azure ai agent service
2 TopicsBuild your code-first agent with Azure AI Foundry: Self-Guided Workshop
Build your first Agent App Agentic AI is changing how we build intelligent apps - enabling software to reason, plan, and act for us. Learning to build AI agents is quickly becoming a must-have skill for anyone working with AI. Self-Guided Workshop Try our self-guided “Build your code-first agent with Azure AI Foundry” workshop to get hands-on with Azure AI Agent Service. You’ll learn to build, deploy, and interact with agents using Azure’s powerful tools. What is Azure AI Agent Service? Azure AI Agent Service lets you create, orchestrate, and manage AI-powered agents that can handle complex tasks, integrate with tools, and deploy securely. What Will You Learn? The basics of agentic AI apps and how they differ from traditional apps How to set up your Azure environment How to build your first agent How to test and interact with your agent Advanced features like tool integration and memory management Who Is This For? Anyone interested in building intelligent, goal-oriented agents — developers, data scientists, students, and AI enthusiasts. No prior experience with Azure AI Agent Service required. How Does the Workshop Work? Tip: Select the self-guided tab in Getting Started for the right instructions. Step-by-step guides at your own pace Code samples and templates Real-world scenarios Get Started See what agentic AI can do for you with the self-guided “Build your code-first agent with Azure AI Foundry” workshop. Build practical skills in one of AI’s most exciting areas. Try the workshop and start building agents that make a difference! Additional Resources Azure AI Foundry Documentation Azure AI Agent Service Overview Questions or feedback Questions or feedback? Visit the issues page. Happy learning and building with Azure AI Agent Service!1.2KViews0likes0CommentsAI Agents: Mastering Agentic RAG - Part 5
This blog post, Part 5 of a series on AI agents, explores Agentic RAG (Retrieval-Augmented Generation), a paradigm shift in how LLMs interact with external data. Unlike traditional RAG, Agentic RAG allows LLMs to autonomously plan their information retrieval process through an iterative loop of actions and evaluations. The post highlights the importance of the LLM "owning" the reasoning process, dynamically selecting tools and refining queries. It covers key implementation details, including iterative loops, tool integration, memory management, and handling failure modes. Practical use cases, governance considerations, and code examples demonstrating Agentic RAG with AutoGen, Semantic Kernel, and Azure AI Agent Service are provided. The post concludes by emphasizing the transformative potential of Agentic RAG and encourages further exploration through linked resources and previous blog posts in the series.2.5KViews1like0Comments