azure ai foundry
24 TopicsModel Mondays S2E01 Recap: Advanced Reasoning Session
About Model Mondays Want to know what Reasoning models are and how you can build advanced reasoning scenarios like a Deep Research agent using Azure AI Foundry? Check out this recap from Model Mondays Season 2 Ep 1. Model Mondays is a weekly series to help you build your model IQ in three steps: 1. Catch the 5-min Highlights on Monday, to get up to speed on model news 2. Catch the 15-min Spotlight on Monday, for a deep-dive into a model or tool 3. Catch the 30-min AMA on Friday, for a Q&A session with subject matter experts Want to follow along? Register Here- to watch upcoming livestreams for Season 2 Visit The Forum- to see the full AMA schedule for Season 2 Register Here - to join the AMA on Friday Jun 20 Spotlight On: Advanced Reasoning This week, the Model Mondays spotlight was on Advanced Reasoning with subject matter expert Marlene Mhangami. In this blog post, I'll talk about my five takeaways from this episode: Why Are Reasoning Models Important? What Is an Advanced Reasoning Scenario? How Can I Get Started with Reasoning Models ? Spotlight: My Aha Moment Highlights: What’s New in Azure AI 1. Why Are Reasoning Models Important? In today's fast-evolving AI landscape, it's no longer enough for models to just complete text or summarize content. We need AI that can: Understand multi-step tasks Make decisions based on logic Plan sequences of actions or queries Connect context across turns Reasoning models are large language models (LLMs) trained with reinforcement learning techniques to "think" before they answer. Rather than simply generating a response based on probability, these models follow an internal thought process producing a chain of reasoning before responding. This makes them ideal for complex problem-solving tasks. And they’re the foundation of building intelligent, context-aware agents. They enable next-gen AI workflows in everything from customer support to legal research and healthcare diagnostics. Reason: They allow AI to go beyond surface-level response and deliver solutions that reflect understanding, not just language patterning. 2. What does Advanced Reasoning involve? An advanced reasoning scenario is one where a model: Breaks a complex prompt into smaller steps Retrieves relevant external data Uses logic to connect dots Outputs a structured, reasoned answer Example: A user asks: What are the financial and operational risks of expanding a startup to Southeast Asia in 2025? This is the kind of question that requires extensive research and analysis. A reasoning model might tackle this by: Retrieving reports on Southeast Asia market conditions Breaking down risks into financial, political, and operational buckets Cross-referencing data with recent trends Returning a reasoned, multi-part answer 3. How Can I Get Started with Reasoning Models? To get started, you need to visit a catalog that has examples of these models. Try the GitHub Models Marketplace and look for the reasoning category in the filter. Try the Azure AI Foundry model catalog and look for reasoning models by name. Example: The o-series of models from Azure Open AI The DeepSeek-R1 models The Grok 3 models The Phi-4 reasoning models Next, you can use SDKs or Playground for exploring the model capabiliies. 1. Try Lab 331 - for a beginner-friendly guide. 2. Try Lab 333 - for an advanced project. 3. Try the GitHub Model Playground - to compare reasoning and GPT models. 4. Try the Deep Research Agent using LangChain - sample as a great starting project. Have questions or comments? Join the Friday AMA on Azure AI Foundry Discord: 4. Spotlight: My Aha Moment Before this session, I thought reasoning meant longer or more detailed responses. But this session helped me realize that reasoning means structured thinking — models now plan, retrieve, and respond with logic. This inspired me to think about building AI agents that go beyond chat and actually assist users like a teammate. It also made me want to dive deeper into LangChain + Azure AI workflows to build mini-agents for real-world use. 5. Highlights: What’s New in Azure AI Here’s what’s new in the Azure AI Foundry: Direct From Azure Models - Try hosted models like OpenAI GPT on PTU plans SORA Video Playground - Generate video from prompts via SORA models Grok 3 Models - Now available for secure, scalable LLM experiences DeepSeek R1-0528 - A reasoning-optimized, Microsoft-tuned open-source model These are all available in the Azure Model Catalog and can be tried with your Azure account. Did You Know? Your first step is to find the right model for your task. But what if you could have the model automatically selected for you_ based on the prompt you provide? That's the magic of Model Router a deployable AI chat model that dynamically selects the best LLM based on your prompt. Instead of choosing one model manually, the Router makes that choice in real time. Currently, this works with a fixed set of Azure OpenAI models, including a reasoning model option. Keep an eye on the documentation for more updates. Why it’s powerful: Saves cost by switching between models based on complexity Optimizes performance by selecting the right model for the task Lets you test and compare model outputs quickly Try it out in Azure AI Foundry or read more in the Model Catalog Coming Up Next Next week, we dive into Model Context Protocol, an open protocol that empowers agentic AI applications by making it easier to discover and integrate knowledge and action tools with your model choices. Register Here to get reminded - and join us live on Monday! Join The Community Great devs don't build alone! In a fast-pased developer ecosystem, there's no time to hunt for help. That's why we have the Azure AI Developer Community. Join us today and let's journey together! Join the Discord - for real-time chats, events & learning Explore the Forum - for AMA recaps, Q&A, and help! About Me. I'm Sharda, a Gold Microsoft Learn Student Ambassador interested in cloud and AI. Find me on Github, Dev.to,, Tech Community and Linkedin. In this blog series I have summarizef my takeaways from this week's Model Mondays livestream .365Views0likes0CommentsModel Mondays S2:E3 Understanding SLMs and Reasoning with Mojan Javaheripi
This week in Model Mondays, we focus on Small Language Models (SLMs) and Reasoning — and learn how reasoning models leverage inference-time scaling to execute complex tasks, but how can we use these in resource-constrained devices? Read on for my recap of Mojan Javaheripi's insights on Phi-4 reasoning models that are redefining small language models (SLM) for the agentic era of apps. About Model Mondays Model Mondays is a weekly series designed to help you build your Azure AI Foundry Model IQ step by step. Here's how it works: 5-Minute Highlights – Quick news and updates about Azure AI models and tools on Monday 15-Minute Spotlight – Deep dive into a key model, protocol, or feature on Monday 30-Minute AMA on Friday – Live Q&A with subject matter experts from Monday livestream If you want to grow your skills with the latest in AI model development, Model Mondays is the place to start. Want to follow along? Register Here - to watch upcoming Model Monday livestreams Watch Playlists to replay past Model Monday episodes Register Here- to join the AMA on SLMs and Reasoning on Friday Jul 03 Visit The Forum - to view Foundry Friday AMAs and recaps This post was generated with AI help and human revision & review. To learn more about our motivation and workflows, please refer to this document in our website. We are continuing to experiment with ideas here - feedback is welcome! Just drop us a comment and let us know! Spotlight On: SLMs and Reasoning Missed watching the livestream? Catch up on the episode below - and visit https://aka.ms/model-mondays/playlist to catch up on all the previous episodes in the series. And check out the Discussion Forum post here for all the resources and updates from the AMA and more. 1. What is this topic and why is it important? Small Language Models (SLMs) like Phi-4 represent a breakthrough in making advanced reasoning capabilities accessible on resource-constrained devices. While large language models require massive computational resources, SLMs can deliver sophisticated reasoning while running on edge devices, mobile phones, and local hardware. This is crucial because it democratizes AI access, reduces latency, and enables privacy-preserving applications where data doesn't need to leave the device. Reasoning models use inference-time scaling, meaning they can "think" longer about complex problems to arrive at better solutions. Phi-4 specifically excels at mathematical reasoning, code generation, and logical problem-solving while maintaining a smaller footprint than traditional large models. 2. What is one key takeaway from the episode? The key insight is that Phi-4 proves that model size doesn't always correlate with reasoning capability. Through advanced training techniques and architectural improvements, SLMs can achieve reasoning performance that rivals much larger models while being practical for deployment in real-world, resource-constrained environments. This opens up entirely new possibilities for agentic applications that can run locally and respond quickly. 3. How can I get started? To get started with SLMs and reasoning: 1. Explore Phi-4 on Azure AI Foundry Model Catalog 2. Try the reasoning capabilities in Azure AI Foundry Playground 3. Download and experiment with Phi-4 for local development 4. Check out the sample applications and use cases in the Azure AI Foundry documentation What's new in Azure AI Foundry? Azure AI Foundry continues to evolve to support the growing ecosystem of Small Language Models and agentic apps. Recently, new capabilities have been added to make it easier to fine-tune SLMs like Phi-4 directly in Azure AI Studio. Updates include: Enhanced Model Catalog: Easier discovery of SLMs, reasoning models, and multi-modal models. Improved Prompt Flow Integration: Now with templates specifically designed for SLM-based reasoning tasks. New Evaluation Tools: Built-in model comparison dashboards to quickly test reasoning performance across different SLM variants. Edge Deployment Support: Simplified workflows for packaging and deploying SLMs to local devices and edge environments. Want to get a summary of ALL the news from Jun 2025? Just visit this post on Azure AI Foundry Discussions Forum for all the links! My A-Ha Moment The biggest Aha moment for me was realizing that a model doesn’t need to be huge to be smart. Phi-4 proved that small models can actually handle complex reasoning tasks just like big models. What really clicked for me: You don’t need heavy GPUs or cloud servers. These models can run on mobile phones, edge devices, or small local machines. Your data stays on your device, which is great for privacy and faster responses. It’s a total game changer because now we can build intelligent apps that work even on low-resource devices. Coming up Next Week Next week, we dive into AI Developer Experiences with Leo Yao. We'll explore how to streamline the AI developer journey from model selection and usage to evaluation and app deployment using the AI Toolkit and Azure AI Foundry extensions for Visual Studio Code. Discover the key capabilities they provide for generative AI app & agent development. Register Here! to be notified - then watch live on YouTube below. Join The Community Great devs don't build alone! In a fast-pased developer ecosystem, there's no time to hunt for help. That's why we have the Azure AI Developer Community. Join us today and let's journey together! 1. Join the Discord - for real-time chats, events & learning 2. Explore the Forum - for AMA recaps, Q&A, and help! About Me: I'm Sharda, a Gold Microsoft Learn Student Ambassador interested in cloud and AI. Find me on Github, Dev.to, Tech Community and Linkedin. In this blog series I have summarized my takeaways from this week's Model Mondays livestream.202Views0likes0CommentsModel Mondays S2:E6 Understanding Research & Innovation with SeokJin Han and Saumil Shrivastava
In this week's blog post, we dive into the cutting-edge research happening at Azure AI Foundry Labs. From the MCP Server that makes it easy to experiment with new models and tools, to Magentic-UI that brings human-centered agent workflows to life, there’s a lot to unpack!131Views0likes0CommentsPower Up Your Open WebUI with Azure AI Speech: Quick STT & TTS Integration
Introduction Ever found yourself wishing your web interface could really talk and listen back to you? With a few clicks (and a bit of code), you can turn your plain Open WebUI into a full-on voice assistant. In this post, you’ll see how to spin up an Azure Speech resource, hook it into your frontend, and watch as user speech transforms into text and your app’s responses leap off the screen in a human-like voice. By the end of this guide, you’ll have a voice-enabled web UI that actually converses with users, opening the door to hands-free controls, better accessibility, and a genuinely richer user experience. Ready to make your web app speak? Let’s dive in. Why Azure AI Speech? We use Azure AI Speech service in Open Web UI to enable voice interactions directly within web applications. This allows users to: Speak commands or input instead of typing, making the interface more accessible and user-friendly. Hear responses or information read aloud, which improves usability for people with visual impairments or those who prefer audio. Provide a more natural and hands-free experience especially on devices like smartphones or tablets. In short, integrating Azure AI Speech service into Open Web UI helps make web apps smarter, more interactive, and easier to use by adding speech recognition and voice output features. If you haven’t hosted Open WebUI already, follow my other step-by-step guide to host Ollama WebUI on Azure. Proceed to the next step if you have Open WebUI deployed already. Learn More about OpenWeb UI here. Deploy Azure AI Speech service in Azure. Navigate to the Azure Portal and search for Azure AI Speech on the Azure portal search bar. Create a new Speech Service by filling up the fields in the resource creation page. Click on “Create” to finalize the setup. After the resource has been deployed, click on “View resource” button and you should be redirected to the Azure AI Speech service page. The page should display the API Keys and Endpoints for Azure AI Speech services, which you can use in Open Web UI. Settings things up in Open Web UI Speech to Text settings (STT) Head to the Open Web UI Admin page > Settings > Audio. Paste the API Key obtained from the Azure AI Speech service page into the API key field below. Unless you use different Azure Region, or want to change the default configurations for the STT settings, leave all settings to blank. Text to Speech settings (TTS) Now, let's proceed with configuring the TTS Settings on OpenWeb UI by toggling the TTS Engine to Azure AI Speech option. Again, paste the API Key obtained from Azure AI Speech service page and leave all settings to blank. You can change the TTS Voice from the dropdown selection in the TTS settings as depicted in the image below: Click Save to reflect the change. Expected Result Now, let’s test if everything works well. Open a new chat / temporary chat on Open Web UI and click on the Call / Record button. The STT Engine (Azure AI Speech) should identify your voice and provide a response based on the voice input. To test the TTS feature, click on the Read Aloud (Speaker Icon) under any response from Open Web UI. The TTS Engine should reflect Azure AI Speech service! Conclusion And that’s a wrap! You’ve just given your Open WebUI the gift of capturing user speech, turning it into text, and then talking right back with Azure’s neural voices. Along the way you saw how easy it is to spin up a Speech resource in the Azure portal, wire up real-time transcription in the browser, and pipe responses through the TTS engine. From here, it’s all about experimentation. Try swapping in different neural voices or dialing in new languages. Tweak how you start and stop listening, play with silence detection, or add custom pronunciation tweaks for those tricky product names. Before you know it, your interface will feel less like a web page and more like a conversation partner.849Views2likes1CommentModel Mondays S2E9: Models for AI Agents
1. Weekly Highlights This episode kicked off with the top news and updates in the Azure AI ecosystem: GPT-5 and GPT-OSS Models Now in Azure AI Foundry: Azure AI Foundry now supports OpenAI’s GPT-5 lineup (including GPT-5, GPT-5 Mini, and GPT-5 Nano) and the new open-weight GPT-OSS models (120B, 20B). These models offer powerful reasoning, real-time agent tasks, and ultra-low latency Q&A, all with massive context windows and flexible deployment via the Model Router. Flux 1 Context Pro & Flux 1.1 Pro from Black Forest Labs: These new vision models enable in-context image generation, editing, and style transfer, now available in the Image Playground in Azure AI Foundry. Browser Automation Tool (Preview): Agents can now perform real web tasks—search, navigation, form filling, and more—via natural language, accessible through API and SDK. GitHub Copilot Agent Mode + Playwright MCP Server: Debug UIs with AI: Copilot’s agent mode now pairs with Playwright MCP Server to analyze, identify, and fix UI bugs automatically. Discord Community: Join the conversation, share your feedback, and connect with the product team and other developers. 2. Spotlight On: Azure AI Agent Service & Agent Catalog This week’s spotlight was on building and orchestrating multi-agent workflows using the Azure AI Agent Service and the new Agent Catalog. What is the Azure AI Agent Service? A managed platform for building, deploying, and scaling agentic AI solutions. It supports modular, multi-agent workflows, secure authentication, and seamless integration with Azure Logic Apps, OpenAPI tools, and more. Agent Catalog: A collection of open-source, ready-to-use agent templates and workflow samples. These include orchestrator agents, connected agents, and specialized agents for tasks like customer support, research, and more. Demo Highlights: Connected Agents: Orchestrate workflows by delegating tasks to specialized sub-agents (e.g., mortgage application, market insights). Multi-Agent Workflows: Design complex, hierarchical agent graphs with triggers, events, and handoffs (e.g., customer support with escalation to human agents). Workflow Designer: Visualize and edit agent flows, transitions, and variables in a modular, no-code interface. Integration with Azure Logic Apps: Trigger workflows from 1400+ external services and apps. 3. Customer Story: Atomic Work Atomic Work showcased how agentic AI can revolutionize enterprise service management, making employees more productive and ops teams more efficient. Problem: Traditional IT service management is slow, manual, and frustrating for both employees and ops teams. Solution: Atomic Work’s “Atom” is a universal, multimodal agent that works across channels (Teams, browser, etc.), answers L1/L2 questions, automates requests, and proactively assists users. Technical Highlights: Multimodal & Cross-Channel: Atom can guide users through web interfaces, answer questions, and automate tasks without switching tools. Data Ingestion & Context: Regularly ingests up-to-date documentation and context, ensuring accurate, current answers. Security & Integration: Built on Azure for enterprise-grade security and seamless integration with existing systems. Demo: Resetting passwords, troubleshooting VPN, requesting GitHub repo access—all handled by Atom, with proactive suggestions and context-aware actions. Atom can even walk users through complex UI tasks (like generating GitHub tokens) by “seeing” the user’s screen and providing step-by-step guidance. 4. Key Takeaways Here are the key learnings from this episode: Agentic AI is Production-Ready: Azure AI Agent Service and the Agent Catalog make it easy to build, deploy, and scale multi-agent workflows for real-world business needs. Modular, No-Code Workflow Design: The workflow designer lets you visually create and edit agent graphs, triggers, and handoffs—no code required. Open-Source & Extensible: The Agent Catalog provides open-source templates and welcomes community contributions. Real-World Impact: Solutions like Atomic Work show how agentic AI can transform IT, HR, and customer support, making organizations more efficient and employees more empowered. Community & Support: Join the Discord and Forum to connect, ask questions, and share your own agentic AI projects. Sharda's Tips: How I Wrote This Blog Writing this blog is like sharing my own learning journey with friends. I start by thinking about why the topic matters and how it can help someone new to Azure or agentic AI. I use simple language, real examples from the episode, and organize my thoughts with GitHub Copilot to make sure I cover all the important points. Here’s the prompt I gave Copilot to help me draft this blog: Generate a technical blog post for Model Mondays S2E9 based on the transcript and episode details. Focus on Azure AI Agent Service, Agent Catalog, and real-world demos. Explain the concepts for students, add a section on practical applications, and share tips for writing technical blogs. Make it clear, engaging, and useful for developers and students. After watching the video, I felt inspired to try out these tools myself. The way the speakers explained and demonstrated everything made me believe that anyone can get started, no matter their background. My goal with this blog is to help you feel the same way—curious, confident, and ready to explore what AI and Azure can do for you. If you have questions or want to share your own experience, I’d love to hear from you. Coming Up Next Week Next week: Document Processing with AI! Join us as we explore how to automate document workflows using Azure AI Foundry, with live demos and expert guests. 1️⃣ | Register For The Livestream – Aug 18, 2025 2️⃣ | Register For The AMA – Aug 22, 2025 3️⃣ | Ask Questions & View Recaps – Discussion Forum About Model Mondays Model Mondays is a weekly series designed to help you build your Azure AI Foundry Model IQ with three elements: 5-Minute Highlights – Quick news and updates about Azure AI models and tools on Monday 15-Minute Spotlight – Deep dive into a key model, protocol, or feature on Monday 30-Minute AMA on Friday – Live Q&A with subject matter experts from Monday livestream Want to get started? Register For Livestreams – every Monday at 1:30pm ET Watch Past Replays to revisit other spotlight topics Register For AMA – to join the next AMA on the schedule Recap Past AMAs – check the AMA schedule for episode specific links Join The Community Great devs don't build alone! In a fast-paced developer ecosystem, there's no time to hunt for help. That's why we have the Azure AI Developer Community. Join us today and let's journey together! Join the Discord – for real-time chats, events & learning Explore the Forum – for AMA recaps, Q&A, and Discussion! About Me I'm Sharda, a Gold Microsoft Learn Student Ambassador interested in cloud and AI. Find me on GitHub, Dev.to, Tech Community, and LinkedIn. In this blog series, I summarize my takeaways from each week's Model Mondays livestream.180Views0likes0CommentsModel Mondays S2E8: On-Device & Local AI
Model Mondays S2E8: On-Device & Local AI Welcome to Episode 8! This week, we explored how AI is moving from the cloud to your own device, making it faster, more private, and more accessible. We also saw a real-world customer story from Xander Glasses, showing how AI can help people with hearing loss. RFD Observability tools in Azure AI Foundry: Real-time model telemetry, auto evals, quick evals, Python grader. GitHub Copilot Pro with Spark: AI pair programmer for code explanation and workflow suggestions. Synthetic Data for Vision Models: Training accurate models with procedurally generated data. Agent-Friendly Websites: Making sites accessible to AI agents via APIs, semantic markup, and OpenAPI specs. MCP (Model Context Protocol): Standardizing agent memory and context for scalable AI.129Views0likes0CommentsMulti-Agent Systems and MCP Tools Integration with Azure AI Foundry
The Power of Connected Agents: Building Multi-Agent Systems Imagine trying to build an AI system that can handle complex workflows like managing support tickets, analyzing data from multiple sources, or providing comprehensive recommendations. Sounds challenging, right? That's where multi-agent systems come in! The Develop a multi-agent solution with Azure AI Foundry Agent Services module introduces you to the concept of connected agents a game changing approach that allows you to break down complex tasks into specialized roles handled by different AI agents. Why Connected Agents Matter As a student developer, you might wonder why you'd need multiple agents when a single agent can handle many tasks. Here's why this approach is transformative: 1. Simplified Complexity: Instead of building one massive agent that does everything (and becomes difficult to maintain), you can create smaller, specialized agents with clearly defined responsibilities. 2. No Custom Orchestration Required: The main agent naturally delegates tasks using natural language - no need to write complex routing logic or orchestration code. 3. Better Reliability and Debugging: When something goes wrong, it's much easier to identify which specific agent is causing issues rather than debugging a monolithic system. 4. Flexibility and Extensibility: Need to add a new capability? Just create a new connected agent without modifying your main agent or other parts of the system. How Multi-Agent Systems Work The architecture is surprisingly straightforward: 1. A main agent acts as the orchestrator, interpreting user requests and delegating tasks 2. Connected sub-agents perform specialized functions like data retrieval, analysis, or summarization 3. Results flow back to the main agent, which compiles the final response For example, imagine building a ticket triage system. When a new support ticket arrives, your main agent might: - Delegate to a classifier agent to determine the ticket type - Send the ticket to a priority-setting agent to determine urgency - Use a team-assignment agent to route it to the right department All this happens seamlessly without you having to write custom routing logic! Setting Up a Multi-Agent Solution The module walks you through the entire process: 1. Initializing the agents client 2. Creating connected agents with specialized roles 3. Registering them as tools for the main agent 4. Building the main agent that orchestrates the workflow 5. Running the complete system Taking It Further: Integrating MCP Tools with Azure AI Agents Once you've mastered multi-agent systems, the next level is connecting your agents to external tools and services. The Integrate MCP Tools with Azure AI Agents module teaches you how to use the Model Context Protocol (MCP) to give your agents access to a dynamic catalog of tools. What is Dynamic Tool Discovery? Traditionally, adding new tools to an AI agent meant hardcoding each one directly into your agent's code. But what if tools change frequently, or if different teams manage different tools? This approach quickly becomes unmanageable. Dynamic tool discovery through MCP solves this problem by: 1. Centralizing Tool Management: Tools are defined and managed in a central MCP server 2. Enabling Runtime Discovery: Agents discover available tools during runtime through the MCP client 3. Supporting Automatic Updates: When tools are updated on the server, agents automatically get the latest versions The MCP Server-Client Architecture The architecture involves two key components: 1. MCP Server: Acts as a registry for tools, hosting tool definitions decorated with `@mcp.tool`. Tools are exposed over HTTP when requested. 2. MCP Client: Acts as a bridge between your MCP server and Azure AI Agent. It discovers available tools, generates Python function stubs to wrap them, and registers those functions with your agent. This separation of concerns makes your AI solution more maintainable and adaptable to change. Setting Up MCP Integration The module guides you through the complete process: 1. Setting up an MCP server with tool definitions 2. Creating an MCP client to connect to the server 3. Dynamically discovering available tools 4. Wrapping tools in async functions for agent use 5. Registering the tools with your Azure AI agent Once set up, your agent can use any tool in the MCP catalog as if it were a native function, without any hardcoding required! Practical Applications for Student Developers As a student developer, how might you apply these concepts in real projects? Classroom Projects: - Build a research assistant that delegates to specialized agents for different academic subjects - Create a coding tutor that uses different agents for explaining concepts, debugging code, and suggesting improvements Hackathons: - Develop a sustainability app that uses connected agents to analyze environmental data from different sources - Create a personal finance advisor with specialized agents for budgeting, investment analysis, and financial planning Personal Portfolio Projects: - Build a content creation assistant with specialized agents for brainstorming, drafting, editing, and SEO optimization - Develop a health and wellness app that uses MCP tools to connect to fitness APIs, nutrition databases, and sleep tracking services Getting Started Ready to dive in? Both modules include hands-on exercises where you'll build real working examples: - A ticket triage system using connected agents - An inventory management assistant that integrates with MCP tools The prerequisites are straightforward: - Experience with deploying generative AI models in Azure AI Foundry - Programming experience with Python or C# Conclusion Multi-agent systems and MCP tools integration represent the next evolution in AI application development. By mastering these concepts, you'll be able to build more sophisticated, maintainable, and extensible AI solutions - skills that will make you stand out in internship applications and job interviews. The best part? These modules are designed with practical, hands-on learning in mind - perfect for student developers who learn by doing. So why not give them a try? Your future AI applications (and your resume) will thank you for it! Want to learn more about Model Context Protocol 'MCP' see MCP for Beginners Happy coding!1.7KViews1like0CommentsModel Mondays S2:E2 - Understanding Model Context Protocol (MCP)
This week in Model Mondays, we focus on the Model Context Protocol (MCP) — and learn how to securely connect AI models to real-world tools and services using MCP, Azure AI Foundry, and industry-standard authorization. Read on for my recap About Model Mondays Model Mondays is a weekly series designed to help you build your Azure AI Foundry Model IQ step by step. Here’s how it works: 5-Minute Highlights – Quick news and updates about Azure AI models and tools on Monday 15-Minute Spotlight – Deep dive into a key model, protocol, or feature on Monday 30-Minute AMA on Friday – Live Q&A with subject matter experts from Monday livestream If you want to grow your skills with the latest in AI model development, Model Mondays is the place to start. Want to follow along? Register Here - to watch upcoming Mondel Monday livestreams Watch Playlists to replay past Model Monday episodes Register Here - to join the AMA on MCP on Friday Jun 27 Visit The Forum- to view Foundry Friday AMAs and recaps Spotlight On: Model Context Protocol (MCP) This week, the Model Monday’s spotlight was on the Model Context Protocol (MCP) with subject matter expert Den Delimarsky. Don't forget to check out the slides from the presentation, for resource links! In this blog post, I’ll talk about my five key takeaways from this episode: What Is MCP and Why Does It Matter? What Is MCP Authorization and Why Is It Important? How Can I Get Started with MCP? Spotlight: My Aha Moment Highlights: What’s New in Azure AI 1 . What Is MCP and Why is it Important? MCP is a protocol that standardizes how AI applications connect the underlying AI models to required knowledge sources (data) and interaction APIs (functions) for more effective task execution. Because these models are pre-trained, they lack access to real-time or proprietary data sources (for knowledge) and real-world environments (for interaction). MCP allows them to "discover and use" relevant knowledge and action tools to add relevant context to the model for task execution. Explore: The MCP Specification Learn: MCP For Beginners Want to learn more about MCP - check out the AI Engineer World Fair 2025 "MCP and Keynotes" track. It kicks off with a keynote from Asha Sharma that gives you a broader vision for Azure AI Foundry. Then look for the talk from Harald Kirschner on MCP and VS Code. 2. What Is MCP Authorization and Why Does It Matter? MCP (Model Context Protocol) authorization is a system that helps developers manage who can access their apps, especially when they are hosted in the cloud. The goal is to simplify the process of securing these apps by using common tools like OAuth and identity providers (such as Google or GitHub), so developers don't have to be security experts. Key Takeaways: The new MCP proposal uses familiar identity providers to simplify the authorization process. It allows developers to secure their apps without requiring deep knowledge of security. The update ensures better security controls and prepares the system for future authentication methods. Related Reading: Aaron Parecki, Let's Fix OAuth in MCP Den Delimarsky, Improving The MCP Authorization Spec - One RFC At A Time MCP Specification, Authorization protocol draft On Monday, Den joined us live to talk about the work he did for the authorization protocol. Watch the session now to get a sense for what the MCP Authorization protocol does, how it works, and why it matters. Have questions? Submit them to the forum or Join the Foundry Friday AMA on Jun 27 at 1:30pm ET. 3. How Can I Get Started? If you want to start working with MCP, here’s how to do it easily: Learn the Fundamentals: Explore MCP For Beginners Use an MCP Server: Explore VSCode Agent Mode support . Use MCP with AI Agents: Explore the Azure MCP Server 4. What’s New in Azure AI Foundry? Managed Compute for Cohere Models: Faster, secure AI deployments with low latency. Prompt Shields: New Azure security system to protect against prompt injection and unsafe content. OpenAI o3 Pro Model: A fast, low-cost model similar to GPT-4 Turbo. Codex Mini Model: A smaller, quicker model perfect for developer command-line tasks. MCP Security Upgrades: Now easier to secure AI apps using familiar OAuth identity providers. 5. My Aha Moment Before this session, I used to think that connecting apps to AI was complicated and risky. I believed developers had to build their own security systems from scratch, which sounded tough. But this week, I learned that MCP makes it simple. We can now use trusted logins like Google or GitHub and securely connect AI models to real-world apps without extra hassle. How I Learned This ? To be honest, I also used Copilot to help me understand and summarize this topic in simple words. I wanted to make sure I really understood it well enough to explain it to my friends and peers. I believe in learning with the tools we have, and AI is one of them. By using Copilot and combining it with what I learned from the Model Monday’s session, I was able to write this blog in a way that is easy to understand Takeaway for Beginners: It’s okay to use AI to learn what matters is that you grow, verify, and share the knowledge in your own way. Coming Up Next Week: Next week, we dive into SLMs & Reasoning (Phi-4) with Mojan Javaheripi, PhD, Senior Researcher at Microsoft Research. This session will explore how Small Language Models (SLMs) can perform advanced reasoning tasks, and what makes models like Phi-4 reasoning efficient, scalable, and useful in practical AI applications. Register Here! Join The Community Great devs don't build alone! In a fast-pased developer ecosystem, there's no time to hunt for help. That's why we have the Azure AI Developer Community. Join us today and let's journey together! Join the Discord - for real-time chats, events & learning Explore the Forum - for AMA recaps, Q&A, and help! About Me: I'm Sharda, a Gold Microsoft Learn Student Ambassador interested in cloud and AI. Find me on Github, Dev.to, Tech Community and Linkedin. In this blog series I have summarized my takeaways from this week's Model Mondays livestream.708Views1like2CommentsCreate Stunning AI Videos with Sora on Azure AI Foundry!
Special credit to Rory Preddy for creating the GitHub resource that enable us to learn more about Azure Sora. Reach him out on LinkedIn to say thanks. Introduction Artificial Intelligence (AI) is revolutionizing content creation, and video generation is at the forefront of this transformation. OpenAI's Sora, a groundbreaking text-to-video model, allows creators to generate high-quality videos from simple text prompts. When paired with the powerful infrastructure of Azure AI Foundry, you can harness Sora's capabilities with scalability and efficiency, whether on a local machine or a remote setup. In this blog post, I’ll walk you through the process of generating AI videos using Sora on Azure AI Foundry. We’ll cover the setup for both local and remote environments. Requirements: Azure AI Foundry with sora model access A Linux Machine/VM. Make sure that the machine already has the package below: Java JRE 17 (Recommended) OR later Maven Step Zero – Deploying the Azure Sora model on AI Foundry Navigate to the Azure AI Foundry portal and head to the “Models + Endpoints” section (found on the left side of the Azure AI Foundry portal) > Click on the “Deploy Model” button > “Deploy base model” > Search for Sora > Click on “Confirm”. Give a deployment name and specify the Deployment type > Click “Deploy” to finalize the configuration. You should receive an API endpoint and Key after successful deploying Sora on Azure AI Foundry. Store these in a safe place because we will be using them in the next steps. Step one – Setting up the Sora Video Generator in the local/remote machine. Clone the roryp/sora repository on your machine by running the command below: git clone https://github.com/roryp/sora.git cd sora Then, edit the application.properties file in the src/main/resources/ folder to include your Azure OpenAI Credentials. Change the configuration below: azure.openai.endpoint=https://your-openai-resource.cognitiveservices.azure.com azure.openai.api-key=your_api_key_here If port 8080 is used for another application, and you want to change the port for which the web app will run, change the “server.port” configuration to include the desired port. Allow appropriate permissions to run the “mvnw” script file. chmod +x mvnw Run the application ./mvnw spring-boot:run Open your browser and type in your localhost/remote host IP (format: [host-ip:port]) in the browser search bar. If you are running a remote host, please do not forget to update your firewall/NSG to allow inbound connection to the configured port. You should see the web app to generate video with Sora AI using the API provided on Azure AI Foundry. Now, let’s generate a video with Sora Video Generator. Enter a prompt in the first text field, choose the video pixel resolution, and set the video duration. (Due to technical limitation, Sora can only generate video of a maximum of 20 seconds). Click on the “Generate video” button to proceed. The cost to generate the video should be displayed below the “Generate Video” button, for transparency purposes. You can click on the “View Breakdown” button to learn more about the cost breakdown. The video should be ready to download after a maximum of 5 minutes. You can check the status of the video by clicking on the “Check Status” button on the web app. The web app will inform you once the download is ready and the page should refresh every 10 seconds to fetch real-time update from Sora. Once it is ready, click on the “Download Video” button to download the video. Conclusion Generating AI videos with Sora on Azure AI Foundry is a game-changer for content creators, marketers, and developers. By following the steps outlined in this guide, you can set up your environment, integrate Sora, and start creating stunning AI-generated videos. Experiment with different prompts, optimize your workflow, and let your imagination run wild! Have you tried generating AI videos with Sora or Azure AI Foundry? Share your experiences or questions in the comments below. Don’t forget to subscribe for more AI and cloud computing tutorials!874Views0likes3Comments