artificial intelligence
322 TopicsFoundry IQ: boost response relevance by 36% with agentic retrieval
The latest RAG performance evaluations and results for knowledge bases and built-in agentic retrieval engine. Foundry IQ by Azure AI Search is a unified knowledge layer for agents, designed to improve response performance, automate RAG workflows and enable enterprise-ready grounding. These evaluations tested RAG performance for knowledge bases and new features including retrieval reasoning effort and federated sources like web and SharePoint for M365. Foundry IQ and Azure AI Search are part of Microsoft Foundry.1.3KViews1like0CommentsAzure Resiliency: Proactive Continuity with Agentic Experiences and Frontier Innovation
Introduction In today’s digital-first world, even brief downtime can disrupt revenue, reputation, and operations. Azure’s new resiliency capabilities empower organizations to anticipate and withstand disruptions—embedding continuity into every layer of their business. At Microsoft Ignite, we’re unveiling a new era of resiliency in Azure, powered by agentic experiences. The new Azure Copilot resiliency agent brings AI-driven workflows that proactively detect vulnerabilities, automate backups, and integrate cyber recovery for ransomware protection. IT teams can instantly assess risks and deploy solutions across infrastructure, data, and cyber recovery—making resiliency a living capability, not just a checklist. The Evolution from Azure Business Continuity Center to Resiliency in Azure Microsoft is excited to announce that the Azure Business Continuity Center (ABCC) is evolving into resiliency capabilities in Azure. This evolution expands its scope from traditional backup and disaster recovery to a holistic resiliency framework. This new experience is delivered directly in the Azure Portal, providing integrated dashboards, actionable recommendations, and one-click access to remediation—so teams can manage resiliency where they already operate. Learn more about this: aka.ms/Ignite2025/Resiliencyblog. To see the new experience, visit the Azure Portal. The Three Pillars of Resiliency Azure’s resiliency strategy is anchored in three foundational pillars, each designed to address a distinct dimension of operational continuity: Infrastructure Resiliency: Built-in redundancy and zonal/regional management keep workloads running during disruptions. The resiliency agent in Azure Copilot automates posture checks, risk detection, and remediation. Data Resiliency: Automated backup and disaster recovery meet RPO/RTO and compliance needs across Azure, on-premises, and hybrid. Cyber Recovery: Isolated recovery vaults, immutable backups, and AI-driven insights defend against ransomware and enable rapid restoration. With these foundational pillars in place, organizations can adopt a lifecycle approach to resiliency—ensuring continuity from day one and adapting as their needs evolve. The Lifecycle Approach: Start Resilient, Get Resilient, Stay Resilient While the pillars define what resiliency protects, the lifecycle stages in resiliency journey define how organizations implement and sustain it over time. For the full framework, see the prior blog; below we focus on what’s new and practical. The resiliency agent in Azure Copilot empowers organizations to embed resiliency at every stage of their cloud journey—making proactive continuity achievable from day one and sustainable over time. Start Resilient: With the new resiliency agent, teams can “Start Resilient” by leveraging guided experiences and automated posture assessments that help design resilient workloads before deployment. The agent surfaces architecture gaps, validates readiness, and recommends best practices—ensuring resiliency is built in from the outset, not bolted on later. Get Resilient: As organizations scale, the resiliency agent enables them to “Get Resilient” by providing estate-wide visibility, automated risk assessments, and configuration recommendations. AI-driven insights help identify blind spots, remediate risks, and accelerate the adoption of resilient-by-default architectures—so resiliency is actively achieved across all workloads, not just planned. Stay Resilient: To “Stay Resilient,” the resiliency agent delivers continuous validation, monitoring, and improvement. Automated failure simulations, real-time monitoring, and attestation reporting allow teams to proactively test recovery workflows and ensure readiness for evolving threats. One-click failover and ongoing posture checks help sustain compliance and operational continuity, making resiliency a living capability that adapts as your business and technology landscape changes Best Practices for Proactive Continuity in Resiliency To enable proactive continuity, organizations should: Architect for high availability across multiple availability zones and regions (prioritize Tier-0/1 workloads). Automate recovery with Azure Site Recovery and failover playbooks for orchestrated, rapid restoration. Leverage integrated zonal resiliency experiences to uncover blind spots and receive tailored recommendations. Continuously validate using Chaos Studio to simulate outages and test recovery workflows. Monitor SLAs, RPO/RTO, and posture metrics with Azure Monitor and Policy; iterate for ongoing improvement. Use the Azure Copilot resiliency agent for AI-driven posture assessments, remediation scripts, and cost analysis to streamline operations. Conclusion & Next Steps Resiliency capabilities in Azure unifies infrastructure, data, and cyber recovery while guiding organizations to start, get, and stay resilient. Teams adopting these capabilities see faster posture improvements, less manual effort, and continuous operational continuity. This marks a fundamental shift—from reactive recovery to proactive continuity. By embedding resiliency as a living capability, Azure empowers organizations to anticipate, withstand, and recover from disruptions, adapting to new threats and evolving business needs. Organizations adopting Resiliency in Azure see measurable impact: Accelerated posture improvement with AI-driven insights and actionable recommendations. Less manual effort through automation and integrated recovery workflows. Continuous operational continuity via ongoing validation and monitoring Ready to take the next step? Explore these resources and sessions: Resiliency in Azure (Portal) Resiliency in Azure (Learn Docs) Agents (preview) in Azure Copilot Resiliency Solutions Reliability Guides by Service Azure Essentials Azure Accelerate Ignite Announcement Key Ignite 2025 Sessions to Watch: Resilience by Design: Secure, Scalable, AI-Ready Cloud with Azure (BRK217) Resiliency & Recovery with Azure Backup and Site Recovery (BRK146) Architect Resilient Apps with Azure Backup and Reliability Features (BRK148) Architecting for Resiliency on Azure Infrastructure (BRK178) All sessions are available on demand—perfect for catching up or sharing with your team. Browse the full session catalog and start building resiliency by default today.265Views3likes0CommentsAzure IoT Operations 2510 Now Generally Available
Introduction We’re thrilled to announce the general availability of Azure IoT Operations 2510, the latest evolution of the adaptive cloud approach for AI in industrial and large scale commercial IoT. With this release, organizations can unlock new levels of scalability, security, and interoperability, empowering teams to seamlessly connect, manage, and analyze data from edge to cloud. What is Azure IoT Operations? Azure IoT Operations is more than an edge-to-cloud data plane, it’s the foundation for AI in physical environments, enabling intelligent systems to perceive, reason, and act in the real world. Built on Arc-enabled Kubernetes clusters, Azure IoT Operations unifies operational and business data across distributed environments, eliminating silos and delivering repeatability and scalability. By extending familiar Azure management concepts to physical sites, AIO creates an AI-ready infrastructure that supports autonomous, adaptive operations at scale. This approach bridges information technology (IT), operational technology (OT), and data domains, empowering customers to discover, collect, process, and send data using open standards while laying the groundwork for self-optimizing environments where AI agents and human supervisors collaborate seamlessly. We've put together a quick demo video showcasing the key features of this 2510 release. Watch below to discover how Azure IoT Operations' modular and scalable data services empowers IT, OT and developers. What’s New in Azure IoT Operations 2510? Management actions: Powerful management actions put you in control of processes and asset configurations, making operations simpler and smarter. Web Assembly (Wasm) data graphs: Wasm-powered data graphs for advanced edge processing, delivering fast, modular analytics and business logic right where your data lives. New connectors: Expanded connector options now include OPC UA, ONVIF, Media, REST/HTTP, and Server-Sent Events (SSE), opening the door to richer integrations across diverse industrial and IT systems. OpenTelemetry (OTel) endpoints: Data flows now support sending data directly to OpenTelemetry collectors, integrating device and system telemetry into your existing observability infrastructure. Improved observability: Real-time health status for assets gives you unmatched visibility and confidence in your IoT ecosystem. Reusable Connector templates: Streamline connector configuration and deployment across clusters. Device support in Azure Device Registry: Azure Device Registry (ADR) now treats devices as first‑class resources within ADR namespaces, enabling logical isolation and role‑based access control at scale. Automatic device and asset discovery and onboarding: Akri‑powered discovery continuously detects devices and industrial assets on the network, then automatically provisions and onboards them (including creating the right connector instances) so telemetry starts flowing with minimal manual setup. MQTT Data Persistence: Data can now be persisted to disk, ensuring durability across broker restarts. X.509 Auth in MQTT broker: The broker now supports X.509 authentication backed by Azure's Device Registry. Flexible RBAC: Built-in roles and custom role definitions to simplify and secure access management for AIO resources. Customers and partners Chevron, through its Facilities and Operations of the Future initiative, deployed Azure IoT Operations with Azure Arc to manage edge-to-cloud workloads across remote oil and gas sites. With a single management plane, the strategy unifies control over thousands of distributed sensors, cameras, robots, and drones. Real-time monitoring and AI enabled anomaly detection not only to enhance operational efficiency but also significantly improve worker safety by reducing routine inspections and enabling remote issue mitigation. This reuse of a global, AI-ready architecture positions Chevron to deliver more reliable, cleaner energy. [microsoft.com] Husqvarna implemented Azure IoT Operations across its global manufacturing network as part of a comprehensive strategy. This adaptive cloud approach integrates cloud, on-premises, and edge systems, preserves legacy investments, and enables real-time edge analytics. The result: data operationalization is 98% faster, imaging costs were slashed by half, productivity was improved, and downtime was reduced. Additionally, AI-driven capabilities like the Factory Companion powered by Azure AI empower technicians with instant, data-informed troubleshooting, shifting maintenance from reactive to predictive across sites. [microsoft.com] Together, these success stories show how Azure IoT Operations, combined with capabilities like Azure Arc, can empower industrial leaders to advance from siloed operations to unified, intelligent systems that boost efficiency, safety, and innovation. Additionally, this year we are celebrating how our partners are integrating, co-innovating, and scaling real customer outcomes. You can learn more about our partner successes at https://aka.ms/Ignite25/DigitalOperationsBlog. Learn more at our launch event Join us at Microsoft Ignite to dive deeper into the latest innovations in Azure IoT Operations 2510. Our sessions will showcase real-world demos plus expert insights on how new capabilities accelerate industrial transformation. Don’t miss the chance to connect with product engineers, explore solution blueprints, and see how Azure IoT Operations lays the foundation for building and scaling physical AI. Get Started Ready to experience the new capabilities in Azure IoT Operations 2510? Explore the latest documentation and quickstart guides at https://aka.ms/AzureIoTOperations Connect with the Azure IoT Tech Community to share feedback and learn from peers.299Views0likes0CommentsGPT‑5.1 in Foundry: A Workhorse for Reasoning, Coding, and Chat
The pace of AI innovation is accelerating, and developers—across startups and global enterprises—are at the heart of this transformation. Today marks a significant moment for enterprise AI innovation: Azure AI Foundry is unveiling OpenAI’s GPT-5.1 series, the next generation of reasoning, analytics, and conversational intelligence. The following models will be rolling out in Foundry today: GPT-5.1: adaptive, more efficient reasoning GPT-5.1-chat: chat with new chain-of-thought for end-users GPT-5.1-codex: optimized for long-running conversations with enhanced tools and agentic workflows GPT-5.1-codex-mini: a compact variant for resource-constrained environments What’s new with GPT-5.1 series The GPT-5.1 series is built to respond faster to users in a variety of situations with adaptive reasoning, improving latency and cost efficiency across the series by varying thinking time more significantly. This, combined with other tooling improvements, enhanced stepwise reasoning visibility, multimodal intelligence, and enterprise-grade compliance. GPT-5.1: Adaptive and Efficient Reasoning GPT-5.1 is the mainline model engineered to deliver adaptive, stepwise reasoning that adjusts its approach based on the complexity of each task. Core capabilities included: Adaptive reasoning for nuanced, context-aware thinking time Multimodal intelligence: supporting text, image, and audio inputs/outputs Enterprise-grade performance, security, and compliance This model’s flexibility empowers developers to tackle a wide spectrum of tasks—from simple queries to deep, multi-step workflows for enterprise-grade solutions. With its ability to intelligently balance speed, cost, and intelligence, GPT-5.1 sets a new standard for both performance and efficiency in AI-powered development. GPT-5.1-chat: Elevating Interactive Experiences with Smart, Safe Conversations GPT-5.1-chat powers fast, context-aware chat experiences with adaptive reasoning and robust safety guardrails. With chain-of-thought added in the chat for the first time, it brings an interactive experience to the next level. It’s tuned for safety and instruction-following, making it ideal for customer support, IT helpdesk, HR, and sales enablement. Multimodal chat (text, image, and audio) improves long-turn consistency for real problem solving, delivering brand-aligned, safe conversations, and supporting next-best-action recommendations. GPT-5.1-codex and GPT-5.1-codex-mini: Frontier Models for Agentic Coding GPT-5.1-codex builds on the foundation set by GPT-5-codex, advancing developer tooling with: Enhanced reasoning frameworks for stepwise, context-aware code analysis and generation; plus Enhanced tool handling for certain development scenario's Multimodal intelligence for richer developer experiences when coding With Foundry’s enterprise-grade security and governance, GPT-5.1-codex is ideal for automated code generation and review, accelerating development cycles with intelligent code suggestions, refactoring, and bug detection. GPT-5.1-codex-mini is a compact, efficient variant optimized for resource-constrained environments. It maintains near state-of-the-art performance, multimodal intelligence, and the same safety stack and tool access as GPT-5.1-codex, making it best for cost-effective, scalable solutions in education, startups, and cost-conscience settings. Together, these Codex models empower teams to innovate faster and with greater confidence. Selecting Your AI Engine: Match Model Strengths to Your Business Goals One of the advantages of the GPT-5.1 series is unified access to deep reasoning, adaptive chat, and advanced coding—all in one place. Here’s how to match model strengths to your needs: Opt for GPT-5.1 for general ai application use—tasks like analytics, research, legal/financial review, or consolidating large documents and codebases. It’s the model of choice for reliability and high-impact outputs. Go with GPT-5.1-chat for interactive assistants and product UX, especially when adaptive reasoning is required for complex cases. Reasoning hints and adaptive reasoning help with customer latency perception. Leverage GPT-5.1-codex for deep, stepwise reasoning in complex code generation, refactoring, or multi-step analysis—ideal for demanding agentic workflows and enterprise automation. Utilize GPT-5.1-codex-mini for efficient, cost-effective coding intelligence in broad-scale deployment, education, or resource-constrained environments—delivering near-mainline performance in a compact model. Deployment and Pricing Model Deployment Available Regions Pricing ($/million tokens) Input Cached Input Output GPT-5.1 Standard Global Global $1.25 $0.125 $10.00 Standard Data Zone Data Zone (US & EU) $1.38 $0.14 $11.00 GPT-5.1-chat Standard Global Global $1.25 $0.125 $10.00 GPT-5.1-codex Standard Global Global $1.25 $0.125 $10.00 GPT-5.1-codex-mini Standard Global Global $0.25 $0.025 $2.00 Start Building Today The GPT-5.1 series is now available in Foundry Models. Whether you’re building for enterprise, small and medium-sized business, or launching the next digital-native app, these models and the Foundry platform are designed to help you innovate faster, safer, and at scale.13KViews1like22CommentsAccelerating HPC and EDA with Powerful Azure NetApp Files Enhancements
High-Performance Computing (HPC) and Electronic Design Automation (EDA) workloads demand uncompromising performance, scalability, and resilience. Whether you're managing petabyte-scale datasets or running compute intensive simulations, Azure NetApp Files delivers the agility and reliability needed to innovate without limits.318Views0likes0CommentsMiniMax-M2: The Open-Source Innovator in Coding and Agentic Workflows Now in Azure AI Foundry
We’re thrilled to announce that MiniMax-M2, the latest breakthrough from MiniMax, is now available in Azure AI Foundry through Hugging Face. Built for developers, this model advances capabilities for what’s possible in coding, multi-turn reasoning, and agentic workflows—while delivering enhanced efficiency and scalability. What makes MiniMax-M2 different? MiniMax-M2 isn’t just another large language model—it’s a 230B-parameter Mixture of Experts (MoE) architecture that activates 10B parameters per task, ensuring better performance at a lower cost. This design enables: Enhanced efficiency: Achieve top-tier results up to 8% of the cost of comparable models. Increased context handling: With an industry-leading 204K token context window and 131K output capacity, MiniMax-M2 can process entire codebases, multi-file projects, and long-form documentation without losing coherence. Commercial ready: Released under Apache 2.0, MiniMax-M2 is open-source and ready to deploy into your workflow. The model was ranked #5 overall on the Artificial Analysis Intelligence Index, making MiniMax-M2 one of the highest-ranked open-source model globally, outperforming many proprietary systems in reasoning, coding, and language understanding. For organizations seeking high-throughput, low-latency deployments, MiniMax-M2 runs seamlessly on an 8xH100 setup using vLLM, making it both powerful and practical. The graphic above compares MiniMax-M2’s performance across multiple industry-standard benchmarks against leading models like DeepSeek-V3.2, GLM-4.6, and Gemini 2.5 Pro. While proprietary models such as GPT-5 (thinking) and Claude Sonnet 4.5 remain strong in certain areas, MiniMax-M2 delivers competitive results as an open-source solution, offering enterprise-grade performance for organizations seeking high-quality AI without compromising scalability or flexibility. Why it matters for developers MiniMax-M2 is built for modern development workflows. Whether you’re generating production-ready code, automating agentic tasks, or managing large-scale projects, this model delivers accuracy, speed, and flexibility while keeping infrastructure costs in check. Mixture of Experts Architecture: 230B total parameters, 10B active per task for cost-effective scalability. Ultra-Large Context Window: 204K tokens for comprehensive project understanding. Advanced Coding Intelligence: Optimized for code generation, debugging, multi-file editing, and test-driven development. Agentic Workflow Support: Handles complex tool integrations and multi-step problem-solving with ease. Open Source Freedom: Apache 2.0 license for commercial use. MiniMax-M2 can support finance and legal workflows by automating document-heavy tasks. In finance, it could help generate audit reports, investment summaries, and portfolio analyses by processing large datasets and regulatory guidelines in a single pass, which can improve accuracy and reduce manual effort. In legal, it could assist with case law research by summarizing extensive statutes and precedents, extracting relevant insights, and providing context-specific recommendations. With its large context window and reasoning capabilities, MiniMax-M2 can enable faster, more efficient handling of complex information, allowing professionals to focus on higher-value activities. Get started today MiniMax-M2 is now live in Azure AI Foundry, explore its capabilities and try it today.561Views0likes0CommentsBuilding AI Agents: Workflow-First vs. Code-First vs. Hybrid
AI Agents are no longer just a developer’s playground. They’re becoming essential for enterprise automation, decision-making, and customer engagement. But how do you build them? Do you go workflow-first with drag-and-drop designers, code-first with SDKs, or adopt a hybrid approach that blends both worlds? In this article, I’ll walk you through the landscape of AI Agent design. We’ll look at workflow-first approaches with drag-and-drop designers, code-first approaches using SDKs, and hybrid models that combine both. The goal is to help you understand the options and choose the right path for your organization. Why AI Agents Need Orchestration Before diving into tools and approaches, let’s talk about why orchestration matters. AI Agents are not just single-purpose bots anymore. They often need to perform multi-step reasoning, interact with multiple systems, and adapt to dynamic workflows. Without orchestration, these agents can become siloed and fail to deliver real business value. Here’s what I’ve observed as the key drivers for orchestration: Complexity of Enterprise Workflows Modern business processes involve multiple applications, data sources, and decision points. AI Agents need a way to coordinate these steps seamlessly. Governance and Compliance Enterprises require control over how AI interacts with sensitive data and systems. Orchestration frameworks provide guardrails for security and compliance. Scalability and Maintainability A single agent might work fine for a proof of concept, but scaling to hundreds of workflows requires structured orchestration to avoid chaos. Integration with Existing Systems AI Agents rarely operate in isolation. They need to plug into ERP systems, CRMs, and custom apps. Orchestration ensures these integrations are reliable and repeatable. In short, orchestration is the backbone that turns AI Agents from clever prototypes into enterprise-ready solutions. Behind the Scenes I’ve always been a pro-code guy. I started my career on open-source coding in Unix and hardly touched the mouse. Then I discovered Visual Studio, and it completely changed my perspective. It showed me the power of a hybrid approach, the best of both worlds. That said, I won’t let my experience bias your ideas of what you’d like to build. This blog is about giving you the full picture so you can make the choice that works best for you. Workflow-First Approach Workflow-first platforms are more than visual designers and not just about drag-and-drop simplicity. They represent a design paradigm where orchestration logic is abstracted into declarative models rather than imperative code. These tools allow you to define agent behaviors, event triggers, and integration points visually, while the underlying engine handles state management, retries, and scaling. For architects, this means faster prototyping and governance baked into the platform. For developers, it offers extensibility through connectors and custom actions without sacrificing enterprise-grade reliability. Copilot Studio Building conversational agents becomes intuitive with a visual designer that maps prompts, actions, and connectors into structured flows. Copilot Studio makes this possible by integrating enterprise data and enabling agents to automate tasks and respond intelligently without deep coding. Building AI Agents using Copilot Studio Design conversation flows with adaptive prompts Integrate Microsoft Graph for contextual responses Add AI-driven actions using Copilot extensions Support multi-turn reasoning for complex queries Enable secure access to enterprise data sources Extend functionality through custom connectors Logic Apps Adaptive workflows and complex integrations are handled through a robust orchestration engine. Logic Apps introduces Agent Loop, allowing agents to reason iteratively, adapt workflows, and interact with multiple systems in real time. Building AI Agents using Logic Apps Implement Agent Loop for iterative reasoning Integrate Azure OpenAI for goal-driven decisions Access 1,400+ connectors for enterprise actions Support human-in-the-loop for critical approvals Enable multi-agent orchestration for complex tasks Provide observability and security for agent workflows Power Automate Multi-step workflows can be orchestrated across business applications using AI Builder models or external AI APIs. Power Automate enables agents to make decisions, process data, and trigger actions dynamically, all within a low-code environment. Building AI Agents using Power Automate Automate repetitive tasks with minimal effort Apply AI Builder for predictions and classification Call Azure OpenAI for natural language processing Integrate with hundreds of enterprise connectors Trigger workflows based on real-time events Combine flows with human approvals for compliance Azure AI Foundry Visual orchestration meets pro-code flexibility through Prompt Flow and Connected Agents, enabling multi-step reasoning flows while allowing developers to extend capabilities through SDKs. Azure AI Foundry is ideal for scenarios requiring both agility and deep customization. Building AI Agents using Azure AI Foundry Design reasoning flows visually with Prompt Flow Orchestrate multi-agent systems using Connected Agents Integrate with VS Code for advanced development Apply governance and deployment pipelines for production Use Azure OpenAI models for adaptive decision-making Monitor workflows with built-in observability tools Microsoft Agent Framework (Preview) I’ve been exploring Microsoft Agent Framework (MAF), an open-source foundation for building AI agents that can run anywhere. It integrates with Azure AI Foundry and Azure services, enabling multi-agent workflows, advanced memory services, and visual orchestration. With public preview live and GA coming soon, MAF is shaping how we deliver scalable, flexible agentic solutions. Enterprise-scale orchestration is achieved through graph-based workflows, human-in-the-loop approvals, and observability features. The Microsoft Agent Framework lays the foundation for multi-agent systems that are durable and compliant. Building AI Agents using Microsoft Agent Framework Coordinate multiple specialized agents in a graph Implement durable workflows with pause and resume Support human-in-the-loop for controlled autonomy Integrate with Azure AI Foundry for hosting and governance Enable observability through OpenTelemetry integration Provide SDK flexibility for custom orchestration patterns Visual-first platforms make building AI Agents feel less like coding marathons and more like creative design sessions. They’re perfect for those scenarios when you’d rather design than debug and still want the option to dive deeper when complexity calls. Pro-Code Approach Remember I told you how I started as a pro-code developer early in my career and later embraced a hybrid approach? I’ll try to stay neutral here as we explore the pro-code world. Pro-code frameworks offer integration with diverse ecosystems, multi-agent coordination, and fine-grained control over logic. While workflow-first and pro-code approaches both provide these capabilities, the difference lies in how they balance factors such as ease of development, ease of maintenance, time to deliver, monitoring capabilities, and other non-functional requirements. Choosing the right path often depends on which of these trade-offs matter most for your scenario. LangChain When I first explored LangChain, it felt like stepping into a developer’s playground for AI orchestration. I could stitch together prompts, tools, and APIs like building blocks, and I enjoyed the flexibility. It reminded me why pro-code approaches appeal to those who want full control over logic and integration with diverse ecosystems. Building AI Agents using LangChain Define custom chains for multi-step reasoning [it is called Lang“Chain”] Integrate external APIs and tools for dynamic actions Implement memory for context-aware conversations Support multi-agent collaboration through orchestration patterns Extend functionality with custom Python modules Deploy agents across cloud environments for scalability Semantic Kernel I’ve worked with Semantic Kernel when I needed more control over orchestration logic, and what stood out was its flexibility. It provides both .NET and Python SDKs, which makes it easy to combine natural language prompts with traditional programming logic. I found the planners and skills especially useful for breaking down goals into smaller steps, and connectors helped integrate external systems without reinventing the wheel. Building AI Agents using Semantic Kernel Create semantic functions for prompt-driven tasks Use planners for dynamic goal decomposition Integrate plugins for external system access Implement memory for persistent context across sessions Combine AI reasoning with deterministic code logic Enable observability and telemetry for enterprise monitoring Microsoft Agent Framework (Preview) Although I introduced MAF in the earlier section, its SDK-first design makes it relevant here as well for advanced orchestration and the pro-code nature… and so I’ll probably write this again in the Hybrid section. The Agent Framework is designed for developers who need full control over multi-agent orchestration. It provides a pro-code approach for defining agent behaviors, implementing advanced coordination patterns, and integrating enterprise-grade observability. Building AI Agents using Microsoft Agent Framework Define custom orchestration logic using SDK APIs Implement graph-based workflows for multi-agent coordination Extend agent capabilities with custom code modules Apply durable execution patterns with pause and resume Integrate OpenTelemetry for detailed monitoring and debugging Securely host and manage agents through Azure AI Foundry integration Hybrid Approach and decision framework I’ve always been a fan of both worlds, the flexibility of pro-code and the simplicity of workflow drag-and-drop style IDEs and GUIs. A hybrid approach is not about picking one over the other; it’s about balancing them. In practice, this to me means combining the speed and governance of workflow-first platforms with the extensibility and control of pro-code frameworks. Hybrid design shines when you need agility without sacrificing depth. For example, I can start with Copilot Studio to build a conversational agent using its visual designer. But if the scenario demands advanced logic or integration, I can call an Azure Function for custom processing, trigger a Logic Apps workflow for complex orchestration, or even invoke the Microsoft Agent Framework for multi-agent coordination. This flexibility delivers the best of both worlds, low-code for rapid development (remember RAD?) and pro-code for enterprise-grade customization with complex logic or integrations. Why go Hybrid Ø Balance speed and control: Rapid prototyping with workflow-first tools, deep customization with code. Ø Extend functionality: Call APIs, Azure Functions, or SDK-based frameworks from visual workflows. Ø Optimize for non-functional requirements: Address maintainability, monitoring, and scalability without compromising ease of development. Ø Enable interoperability: Combine connectors, plugins, and open standards for diverse ecosystems. Ø Support multi-agent orchestration: Integrate workflow-driven agents with pro-code agents for complex scenarios. The hybrid approach for building AI Agents is not just a technical choice but a design philosophy. When I need rapid prototyping or business automation, workflow-first is my choice. For multi-agent orchestration and deep customization, I go with code-first. Hybrid makes sense for regulated industries and large-scale deployments where flexibility and compliance are critical. The choice isn’t binary, it’s strategic. I’ve worked with both workflow-first tools like Copilot Studio, Power Automate, and Logic Apps, and pro-code frameworks such as LangChain, Semantic Kernel, and the Microsoft Agent Framework. Each approach has its strengths, and the decision often comes down to what matters most for your scenario. If rapid prototyping and business automation are priorities, workflow-first platforms make sense. When multi-agent orchestration, deep customization, and integration with diverse ecosystems are critical, pro-code frameworks give you the flexibility and control you need. Hybrid approaches bring both worlds together for regulated industries and large-scale deployments where governance, observability, and interoperability cannot be compromised. Understanding these trade-offs will help you create AI Agents that work so well, you’ll wonder if they’re secretly applying for your job! About the author Pradyumna (Prad) Harish is a Technology leader in the WW GSI Partner Organization at Microsoft. He has 26 years of experience in Product Engineering, Partner Development, Presales, and Delivery. Responsible for revenue growth through Cloud, AI, Cognitive Services, ML, Data & Analytics, Integration, DevOps, Open-Source Software, Enterprise Architecture, IoT, Digital strategies and other innovative areas for business generation and transformation; achieving revenue targets via extensive experience in managing global functions, global accounts, products, and solution architects across over 26 countries.7.6KViews3likes0CommentsAnnouncing GPT‑5‑Codex: Redefining Developer Experience in Azure AI Foundry
Today, we’re excited to announce OpenAI’s GPT‑5‑Codex is generally available in Azure AI Foundry, and in public preview for GitHub Copilot in Visual Studio Code. This release is the next step in our continuous commitment to empower developers with the latest model innovation, now building on the proven strengths of the earlier Codex generation along with the speed and CLI fluency many teams have adopted with the latest codex‑mini. Next-level features for developers Multimodal coding in a single flow: GPT-5-Codex accepts multimodal inputs including text and image. With this multimodal intelligence, developers are now empowered to tackle complex tasks, delivering context-aware, repository-scale solutions in one single workflow. Advanced tool use across various experiences: GPT-5-Codex is built for real-world developer experiences. Developers in Azure AI Foundry can get seamless automation and deep integration via the Response API, improving developers’ productivity and reducing development time. Code review expertise: GPT‑5‑Codex is specially trained to conduct code reviews and surface critical flows, helping developers catch issues early and improve code quality with AI-powered insights. It transforms code review from a manual bottleneck into an intelligent, adaptive and integrated process, empowering developers to deliver high-quality code experience. How GPT‑5‑Codex makes your life easier Stay in flow, not in friction: With GPT‑5‑Codex, move smoothly from reading issues to writing code and checking UI; all in one place. It keeps context, so developers stay focused and productive. No more jumping between tools or losing track of what they were doing. Refactor and migrate with confidence: Whether cleaning up code or moving to a new framework, GPT‑5‑Codex helps stage updates, run tests, and fix issues as you go. It’s like having a digital colleague for those tricky transitions. Hero use cases: real impact for developers Repo‑aware refactoring assistant: Feed repo and architecture diagrams to GPT‑5‑Codex. Get cohesive refactors, automated builds, and visual verification via screenshots. Flaky test hunter: Target failing test matrices. The model executes runs, polls status, inspects logs, and recommends fixes looping until stability. Cloud migration copilot: Edit IaC scripts, kick off CLI commands, and iterate on errors in a controlled loop, reducing manual toil. Pricing and Deployment available at GA Deployment Available Region Pricing ($/million tokens) Standard Global East US 2 Sweden Central Input Cached Input Output $1.25 $0.125 $10.00 GPT-5-Codex is bringing developers’ coding experience to a new level. Don’t just write code. Let’s redefine what’s possible. Start building with GPT-5-Codex today and turn your bold ideas into reality now powered by the latest innovation in Azure AI Foundry.6.3KViews2likes2CommentsSelecting the Right Agentic Solution on Azure – Part 2 (Security)
Let’s pick up from where we left off in the previous post — Selecting the Right Agentic Solution on Azure - Part 1. Earlier, we explored a decision tree to help identify the most suitable Azure service for building your agentic solution. Following that discussion, we received several requests to dive deeper into the security considerations for each of these services. In this post, we’ll examine the security aspects of each option, one by one. But before going ahead and looking at the security perspective I highly recommend looking at list of Azure AI Services Technologies made available by Microsoft. This list is inclusive of all those services which were part of erstwhile cognitive services and latest additions. Workflows with AI agents and models in Azure Logic Apps (Preview) – This approach focuses on running your agents as an action or as part of an “agent loop” with multiple actions within Azure Logic Apps. It’s important not to confuse this with the alternative setup, where Azure Logic Apps integrates with AI Agents in the Foundry Agent Service—either as a tool or as a trigger. (Announcement: Power your Agents in Azure AI Foundry Agent Service with Azure Logic Apps | Microsoft Community Hub). In that scenario, your agents are hosted under the Azure AI Foundry Agent Service, which we’ll discuss separately below. Although, to create an agent workflow, you’ll need to establish a connection—either to Azure OpenAI or to an Azure AI Foundry project for connecting to a model. When connected to a Foundry project, you can view agents and threads directly within that project’s lists. Since agents here run as Logic Apps actions, their security is governed by the Logic Apps security framework. Let’s look at the key aspects: Easy Auth or App Service Auth (Preview) - Agent workflows often integrate with a broader range of systems—models, MCPs, APIs, agents, and even human interactions. You can secure these workflows using Easy Auth, which integrates with Microsoft Entra ID for authentication and authorization. Read more here: Protect Agent Workflows with Easy Auth - Azure Logic Apps | Microsoft Learn. Securing and Encrypting Data at Rest - Azure Logic Apps stores data in Azure Storage, which uses Microsoft-managed keys for encryption by default. You can further enhance security by: Restricting access to Logic App operations via Azure RBAC Limiting access to run history data Securing inputs and outputs Controlling parameter access for webhook-triggered workflows Managing outbound call access to external services More info here: Secure access and data in workflows - Azure Logic Apps | Microsoft Learn. Secure Data at transit – When exposing your Logic App as an HTTP(S) endpoint, consider using: Azure API Management for access policies and documentation Azure Application Gateway or Azure Front Door for WAF (Web Application Firewall) protection. I highly recommend the labs provided by Logic Apps Product Group to learn more about Agentic Workflows: https://azure.github.io/logicapps-labs/docs/intro. Azure AI Foundry Agent Service – As of this writing, the Azure AI Foundry Agent Service abstracts the underlying infrastructure where your agents run. Microsoft manages this secure environment, so you don’t need to handle compute, network, or storage resources—though bring-your-own-storage is an option. Securing and Encrypting Data at Rest - Microsoft guarantees that your prompts and outputs remain private—never shared with other customers or AI providers (such as OpenAI or Meta). Data (from messages, threads, runs, and uploads) is encrypted using AES-256. It remains stored in the same region where the Agent Service is deployed. You can optionally use Customer-Managed Keys (CMK) for encryption. Read more here: Data, privacy, and security for Azure AI Agent Service - Azure AI Services | Microsoft Learn. Network Security – The service allows integration with your private virtual network using a private endpoint. Note: There are known limitations, such as subnet IP restrictions, the need for a dedicated agent subnet, same-region requirements, and limited regional availability. Read more here: How to use a virtual network with the Azure AI Foundry Agent Service - Azure AI Foundry | Microsoft Learn. Secure Data at transit – Upcoming enhancements include API Management support (soon in Public Preview) for AI APIs, including Model APIs, Tool APIs/MCP servers, and Agent APIs. Here is another great article about using APIM to safeguard HTTP APIs exposed by Azure OpenAI that let your applications perform embeddings or completions by using OpenAI's language models. Agent Orchestrators – We’ve introduced the Agent Framework, which succeeds both AutoGen and Semantic Kernel. According to the product group, it combines the best capabilities of both predecessors. Support for Semantic Kernel and related documentation for AutoGen will continue to be available for some time to allow users to transition smoothly to the new framework. When discussing the security aspects of agent orchestrators, it’s important to note that these considerations also extend to the underlying services hosting them—whether on AKS or Container Apps. However, this discussion will not focus on the security features of those hosting environments, as comprehensive resources already exist for them. Instead, we’ll focus on common security concerns applicable across different orchestrators, including AutoGen, Semantic Kernel, and other frameworks such as LlamaIndex, LangGraph, or LangChain. Key areas to consider include (but are not limited to): Secure Secrets / Key Management Avoid hard-coding secrets (e.g., API keys for Foundry, OpenAI, Anthropic, Pinecone, etc.). Use secret management solutions such as Azure Key Vault or environment variables. Encrypt secrets at rest and enforce strict limits on scope and lifetime. Access Control & Least Privilege Grant each agent or tool only the minimum required permissions. Implement Role-Based Access Control (RBAC) and enforce least privilege principles. Use strong authentication (e.g., OAuth2, Azure AD) for administrative or tool-level access. Restrict the scope of external service credentials (e.g., read-only vs. write) and rotate them regularly. Isolation / Sandboxing Isolate plugin execution and use inter-process separation as needed. Prevent user inputs from executing arbitrary code on the host. Apply resource limits for model or function execution to mitigate abuse. Sensitive Data Protection Encrypt data both at rest and in transit. Mask or remove PII before sending data to models. Avoid persisting sensitive context unnecessarily. Ensure logs and memory do not inadvertently expose secrets or user data. Prompt & Query Security Sanitize or escape user input in custom query engines or chat interfaces. Protect against prompt injection by implementing guardrails to monitor and filter prompts. Set context length limits and use safe output filters (e.g., profanity filters, regex validators). Observability, Logging & Auditing Maintain comprehensive logs, including tool invocations, agent decisions, and execution paths. Continuously monitor for anomalies or unexpected behaviour. I hope this overview assists you in evaluating and implementing the appropriate security measures for your chosen agentic solution.485Views3likes3CommentsThe Future of AI: The Model is Key, but the App is the Doorway
This post explores the real-world impact of GPT-5 beyond benchmark scores, focusing on how application design shapes user experience. It highlights early developer feedback, common integration challenges, and practical strategies for adapting apps to leverage the advanced capabilities of GPT-5 in Foundry Models. From prompt refinement to fine-tuning to new API controls, learn how to make the most of this powerful model.481Views2likes0Comments