. For your deployment to succeed, you must have sufficient quota in the individual SKU as well as Total Regional VMs. If either usage is at its respective limit, then you will be unable to deploy and must request more of that individual SKU's quota to proceed. In some regions, Total Regional VMs appears as "0 of 0" usage and limit and no individual SKU quotas are shown. This is an indication that you should not interact with the portal to resolve any quota-related issues in this region. Instead, you should try the deployment and observe any error messages that arise. If any error messages indicate more quota is needed, then this must be requested by filing a support ticket with problem type Quota following the instructions at the bottom of this post so that App Service can identify and fix any potential quota issues. In most cases, this will not be necessary, and your deployment will work without requesting quota wherever "0 of 0" is shown for Total Regional VMs and no individual SKU quotas are visible. See the example below: 3. Request quota adjustments Clicking the pen icon opens a flyout window to capture the quota request: The quota type (App Service SKU) is already populated, along with current usage. Note that your request is not incremental: you must specify the new limit that you wish to see reflected in the portal. For example, to request two additional instances of P1v2 VMs, you would file the request like this: Click submit to send the request for automatic processing. How quota approvals work: Immediately upon submitting a quota request, you will see a processing dialog like the one shown: If the quota request can be automatically fulfilled, then no support request is needed. You should receive this confirmation within a few minutes of submission: If the request cannot be automatically fulfilled, then you will be given the option to file a support request with the same information. In the example below, the requested new limit exceeds what can be automatically granted for the region: 4. If applicable, create support ticket When creating a support ticket, you will need to repopulate the Region and App Service plan details; the new limit has already been populated for you. If you forget the region or SKU that was requested, you can reference them in your notifications pane: If you choose to create a support ticket, then you will interact with the capacity management team for that region. This is a 24x7 service, so requests may be created at any time. Once you have filed the support request, you can track its status via the Help + support dashboard. Known issues The self-service quota request experience for App Service is in public preview. Here are some caveats worth mentioning while the team finalizes the release for general availability: Closing the quota request flyout window will stop meaningful notifications for that request. You can still view the outcome of your quota requests by checking actual quota, but if you want to rely on notifications for alerts, then we recommend leaving the quota request window open for the few minutes that it is processing. Some SKUs are not yet represented in the quota dashboard. These will be added later in the public preview. The Activity Log does not currently provide a meaningful summary of previous quota requests and their outcomes. This will also be addressed during the public preview. As noted in the walkthrough, the new experience does not enable zone-redundant deployments. Quota is an inherently regional construct, and zone-redundant enablement requires a separate step that can only be taken in response to a support ticket being filed. Quota API documentation is being drafted to enable bulk non-zone redundant quota requests without requiring you to file a support ticket. Filing a Support Ticket If your deployment requires zone redundancy or contains many subscriptions, then we recommend filing a support ticket with issue type "Technical" and problem type "Quota": We want your feedback! If you notice any aspect of the experience that does not work as expected, or you have feedback on how to make it better, please use the comments below to share your thoughts!3.6KViews3likes5CommentsCall Function App from Azure Data Factory with Managed Identity Authentication
Integrating Azure Function Apps into your Azure Data Factory (ADF) workflows is a common practice. To enhance security beyond the use of function API keys, leveraging managed identity authentication is strongly recommended. Given the fact that many existing guides were outdated with recent updates to Azure services, this article provides a comprehensive, up-to-date walkthrough on configuring managed identity in ADF to securely call Function Apps. The provided methods can also be adapted to other Azure services that need to call Function Apps with managed identity authentication. The high level process is: Enable Managed Identity on Data Factory Configure Microsoft Entra Sign-in on Azure Function App Configure Linked Service in Data Factory Assign Permissions to the Data Factory in Azure Function Step 1: Enable Managed Identity on Data Factory On the Data Factory’s portal, go to Managed Identities, and enable a system assigned managed identity. Step 2: Configure Microsoft Entra Sign-in on Azure Function App 1. Go to Function App portal and enable Authentication. Choose "Microsoft" as the identity provider. 2. Add an app registration to the app, it could be an existing one or you can choose to let the platform create a new app registration. 3. Next, allow the ADF as a client application to authenticate to the function app. This step is a new requirement from previous guides. If these settings are not correctly set, the 403 response will be returned: Add the Application ID of the ADF managed identity in Allowed client application and Object ID of the ADF managed identity in the Allowed identities. If the requests are only allowed from specific tenants, add the Tenant ID of the managed identity in the last box. 4. This part sets the response from function app for the unauthenticated requests. We should set the response as "HTTP 401 Unauthorized: recommended for APIs" as sign-in page is not feasible for API calls from ADF. 5. Then, click next and use the default permission option. 6. After everything is set, click "Add" to complete the configuration. Copy the generated App (client) id, as this is used in data factory to handle authorization. Step 3: Configure Linked Service in Data Factory 1. To use an Azure Function activity in a pipeline, follow the steps here: Create an Azure Function activity with UI 2. Then Edit or New a Azure Function Linked Service. 3. Change authentication method to System Assigned Managed Identity, and paste the copied client ID of function app identity provider from Step 2 into Resource ID. This step is necessary as authorization does not work without this. Step 4: Assign Permissions to the Data Factory in Azure Function 1. On the function app portal, go to Access control (IAM), and Add a new role assignment. 2. Assign reader role. 3. Assign the Data Factory’s Managed Identity to that role. After everything is set, test that the function app can be called from Azure Data Factory successfully. Reference: https://prodata.ie/2022/06/16/enabling-managed-identity-authentication-on-azure-functions-in-data-factory/ https://learn.microsoft.com/en-us/azure/data-factory/control-flow-azure-function-activity https://docs.azure.cn/en-us/app-service/overview-authentication-authorization1.5KViews0likes1CommentIndustry-Wide Certificate Changes Impacting Azure App Service Certificates
Executive Summary In early 2026, industry-wide changes mandated by browser applications and the CA/B Forum will affect both how TLS certificates are issued as well as their validity period. The CA/B Forum is a vendor body that establishes standards for securing websites and online communications through SSL/TLS certificates. Azure App Service is aligning with these standards for both App Service Managed Certificates (ASMC, free, DigiCert-issued) and App Service Certificates (ASC, paid, GoDaddy-issued). Most customers will experience no disruption. Action is required only if you pin certificates or use them for client authentication (mTLS). Who Should Read This? App Service administrators Security and compliance teams Anyone responsible for certificate management or application security Quick Reference: What’s Changing & What To Do Topic ASMC (Managed, free) ASC (GoDaddy, paid) Required Action New Cert Chain New chain (no action unless pinned) New chain (no action unless pinned) Remove certificate pinning Client Auth EKU Not supported (no action unless cert is used for mTLS) Not supported (no action unless cert is used for mTLS) Transition from mTLS Validity No change (already compliant) Two overlapping certs issued for the full year None (automated) If you do not pin certificates or use them for mTLS, no action is required. Timeline of Key Dates Date Change Action Required Mid-Jan 2026 and after ASMC migrates to new chain ASMC stops supporting client auth EKU Remove certificate pinning if used Transition to alternative authentication if the certificate is used for mTLS Mar 2026 and after ASC validity shortened ASC migrates to new chain ASC stops supporting client auth EKU Remove certificate pinning if used Transition to alternative authentication if the certificate is used for mTLS Actions Checklist For All Users Review your use of App Service certificates. If you do not pin these certificates and do not use them for mTLS, no action is required. If You Pin Certificates (ASMC or ASC) Remove all certificate or chain pinning before their respective key change dates to avoid service disruption. See Best Practices: Certificate Pinning. If You Use Certificates for Client Authentication (mTLS) Switch to an alternative authentication method before their respective key change dates to avoid service disruption, as client authentication EKU will no longer be supported for these certificates. See Sunsetting the client authentication EKU from DigiCert public TLS certificates. See Set Up TLS Mutual Authentication - Azure App Service Details & Rationale Why Are These Changes Happening? These updates are required by major browser programs (e.g., Chrome) and apply to all public CAs. They are designed to enhance security and compliance across the industry. Azure App Service is automating updates to minimize customer impact. What’s Changing? New Certificate Chain Certificates will be issued from a new chain to maintain browser trust. Impact: Remove any certificate pinning to avoid disruption. Removal of Client Authentication EKU Newly issued certificates will not support client authentication EKU. This change aligns with Google Chrome’s root program requirements to enhance security. Impact: If you use these certificates for mTLS, transition to an alternate authentication method. Shortening of Certificate Validity Certificate validity is now limited to a maximum of 200 days. Impact: ASMC is already compliant; ASC will automatically issue two overlapping certificates to cover one year. No billing impact. Frequently Asked Questions (FAQs) Will I lose coverage due to shorter validity? No. For App Service Certificate, App Service will issue two certificates to span the full year you purchased. Is this unique to DigiCert and GoDaddy? No. This is an industry-wide change. Do these changes impact certificates from other CAs? Yes. These changes are an industry-wide change. We recommend you reach out to your certificates’ CA for more information. Do I need to act today? If you do not pin or use these certs for mTLS, no action is required. Glossary ASMC: App Service Managed Certificate (free, DigiCert-issued) ASC: App Service Certificate (paid, GoDaddy-issued) EKU: Extended Key Usage mTLS: Mutual TLS (client certificate authentication) CA/B Forum: Certification Authority/Browser Forum Additional Resources Changes to the Managed TLS Feature Set Up TLS Mutual Authentication Azure App Service Best Practices – Certificate pinning DigiCert Root and Intermediate CA Certificate Updates 2023 Sunsetting the client authentication EKU from DigiCert public TLS certificates Feedback & Support If you have questions or need help, please visit our official support channels or the Microsoft Q&A, where our team and the community can assist you.270Views1like0CommentsAnnouncing Public Preview of Managed Instance on Azure App Service
Today at Ignite 2025, we announced the Public Preview of a fantastic new capability which will enable customers to move applications to Azure App Service faster, and with minimal, if any, code changes! Azure App Service is a fully managed PaaS platform for hosting web applications, APIs, and mobile backends, enabling customers to deploy and scale applications securely without managing infrastructure. Azure App Service offers built-in compliance, identity and DevOps integration, making it ideal for cloud-native and modernization scenarios where agility, scalability, and operational efficiency are critical. Managed Instance on App Service builds on and extends these capabilities to solve many of the challenges customers have with migration and modernizing legacy and complex enterprise applications. Challenges with Migration and Modernization We have been listening intently to our customers and working on solutions to address their needs when migrating and modernizing applications, particularly .NET Framework applications, to Azure and specifically Azure App Service. Customers face clear challenges when migrating and modernizing applications Application Dependencies – Many apps rely on components that can’t easily migrate to App Service, such as libraries installed on the web worker, GAC entries, Windows Services, or OS-level features. Configuration Systems – Some apps heavily depend on reading/writing settings in the Windows Registry. File I/O – Legacy apps often require local disk access or network storage via mapped drives. Reduced Access & Tooling – Migration limits direct infrastructure access and familiar troubleshooting tools. Lengthy Migration & ROI Challenges – Complex code changes, testing, and issue resolution can make projects take months, delaying return on investment. How Managed Instance on Azure App Service addresses these challenges Managed Instance on Azure App Service addresses these challenges by providing a host of new functionality: - Configuration scripts – Provide a zip file containing all your dependencies with an accompanying PowerShell script to install and configure your dependencies. Store this in Azure Storage and securely access and retrieve using Managed Identity. - Registry adapters – Write to the App Service Plan instance’s windows registry, providing values using secrets stored and secured in Key Vault using Managed Identity. - Storage mounts – Map Azure Files, SMB File shares in your network and local temporary storage volumes using drive letter or drive letter and folder mappings, any credentials or storage connection strings are securely retrieved via Managed Identity from Key Vault secrets. - RDP to instances using Azure Bastion – for the first time ever, open a remote desktop session directly to your App Service Plan instances securely using Azure Bastion and use tools you’re familiar with such as IIS Manager, Event Viewer and Windows Feature MMC Snap-in tools. - Shortens time to migrate and modernize – Reduces the amount of cases where code changes might be needed in order to successfully migrate and modernize, shortening the time and cost to realize return on investment moving to the cloud. All of these features expand on top of the already rich set of capabilities within Azure App Service which enable rapid scale, network integration and security, combined with the new Premium v4 (Announcing General Availability of Premium v4 for Azure App Service | Microsoft Community Hub) series of pricing plans offering enhanced performance, scalability and cost efficiency. Key Scenarios: Technical and Business Perspectives 1. Lift-and-Improve Legacy Applications Technical: Migrate legacy .NET apps with hardcoded file paths, COM dependencies, or registry access—no major code rewrites required. Install custom components directly on the managed instance. Business: Accelerate cloud adoption, reduce migration friction, and preserve business continuity by avoiding costly re-platforming projects. Realize Azure App Service benefits (scaling, patching, high availability) with minimal disruption. 2. Re-platforming Hard-to-Modernize Apps Technical: Move applications with unavailable or hard-to-modify source code, or those tightly coupled to infrastructure (e.g., SMTP servers, MSMQ, legacy middleware). Managed Instance removes blockers by supporting custom installers and advanced networking. Business: Unlock value from legacy systems, extend their useful life, and enable phased modernization. Reduce risk and cost by avoiding “big bang” transformations. 3. Hybrid and Regulated Workloads Technical: Integrate securely with on-premises resources using VNETs and private endpoints. Enforce data residency and access controls with Bring Your Own Storage and Managed Identity. Business: Meet compliance and regulatory requirements for industries like finance, healthcare, and government. Streamline audits and reduce operational overhead for sensitive workloads. 4. Incremental Modernization Technical: Start with “lift-and-shift,” then incrementally adopt PaaS features—DevOps automation, dynamic scaling, centralized configuration—at your own pace. Business: Future-proof your application portfolio, drive ongoing innovation, and maximize ROI by continuously improving applications without major disruptions. Next Steps We’re delighted to be able to announce Managed Instance on Azure App Service and are eager to see it speed up and solve problems in your modernization journey. Moving your workloads to Managed Instance on Azure App Service open up new opportunities for you to add business value and securely integrate with other Azure services. Get started with Managed Instance on Azure App Service with our documentation and check out our Technical Deep Dive on Managed Instance on Azure App Service at Ignite 20252.5KViews3likes2CommentsImportant Changes to App Service Managed Certificates: Is Your Certificate Affected?
Overview As part of an upcoming industry-wide change, DigiCert, the Certificate Authority (CA) for Azure App Service Managed Certificates (ASMC), is required to migrate to a new validation platform to meet multi-perspective issuance corroboration (MPIC) requirements. While most certificates will not be impacted by this change, certain site configurations and setups may prevent certificate issuance or renewal starting July 28, 2025. Update December 8, 2025 We’ve published an update in November about how App Service Managed Certificates can now be supported on sites that block public access. This reverses the limitation introduced in July 2025, as mentioned in this blog. Note: This blog post reflects a point-in-time update and will not be revised. For the latest and most accurate details on App Service Managed Certificates, please refer to official documentation or subsequent updates. Learn more about the November 2025 update here: Follow-Up to ‘Important Changes to App Service Managed Certificates’: November 2025 Update. August 5, 2025 We’ve published a Microsoft Learn documentation titled App Service Managed Certificate (ASMC) changes – July 28, 2025 that contains more in-depth mitigation guidance and a growing FAQ section to support the changes outlined in this blog post. While the blog currently contains the most complete overview, the documentation will soon be updated to reflect all blog content. Going forward, any new information or clarifications will be added to the documentation page, so we recommend bookmarking it for the latest guidance. What Will the Change Look Like? For most customers: No disruption. Certificate issuance and renewals will continue as expected for eligible site configurations. For impacted scenarios: Certificate requests will fail (no certificate issued) starting July 28, 2025, if your site configuration is not supported. Existing certificates will remain valid until their expiration (up to six months after last renewal). Impacted Scenarios You will be affected by this change if any of the following apply to your site configurations: Your site is not publicly accessible: Public accessibility to your app is required. If your app is only accessible privately (e.g., requiring a client certificate for access, disabling public network access, using private endpoints or IP restrictions), you will not be able to create or renew a managed certificate. Other site configurations or setup methods not explicitly listed here that restrict public access, such as firewalls, authentication gateways, or any custom access policies, can also impact eligibility for managed certificate issuance or renewal. Action: Ensure your app is accessible from the public internet. However, if you need to limit access to your app, then you must acquire your own SSL certificate and add it to your site. Your site uses Azure Traffic Manager "nested" or "external" endpoints: Only “Azure Endpoints” on Traffic Manager will be supported for certificate creation and renewal. “Nested endpoints” and “External endpoints” will not be supported. Action: Transition to using "Azure Endpoints". However, if you cannot, then you must obtain a different SSL certificate for your domain and add it to your site. Your site relies on *.trafficmanager.net domain: Certificates for *.trafficmanager.net domains will not be supported for creation or renewal. Action: Add a custom domain to your app and point the custom domain to your *.trafficmanager.net domain. After that, secure the custom domain with a new SSL certificate. If none of the above applies, no further action is required. How to Identify Impacted Resources? To assist with the upcoming changes, you can use Azure Resource Graph (ARG) queries to help identify resources that may be affected under each scenario. Please note that these queries are provided as a starting point and may not capture every configuration. Review your environment for any unique setups or custom configurations. Scenario 1: Sites Not Publicly Accessible This ARG query retrieves a list of sites that either have the public network access property disabled or are configured to use client certificates. It then filters for sites that are using App Service Managed Certificates (ASMC) for their custom hostname SSL bindings. These certificates are the ones that could be affected by the upcoming changes. However, please note that this query does not provide complete coverage, as there may be additional configurations impacting public access to your app that are not included here. Ultimately, this query serves as a helpful guide for users, but a thorough review of your environment is recommended. You can copy this query, paste it into Azure Resource Graph Explorer, and then click "Run query" to view the results for your environment. // ARG Query: Identify App Service sites that commonly restrict public access and use ASMC for custom hostname SSL bindings resources | where type == "microsoft.web/sites" // Extract relevant properties for public access and client certificate settings | extend publicNetworkAccess = tolower(tostring(properties.publicNetworkAccess)), clientCertEnabled = tolower(tostring(properties.clientCertEnabled)) // Filter for sites that either have public network access disabled // or have client certificates enabled (both can restrict public access) | where publicNetworkAccess == "disabled" or clientCertEnabled != "false" // Expand the list of SSL bindings for each site | mv-expand hostNameSslState = properties.hostNameSslStates | extend hostName = tostring(hostNameSslState.name), thumbprint = tostring(hostNameSslState.thumbprint) // Only consider custom domains (exclude default *.azurewebsites.net) and sites with an SSL certificate bound | where tolower(hostName) !endswith "azurewebsites.net" and isnotempty(thumbprint) // Select key site properties for output | project siteName = name, siteId = id, siteResourceGroup = resourceGroup, thumbprint, publicNetworkAccess, clientCertEnabled // Join with certificates to find only those using App Service Managed Certificates (ASMC) // ASMCs are identified by the presence of the "canonicalName" property | join kind=inner ( resources | where type == "microsoft.web/certificates" | extend certThumbprint = tostring(properties.thumbprint), canonicalName = tostring(properties.canonicalName) // Only ASMC uses the "canonicalName" property | where isnotempty(canonicalName) | project certName = name, certId = id, certResourceGroup = tostring(properties.resourceGroup), certExpiration = properties.expirationDate, certThumbprint, canonicalName ) on $left.thumbprint == $right.certThumbprint // Final output: sites with restricted public access and using ASMC for custom hostname SSL bindings | project siteName, siteId, siteResourceGroup, publicNetworkAccess, clientCertEnabled, thumbprint, certName, certId, certResourceGroup, certExpiration, canonicalName Scenario 2: Traffic Manager Endpoint Types For this scenario, please manually review your Traffic Manager profile configurations to ensure only “Azure Endpoints” are in use. We recommend inspecting your Traffic Manager profiles directly in the Azure portal or using relevant APIs to confirm your setup and ensure compliance with the new requirements. Scenario 3: Certificates Issued to *.trafficmanager.net Domains This ARG query helps you identify App Service Managed Certificates (ASMC) that were issued to *.trafficmanager.net domains. In addition, it also checks whether any web apps are currently using those certificates for custom domain SSL bindings. You can copy this query, paste it into Azure Resource Graph Explorer, and then click "Run query" to view the results for your environment. // ARG Query: Identify App Service Managed Certificates (ASMC) issued to *.trafficmanager.net domains // Also checks if any web apps are currently using those certificates for custom domain SSL bindings resources | where type == "microsoft.web/certificates" // Extract the certificate thumbprint and canonicalName (ASMCs have a canonicalName property) | extend certThumbprint = tostring(properties.thumbprint), canonicalName = tostring(properties.canonicalName) // Only ASMC uses the "canonicalName" property // Filter for certificates issued to *.trafficmanager.net domains | where canonicalName endswith "trafficmanager.net" // Select key certificate properties for output | project certName = name, certId = id, certResourceGroup = tostring(properties.resourceGroup), certExpiration = properties.expirationDate, certThumbprint, canonicalName // Join with web apps to see if any are using these certificates for SSL bindings | join kind=leftouter ( resources | where type == "microsoft.web/sites" // Expand the list of SSL bindings for each site | mv-expand hostNameSslState = properties.hostNameSslStates | extend hostName = tostring(hostNameSslState.name), thumbprint = tostring(hostNameSslState.thumbprint) // Only consider bindings for *.trafficmanager.net custom domains with a certificate bound | where tolower(hostName) endswith "trafficmanager.net" and isnotempty(thumbprint) // Select key site properties for output | project siteName = name, siteId = id, siteResourceGroup = resourceGroup, thumbprint ) on $left.certThumbprint == $right.thumbprint // Final output: ASMCs for *.trafficmanager.net domains and any web apps using them | project certName, certId, certResourceGroup, certExpiration, canonicalName, siteName, siteId, siteResourceGroup Ongoing Updates We will continue to update this post with any new queries or important changes as they become available. Be sure to check back for the latest information. Note on Comments We hope this information helps you navigate the upcoming changes. To keep this post clear and focused, comments are closed. If you have questions, need help, or want to share tips or alternative detection methods, please visit our official support channels or the Microsoft Q&A, where our team and the community can assist you.23KViews1like1CommentFollow-Up to ‘Important Changes to App Service Managed Certificates’: November 2025 Update
This post provides an update to the Tech Community article ‘Important Changes to App Service Managed Certificates: Is Your Certificate Affected?’ and covers the latest changes introduced since July 2025. With the November 2025 update, ASMC now remains supported even if the site is not publicly accessible, provided all other requirements are met. Details on requirements, exceptions, and validation steps are included below. Background Context to July 2025 Changes As of July 2025, all ASMC certificate issuance and renewals use HTTP token validation. Previously, public access was required because DigiCert needed to access the endpoint https://<hostname>/.well-known/pki-validation/fileauth.txt to verify the token before issuing the certificate. App Service automatically places this token during certificate creation and renewal. If DigiCert cannot access this endpoint, domain ownership validation fails, and the certificate cannot be issued. November 2025 Update Starting November 2025, App Service now allows DigiCert's requests to the https://<hostname>/.well-known/pki-validation/fileauth.txt endpoint, even if the site blocks public access. If there’s a request to create an App Service Managed Certificate (ASMC), App Service places the domain validation token at the validation endpoint. When DigiCert tries to reach the validation endpoint, App Service front ends present the token, and the request terminates at the front end layer. DigiCert's request does not reach the workers running the application. This behavior is now the default for ASMC issuance for initial certificate creation and renewals. Customers do not need to specifically allow DigiCert's IP addresses. Exceptions and Unsupported Scenarios This update addresses most scenarios that restrict public access, including App Service Authentication, disabling public access, IP restrictions, private endpoints, and client certificates. However, a public DNS record is still required. For example, sites using a private endpoint with a custom domain on a private DNS cannot validate domain ownership and obtain a certificate. Even with all validations now relying on HTTP token validation and DigiCert requests being allowed through, certain configurations are still not supported for ASMC: Sites configured as "Nested" or "External" endpoints behind Traffic Manager. Only "Azure" endpoints are supported. Certificates requested for domains ending in *.trafficmanager.net are not supported. Testing Customers can easily test whether their site’s configuration or set-up supports ASMC by attempting to create one for their site. If the initial request succeeds, renewals should also work, provided all requirements are met and the site is not listed in an unsupported scenario.5.3KViews1like0CommentsExpanding the Public Preview of the Azure SRE Agent
We are excited to share that the Azure SRE Agent is now available in public preview for everyone instantly – no sign up required. A big thank you to all our preview customers who provided feedback and helped shape this release! Watching teams put the SRE Agent to work taught us a ton, and we’ve baked those lessons into a smarter, more resilient, and enterprise-ready experience. You can now find Azure SRE Agent directly in the Azure Portal and get started, or use the link below. 📖 Learn more about SRE Agent. 👉 Create your first SRE Agent (Azure login required) What’s New in Azure SRE Agent - October Update The Azure SRE Agent now delivers secure-by-default governance, deeper diagnostics, and extensible automation—built for scale. It can even resolve incidents autonomously by following your team’s runbooks. With native integrations across Azure Monitor, GitHub, ServiceNow, and PagerDuty, it supports root cause analysis using both source code and historical patterns. And since September 1, billing and reporting are available via Azure Agent Units (AAUs). Please visit product documentation for the latest updates. Here are a few highlights for this month: Prioritizing enterprise governance and security: By default, the Azure SRE Agent operates with least-privilege access and never executes write actions on Azure resources without explicit human approval. Additionally, it uses role-based access control (RBAC) so organizations can assign read-only or approver roles, providing clear oversight and traceability from day one. This allows teams to choose their desired level of autonomy from read-only insights to approval-gated actions to full automation without compromising control. Covering the breadth and depth of Azure: The Azure SRE Agent helps teams manage and understand their entire Azure footprint. With built-in support for AZ CLI and kubectl, it works across all Azure services. But it doesn’t stop there—diagnostics are enhanced for platforms like PostgreSQL, API Management, Azure Functions, AKS, Azure Container Apps, and Azure App Service. Whether you're running microservices or managing monoliths, the agent delivers consistent automation and deep insights across your cloud environment. Automating Incident Management: The Azure SRE Agent now plugs directly into Azure Monitor, PagerDuty, and ServiceNow to streamline incident detection and resolution. These integrations let the Agent ingest alerts and trigger workflows that match your team’s existing tools—so you can respond faster, with less manual effort. Engineered for extensibility: The Azure SRE Agent incident management approach lets teams reuse existing runbooks and customize response plans to fit their unique workflows. Whether you want to keep a human in the loop or empower the Agent to autonomously mitigate and resolve issues, the choice is yours. This flexibility gives teams the freedom to evolve—from guided actions to trusted autonomy—without ever giving up control. Root cause, meet source code: The Azure SRE Agent now supports code-aware root cause analysis (RCA) by linking diagnostics directly to source context in GitHub and Azure DevOps. This tight integration helps teams trace incidents back to the exact code changes that triggered them—accelerating resolution and boosting confidence in automated responses. By bridging operational signals with engineering workflows, the agent makes RCA faster, clearer, and more actionable. Close the loop with DevOps: The Azure SRE Agent now generates incident summary reports directly in GitHub and Azure DevOps—complete with diagnostic context. These reports can be assigned to a GitHub Copilot coding agent, which automatically creates pull requests and merges validated fixes. Every incident becomes an actionable code change, driving permanent resolution instead of temporary mitigation. Getting Started Start here: Create a new SRE Agent in the Azure portal (Azure login required) Blog: Announcing a flexible, predictable billing model for Azure SRE Agent Blog: Enterprise-ready and extensible – Update on the Azure SRE Agent preview Product documentation Product home page Community & Support We’d love to hear from you! Please use our GitHub repo to file issues, request features, or share feedback with the team5.5KViews2likes3CommentsAnnouncing a flexible, predictable billing model for Azure SRE Agent
Billing for Azure SRE Agent will start on September 1, 2025. Announced at Microsoft Build 2025, Azure SRE Agent is a pre-built AI agent for root cause analysis, uptime improvement, and operational cost reduction. Learn more about the billing model and example scenarios.3.5KViews1like1CommentReimagining AI Ops with Azure SRE Agent: New Automation, Integration, and Extensibility features
Azure SRE Agent offers intelligent and context aware automation for IT operations. Enhanced by customer feedback from our preview, the SRE Agent has evolved into an extensible platform to automate and manage tasks across Azure and other environments. Built on an Agentic DevOps approach - drawing from proven practices in internal Azure operations - the Azure SRE Agent has already saved over 20,000 engineering hours across Microsoft product teams operations, delivering strong ROI for teams seeking sustainable AIOps. An Operations Agent that adapts to your playbooks Azure SRE Agent is an AI powered operations automation platform that empowers SREs, DevOps, IT operations, and support teams to automate tasks such as incident response, customer support, and developer operations from a single, extensible agent. Its value proposition and capabilities have evolved beyond diagnosis and mitigation of Azure issues, to automating operational workflows and seamless integration with the standards and processes used in your organization. SRE Agent is designed to automate operational work and reduce toil, enabling developers and operators to focus on high-value tasks. By streamlining repetitive and complex processes, SRE Agent accelerates innovation and improves reliability across cloud and hybrid environments. In this article, we will look at what’s new and what has changed since the last update. What’s New: Automation, Integration, and Extensibility Azure SRE Agent just got a major upgrade. From no-code automation to seamless integrations and expanded data connectivity, here’s what’s new in this release: No-code Sub-Agent Builder: Rapidly create custom automations without writing code. Flexible, event-driven triggers: Instantly respond to incidents and operational changes. Expanded data connectivity: Unify diagnostics and troubleshooting across more data sources. Custom actions: Integrate with your existing tools and orchestrate end-to-end workflows via MCP. Prebuilt operational scenarios: Accelerate deployment and improve reliability out of the box. Unlike generic agent platforms, Azure SRE Agent comes with deep integrations, prebuilt tools, and frameworks specifically for IT, DevOps, and SRE workflows. This means you can automate complex operational tasks faster and more reliably, tailored to your organization’s needs. Sub-Agent Builder: Custom Automation, No Code Required Empower teams to automate repetitive operational tasks without coding expertise, dramatically reducing manual workload and development cycles. This feature helps address the need for targeted automation, letting teams solve specific operational pain points without relying on one-size-fits-all solutions. Modular Sub-Agents: Easily create custom sub-agents tailored to your team’s needs. Each sub-agent can have its own instructions, triggers, and toolsets, letting you automate everything from outage response to customer email triage. Prebuilt System Tools: Eliminate the inefficiency of creating basic automation from scratch, and choose from a rich library of hundreds of built-in tools for Azure operations, code analysis, deployment management, diagnostics, and more. Custom Logic: Align automation to your unique business processes by defining your automation logic and prompts, teaching the agent to act exactly as your workflow requires. Flexible Triggers: Automate on Your Terms Invoke the agent to respond automatically to mission-critical events, not wait for manual commands. This feature helps speed up incident response and eliminate missed opportunities for efficiency. Multi-Source Triggers: Go beyond chat-based interactions, and trigger the agent to automatically respond to Incident Management and Ticketing systems like PagerDuty and ServiceNow, Observability Alerting systems like Azure Monitor Alerts, or even on a cron-based schedule for proactive monitoring and best-practices checks. Additional trigger sources such as GitHub issues, Azure DevOps pipelines, email, etc. will be added over time. This means automation can start exactly when and where you need it. Event-Driven Operations: Integrate with your CI/CD, monitoring, or support systems to launch automations in response to real-world events - like deployments, incidents, or customer requests. Vital for reducing downtime, it ensures that business-critical actions happen automatically and promptly. Expanded Data Connectivity: Unified Observability and Troubleshooting Integrate data, enabling comprehensive diagnostics and troubleshooting and faster, more informed decision-making by eliminating silos and speeding up issue resolution. Multiple Data Sources: The agent can now read data from Azure Monitor, Log Analytics, and Application Insights based on its Azure role-based access control (RBAC). Additional observability data sources such as Dynatrace, New Relic, Datadog, and more can be added via the Remote Model Context Protocol (MCP) servers for these tools. This gives you a unified view for diagnostics and automation. Knowledge Integration: Rather than manually detailing every instruction in your prompt, you can upload your Troubleshooting Guide (TSG) or Runbook directly, allowing the agent to automatically create an execution plan from the file. You may also connect the agent to resources like SharePoint, Jira, or documentation repositories through Remote MCP servers, enabling it to retrieve needed files on its own. This approach utilizes your organization’s existing knowledge base, streamlining onboarding and enhancing consistency in managing incidents. Azure SRE Agent is also building multi-agent collaboration by integrating with PagerDuty and Neubird, enabling advanced, cross-platform incident management and reliability across diverse environments. Custom Actions: Automate Anything, Anywhere Extend automation beyond Azure and integrate with any tool or workflow, solving the problem of limited automation scope and enabling end-to-end process orchestration. Out-of-the-Box Actions: Instantly automate common tasks like running azcli, kubectl, creating GitHub issues, or updating Azure resources, reducing setup time and operational overhead. Communication Notifications: The SRE Agent now features built-in connectors for Outlook, enabling automated email notifications, and for Microsoft Teams, allowing it to post messages directly to Teams channels for streamlined communication. Bring Your Own Actions: Drop in your own Remote MCP servers to extend the agent’s capabilities to any custom tool or workflow. Future-proof your agentic DevOps by automating proprietary or emerging processes with confidence. Prebuilt Operations Scenarios Address common operational challenges out of the box, saving teams time and effort while improving reliability and customer satisfaction. Incident Response: Minimize business impact and reduce operational risk by automating detection, diagnosis, and mitigation of your workload stack. The agent has built-in runbooks for common issues related to many Azure resource types including Azure Kubernetes Service (AKS), Azure Container Apps (ACA), Azure App Service, Azure Logic Apps, Azure Database for PostgreSQL, Azure CosmosDB, Azure VMs, etc. Support for additional resource types is being added continually, please see product documentation for the latest information. Root Cause Analysis & IaC Drift Detection: Instantly pinpoint incident causes with AI-driven root cause analysis including automated source code scanning via GitHub and Azure DevOps integration. Proactively detect and resolve infrastructure drift by comparing live cloud environments against source-controlled IaC, ensuring configuration consistency and compliance. Handle Complex Investigations: Enable the deep investigation mode that uses a hypothesis-driven method to analyze possible root causes. It collects logs and metrics, tests hypotheses with iterative checks, and documents findings. The process delivers a clear summary and actionable steps to help teams accurately resolve critical issues. Incident Analysis: The integrated dashboard offers a comprehensive overview of all incidents managed by the SRE Agent. It presents essential metrics, including the number of incidents reviewed, assisted, and mitigated by the agent, as well as those awaiting human intervention. Users can leverage aggregated visualizations and AI-generated root cause analyses to gain insights into incident processing, identify trends, enhance response strategies, and detect areas for improvement in incident management. Inbuilt Agent Memory: The new SRE Agent Memory System transforms incident response by institutionalizing the expertise of top SREs - capturing, indexing, and reusing critical knowledge from past incidents, investigations, and user guidance. Benefit from faster, more accurate troubleshooting, as the agent learns from both successes and mistakes, surfacing relevant insights, runbooks, and mitigation strategies exactly when needed. This system leverages advanced retrieval techniques and a domain-aware schema to ensure every on-call engagement is smarter than the last, reducing mean time to resolution (MTTR) and minimizing repeated toil. Automatically gain a continuously improving agent that remembers what works, avoids past pitfalls, and delivers actionable guidance tailored to the environment. GitHub Copilot and Azure DevOps Integration: Automatically triage, respond to, and resolve issues raised in GitHub or Azure DevOps. Integration with modern development platforms such as GitHub Copilot coding agent increases efficiency and ensures that issues are resolved faster, reducing bottlenecks in the development lifecycle. Ready to get started? Azure SRE Agent home page Product overview Pricing Page Pricing Calculator Pricing Blog Demo recordings Deployment samples What’s Next? Give us feedback: Your feedback is critical - You can Thumbs Up / Thumbs Down each interaction or thread, or go to the “Give Feedback” button in the agent to give us in-product feedback - or you can create issues or just share your thoughts in our GitHub repo at https://github.com/microsoft/sre-agent. We’re just getting started. In the coming months, expect even more prebuilt integrations, expanded data sources, and new automation scenarios. We anticipate continuous growth and improvement throughout our agentic AI platforms and services to effectively address customer needs and preferences. Let us know what Ops toil you want to automate next!2.2KViews0likes0CommentsDeploying a Bun + Hono + Vite app to Azure App Service
TOC Introduction Local Environment Deployment Conclusion 1. Introduction Anthropic, the company behind Claude, recently acquired the JavaScript runtime startup Bun, marking one of the most significant shifts in the modern JavaScript ecosystem since the arrival of Node.js and Deno. This acquisition signals more than a business move, it represents a strategic consolidation of performance-oriented tooling, developer ergonomics, and the future of AI-accelerated software development. At the center of this momentum lies a powerful trio: Bun, Hono, and Vite. Bun is a next-generation JavaScript runtime that reimagines everything from dependency installation to HTTP servers, bundling, and execution speed. On top of Bun, frameworks like Hono provide an elegant, lightweight approach to building APIs and full web applications. Hono embraces the Web Standard API model while optimizing for speed and minimal footprint. For front-end development, Vite completes the trio. Vite provides lightning-fast local development through native ES modules and an optimized build pipeline. When paired with Bun, the developer experience becomes even smoother, as Bun accelerates not only the dev server but also the entire build process. The result is a full-stack workflow where front-end and back-end both benefit from a consistent, high-performance environment. This article will guide you through deploying a Bun + Hono + Vite application to an Azure Linux Web App. 2. Local Environment The development environment used in this example is a Docker container. All project creation, modification, and testing will take place inside this environment. We will build an application using Bun + Hono + Vite, containing three endpoints: / : The root endpoint, which displays Hello Bun Hono Vite /api/hello : A static endpoint /api/backend : A runtime endpoint executed on the server, returning computed results for the frontend to display Create the Docker development environment This command generates a Bun + Hono + Vite project. docker run --rm -it -v "$PWD":/app -w /app oven/bun:latest bunx create-vite . --template vanilla-ts Follow the prompts as shown in the image and make the appropriate selections. After completing the prompts, the corresponding project files will be created. At this point, you may press Ctrl + C to stop the running Bun server. Next, install Hono: docker run --rm -it -v "$PWD":/app -w /app oven/bun:latest bun add hono Create 4 files and edit 2 files Create .vscode/settings.json This file serves two purposes: To prevent the large node_modules folder from being uploaded during deployment. Uploading it wastes bandwidth and may cause compatibility issues between local and production environments. To disable ORYX BUILD from interfering in the deployment process. We will use a custom startup script to handle all build tasks instead. { "appService.zipIgnorePattern": [ "node_modules{,/**}", ".git{,/**}", ".vscode{,/**}" ], "appService.showBuildDuringDeployPrompt": false } Create vite.config.ts This file configures Vite’s base path to use relative paths instead of absolute paths. Although this does not affect the production environment, it is essential locally when URLs and ports may differ. import { defineConfig } from 'vite'; export default defineConfig({ base: './', }); Create server.ts This file configures backend routing using Hono and sets up the Bun server. It includes several test endpoints, some static, and some executed at runtime. import { Hono } from 'hono'; import { serveStatic } from 'hono/bun'; const app = new Hono(); app.get('/api/hello', (c) => { return c.text('this is api/hello'); }); app.get('/api/backend', (c) => { const result = 1 + 1; return c.json({ message: "this is /api/backend", calc: `1 + 1 = ${result}`, value: result, }); }); app.use('/assets/*', serveStatic({ root: './dist' })); app.use('/*', serveStatic({ root: './dist' })); app.get('/', serveStatic({ path: './dist/index.html' })); const port = Number(process.env.PORT ?? 3000); export default { port, fetch: app.fetch, }; Create startup.sh This script serves several important roles: Remove any node_modules folders or tar archives created by ORYX during deployment Install the Bun runtime Fully take over the ORYX build process Start the Bun server as the final step #!/bin/bash set -e echo "===== Startup script running =====" cd /home/site/wwwroot echo "Cleaning up Oryx-generated node_modules..." if [ -d /node_modules ]; then echo "Removing /node_modules ..." rm -rf /node_modules fi if [ -f node_modules.tar.gz ]; then echo "Removing node_modules.tar.gz ..." rm -f node_modules.tar.gz fi echo "Oryx cleanup complete." export BUN_INSTALL=/home/site/wwwroot/.bun export PATH="$BUN_INSTALL/bin:/home/site/wwwroot/node_modules/.bin:$PATH" export NODE_PATH="/home/site/wwwroot/node_modules" if [ ! -f "$BUN_INSTALL/bin/bun" ]; then echo "Bun not found. Installing..." curl -fsSL https://bun.sh/install | bash else echo "Bun already installed at $BUN_INSTALL" fi echo "Using Bun version:" bun --version echo "Running bun install ..." bun install echo "Running bun run build ..." bun run build echo "Starting server with bun run start ..." bun run start Modify src/main.ts Simplify the default welcome page so it only displays our test text. // src/main.ts document.querySelector<HTMLDivElement>('#app')!.innerHTML = ` <h1>Hello Bun Hono Vite</h1> `; Modify package.json Update the scripts section so that the project uses the newly created server.ts as the server entry point. { "name": "app", "private": true, "version": "0.0.0", "type": "module", "scripts": { "dev:vite": "vite", "build": "vite build", "preview": "vite preview", "start": "bun server.ts" }, "devDependencies": { "typescript": "~5.9.3", "vite": "^7.2.4" }, "dependencies": { "hono": "^4.10.7" } } Build the project locally This command generates a dist directory containing all Vite-built static assets. docker run --rm -it -v "$PWD":/app -w /app oven/bun:latest bun run build Run the server locally for testing docker run --rm -it -v "$PWD":/app -w /app -p 3000:3000 -e PORT=3000 oven/bun:latest bun run start You can press Ctrl + C to stop the server when finished. http://127.0.0.1:3000/ http://127.0.0.1:3000/api/hello http://127.0.0.1:3000/api/backend 3. Deployment We create a Linux Web App with a minimum SKU of Premium. Add Environment Variables SCM_DO_BUILD_DURING_DEPLOYMENT=false Purpose: Prevents the deployment environment from packaging during publish. This must also be set in the deployment environment itself. WEBSITE_RUN_FROM_PACKAGE=false Purpose: Instructs Azure Web App not to run the app from a prepackaged file. ENABLE_ORYX_BUILD=false Purpose: Prevents Azure Web App from building after deployment. All build tasks will instead execute during the startup script. Add Startup Command bash /home/site/wwwroot/startup.sh After that, we can return to VS Code and deploy the project. Once the deployment is complete, wait about five minutes for the build process to finish, and then you can begin testing. / /api/hello /api/backend 4. Conclusion Bun + Hono + Vite form a cohesive ecosystem that embodies the next era of JavaScript development: fast, compact, ergonomic, and deeply aligned with modern infrastructure needs. It is particularly well-suited for AI applications, where latency, concurrency, and rapid iteration matter more than ever. From streaming inference endpoints to vector database integrations, this stack offers the responsiveness and scalability essential for AI-powered systems.361Views0likes0Comments