ai
2 TopicsFueling the Agentic Web Revolution with NLWeb and PostgreSQL
We’re excited to announce that NLWeb (Natural Language Web), Microsoft’s open project for natural language interfaces on websites now supports PostgreSQL. With this enhancement, developers can leverage PostgreSQL and NLWeb to transform any website into an AI-powered application or Model Context Protocol (MCP) server. This integration allows organizations to utilize a familiar, robust database as the foundation for conversational AI experiences, streamlining deployment and maximizing data security and scalability. Soon, autonomous agents, not just human users, will consume and interpret website content, transforming how information is accessed and utilized online. During Microsoft //Build 2025, Microsoft introduced the era of the open agentic web, in which the internet is an open agentic web a new paradigm in which autonomous agents seamlessly interact across individual, organizational, team and end-to-end business contexts. To realize the future of an open agentic web, Microsoft announced the NLWeb project. NLWeb transforms any website to an AI-powered application with just a few lines of code and by connecting to an AI model and a knowledge base. In this post, we’ll cover: What NLWeb is and how it works with vector databases How pgvector enables vector similarity search in PostgreSQL for NLWeb Get started using NLWeb with Postgres Let’s dive in and see how Postgres + NLWeb can redefine conversational web interfaces while keeping your data in a familiar, powerful database. What is NLWeb? A Quick Overview of Conversational Web Interfaces NLWeb is an open project developed by Microsoft to simplify adding conversational AI interfaces to websites. How NLWeb works under the hood: Processes existing data/website content that exists in semi-structured formats like Schema.org, RSS, and other data that websites already publish Embeds and indexes all the content in a vector store (i.e PostgreSQL with pgvector) Routes user queries through several processes which handle natural langague understanding, reranking and retrieval. Answers queries with an LLM The result is a high-quality natural language interface on top of web data, giving developers the ability to let users “talk to” web data. By default, every NLWeb instance is also a Model Context Protocol (MCP) server, allowing websites to make their content discoverable and accessible to agents and other participants in the MCP ecosystem if they choose. Importantly, NLWeb is platform-agnostic and supports many major operating systems, AI models, and vector stores and the NLWeb project is modular by design, so developers can bring their own retrieval system, model APIs, and define their own extensions. NLWeb with PostgreSQL PostgreSQL is now embedded into the NLWeb reference stack as a native retriever, creating a scalable and flexible path for deploying NLWeb instances using open-source infrastructure. Retrieval Powered by pgvector NLWeb leverages pgvector, a PostgreSQL extension for efficient vector similarity search, to handle natural language retrieval at scale. By integrating pgvector into the NLWeb stack, teams can eliminate the need for external vector databases. Web data stored in PostgreSQL becomes immediately searchable and usable for NLWeb experiences, streamlining infrastructure and enhancing security. PostgreSQL's robust governance features and wide adoption align with NLWeb’s mission to enable conversational AI for any website or content platform. With pgvector retrieval built in, developers can confidently launch NLWeb instances on their own databases no additional infrastructure required. Implementation example We are going to use NLWeb and Postgres, to create a conversational AI app and MCP server that will let us chat with content from the Talking Postgres with Claire Giordano Podcast! Prerequisites An active Azure account. Enable and configure the pg_vector extensions. Create an Azure AI Foundry project. Deploy models gpt-4.1, gpt-4.1-mini and text-embedding-3-small. Install Visual Studio Code. Install the Python extension. Install Python 3.11.x. Install the Azure CLI (latest version). Getting started All the code and sample datasets are available in this GitHub repository. Step 1: Setup NLWeb Server 1. Clone or download the code from the repo. git clone https://github.com/microsoft/NLWeb cd NLWeb 2. Open a terminal to create a virtual python environment and activate it. python -m venv myenv source myenv/bin/activate # Or on Windows: myenv\Scripts\activate 3. Go to the 'code/python' folder in NLWeb to install the dependencies. cd code/python pip install -r requirements.txt 4. Go to the project root folder in NLWeb and copy the .env.template file to a new .env file cd ../../ cp .env.template .env 5. In the .env file, update the API key you will use for your LLM endpoint of choice and update the Postgres connection string. For example: AZURE_OPENAI_ENDPOINT="https://TODO.openai.azure.com/" AZURE_OPENAI_API_KEY="<TODO>" # If using Postgres connection string POSTGRES_CONNECTION_STRING="postgresql://<HOST>:<PORT>/<DATABASE>?user=<USERNAME>&sslmode=require" POSTGRES_PASSWORD="<PASSWORD>" 6. Update your config files (located in the config folder) to make sure your preferred providers match your .env file. There are three files that may need changes. config_llm.yaml: Update the first line to the LLM provider you set in the .env file. By default it is Azure OpenAI. You can also adjust the models you call here by updating the models noted. By default, we are assuming 4.1 and 4.1-mini. config_embedding.yaml: Update the first line to your preferred embedding provider. By default it is Azure OpenAI, using text-embedding-3-small. config_retrieval.yaml: Update the first line to postgres. You should update write_endpoint to postgres and You should update postgres retrieval endpoint is enabled to 'true' in the following list of possible endpoints. Step 2: Initialize Postgres Server Go to the 'code/python/misc folder in NLWeb to run Postgres initializer. NOTE: If you are using Azure Postgres Flexible server make sure you have `vector` extension allow-listed and make sure the database has the vector extension enabled, cd code/python/misc python postgres_load.py Step 3: Ingest Data from Talk Postgres Podcast Now we will load some data in our local vector database to test with. We've listed a few RSS feeds you can choose from below. Go to the 'code/python folder in NLWeb and run the command. The format of the command is as follows (make sure you are still in the 'python' folder when you run this): python -m data_loading.db_load <RSS URL> <site-name> Talking Postgres with Claire Giordano Podcast: python -m data_loading.db_load https://feeds.transistor.fm/talkingpostgres Talking-Postgres (Optional) You can check the documents table in your Postgres database and verify the table looks like the one below. To verify all the data from the website was uploaded. Test NLWeb Server Start your NLWeb server (again from the 'python' folder): python app-file.py Go to http://localhost:8000/ Start ask questions about the Talking Postgres with Claire Giordano Podcast, you may try different modes. Trying List Mode: Sample Prompt: “I want to listen to something that talks about the advances in vector search such as DiskANN” Trying Generate Mode Sample Prompt: “What did Shireesh Thota say about the future of Postgres?” Running NLWeb with MCP 1. If you do not already have it, install MCP in your venv: pip install mcp 2. Next, configure your Claude MCP server. If you don’t have the config file already, you can create the file at the following locations: macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json The default MCP JSON file needs to be modified as shown below: macOS Example Configuration { “mcpServers”: { “ask_nlw”: { “command”: “/Users/yourname/NLWeb/myenv/bin/python”, “args”: [ “/Users/yourname/NLWeb/code/chatbot_interface.py”, “—server”, “http://localhost:8000”, “—endpoint”, “/mcp” ], “cwd”: “/Users/yourname/NLWeb/code” } } } Windows Example Configuration { “mcpServers”: { “ask_nlw”: { “command”: “C:\\Users\\yourusername\\NLWeb\\myenv\\Scripts\\python”, “args”: [ “C:\\Users\\yourusername\\NLWeb\\code\\chatbot_interface.py”, “—server”, “http://localhost:8000”, “—endpoint”, “/mcp” ], “cwd”: “C:\\Users\\yourusername\\NLWeb\\code” } } } Note: For Windows paths, you need to use double backslashes (\\) to escape the backslash character in JSON. 3. Go to the 'code/python’ folder in NLWeb and run the command. Enter your virtual environment and start your NLWeb local server. Make sure it is configured to access the data you would like to ask about from Claude. # On macOS source ../myenv/bin/activate python app-file.py # On Windows ..\myenv\Scripts\activate python app-file.py 4. Open Claude Desktop. It should ask you to trust the 'ask_nlw' external connection if it is configured correctly. After clicking yes and the welcome page appears, you should see 'ask_nlw' in the bottom right '+' options. Select it to start a query. 5. To query NLWeb, just type 'ask_nlw' in your prompt to Claude. You'll notice that you also get the full JSON script for your results. Remember, you must have your local NLWeb server started to use this option. Learn More Vector Store in Azure Postgres Flexible Server Generative AI in Azure Postgres Flexible Server NLWeb GitHub repo includes: A reference server for handling natural language queries PGvector integrationJuly 2025 Recap: Azure Database for PostgreSQL
Hello Azure Community, July delivered a wave of exciting updates to Azure Database for PostgreSQL! From Fabric mirroring support for private networking to cascading read replicas, these new features are all about scaling smarter, performing faster, and building better. This blog covers what’s new, why it matters, and how to get started. Catch Up on POSETTE 2025 In case you missed POSETTE: An Event for Postgres 2025 or couldn't watch all of the sessions live, here's a playlist with the 11 talks all about Azure Database for PostgreSQL. And, if you'd like to dive even deeper, the Ultimate Guide will help you navigate the full catalog of 42 recorded talks published on YouTube. Feature Highlights Upsert and Script activity in ADF and Azure Synapse – Generally Available Power BI Entra authentication support – Generally Available New Regions: Malaysia West & Chile Central Latest Postgres minor versions: 17.5, 16.9, 15.13, 14.18 and 13.21 Cascading Read Replica – Public Preview Private Endpoint and VNet support for Fabric Mirroring - Public Preview Agentic Web with NLWeb and PostgreSQL PostgreSQL for VS Code extension enhancements Improved Maintenance Workflow for Stopped Instances Upsert and Script activity in ADF and Azure Synapse – Generally Available We’re excited to announce the general availability of Upsert method and Script activity in Azure Data Factory and Azure Synapse Analytics for Azure Database for PostgreSQL. These new capabilities bring greater flexibility and performance to your data pipelines: Upsert Method: Easily merge incoming data into existing PostgreSQL tables without writing complex logic reducing overhead and improving efficiency. Script Activity: Run custom SQL scripts as part of your workflows, enabling advanced transformations, procedural logic, and fine-grained control over data operations. Together, these features streamline ETL and ELT processes, making it easier to build scalable, declarative, and robust data integration solutions using PostgreSQL as either a source or sink. Visit our documentation guide for Upsert Method and script activity to know more. Power BI Entra authentication support – Generally Available You can now use Microsoft Entra ID authentication to connect to Azure Database for PostgreSQL from Power BI Desktop. This update simplifies access management, enhances security, and helps you support your organization’s broader Entra-based authentication strategy. To learn more, please refer to our documentation. New Regions: Malaysia West & Chile Central Azure Database for PostgreSQL has now launched in Malaysia West and Chile Central. This expanded regional presence brings lower latency, enhanced performance, and data residency support, making it easier to build fast, reliable, and compliant applications, right where your users are. This continues to be our mission to bring Azure Database for PostgreSQL closer to where you build and run your apps. For the full list of regions visit: Azure Database for PostgreSQL Regions. Latest Postgres minor versions: 17.5, 16.9, 15.13, 14.18 and 13.21 PostgreSQL latest minor versions 17.5, 16.9, 15.13, 14.18 and 13.21 are now supported by Azure Database for PostgreSQL flexible server. These minor version upgrades are automatically performed as part of the monthly planned maintenance in Azure Database for PostgreSQL. This upgrade automation ensures that your databases are always running on the most secure and optimized versions without requiring manual intervention. This release fixes two security vulnerabilities and over 40 bug fixes and improvements. To learn more, please refer PostgreSQL community announcement for more details about the release. Cascading Read Replica – Public Preview Azure Database for PostgreSQL supports cascading read replica in public preview capacity. This feature allows you to scale read-intensive workloads more effectively by creating replicas not only from the primary database but also from existing read replicas, enabling two-level replication chains. With cascading read replicas, you can: Improve performance for read-heavy applications. Distribute read traffic more efficiently. Support complex deployment topologies. Data replication is asynchronous, and each replica can serve as a source for additional replicas. This setup enhances scalability and flexibility for your PostgreSQL deployments. For more details read the cascading read replicas documentation. Private Endpoint and VNET Support for Fabric Mirroring - Public Preview Microsoft Fabric now supports mirroring for Azure Database for PostgreSQL flexible server instances deployed with Virtual Network (VNET) integration or Private Endpoints. This enhancement broadens the scope of Fabric’s real-time data replication capabilities, enabling secure and seamless analytics on transactional data, even within network-isolated environments. Previously, mirroring was only available for flexible server instances with public endpoint access. With this update, organizations can now replicate data from Azure Database for PostgreSQL hosted in secure, private networks, without compromising on data security, compliance, or performance. This is particularly valuable for enterprise customers who rely on VNETs and Private Endpoints for database connectivity from isolated networks. For more details visit fabric mirroring with private networking support blog. Agentic Web with NLWeb and PostgreSQL We’re excited to announce that NLWeb (Natural Language Web), Microsoft’s open project for natural language interfaces on websites now supports PostgreSQL. With this enhancement, developers can leverage PostgreSQL and NLWeb to transform any website into an AI-powered application or Model Context Protocol (MCP) server. This integration allows organizations to utilize a familiar, robust database as the foundation for conversational AI experiences, streamlining deployment and maximizing data security and scalability. For more details, read Agentic web with NLWeb and PostgreSQL blog. PostgreSQL for VS Code extension enhancements PostgreSQL for VS Code extension is rolling out new updates to improve your experience with this extension. We are introducing key connections, authentication, and usability improvements. Here’s what we improved: SSH connections - You can now set up SSH tunneling directly in the Advanced Connection options, making it easier to securely connect to private networks without leaving VS Code. Clearer authentication setup - A new “No Password” option eliminates guesswork when setting up connections that don’t require credentials. Entra ID fixes - Improved default username handling, token refresh, and clearer error feedback for failed connections. Array and character rendering - Unicode and PostgreSQL arrays now display more reliably and consistently. Azure Portal flow - Reuses existing connection profiles to avoid duplicates when launching from the portal. Don’t forget to update to the latest version in the Marketplace to take advantage of these enhancements and visit our GitHub to learn more about this month’s release. Improved Maintenance Workflow for Stopped Instances We’ve improved how scheduled maintenance is handled for stopped or disabled PostgreSQL servers. Maintenance is now applied only when the server is restarted - either manually or through the 7-day auto-restart rather than forcing a restart during the scheduled maintenance window. This change reduces unnecessary disruptions and gives you more control over when updates are applied. You may notice a slightly longer restart time (5–8 minutes) if maintenance is pending. For more information, refer Applying Maintenance on Stopped/Disabled Instances. Azure Postgres Learning Bytes 🎓 Set Up HA Health Status Monitoring Alerts This section will talk about setting up HA health status monitoring alerts using Azure Portal. These alerts can be used to effectively monitor the HA health states for your server. To monitor the health of your High Availability (HA) setup: Navigate to Azure portal and select your Azure Database for PostgreSQL flexible server instance. Create an Alert Rule Go to Monitoring > Alerts > Create Alert Rule Scope: Select your PostgreSQL Flexible Server Condition: Choose the signal from the drop down (CPU percentage, storage percentage etc.) Logic: Define when the alert should trigger Action Group: Specify where the alert should be sent (email, webhook, etc.) Add tags Click on “Review + Create” Verify the Alert Check the Alerts tab in Azure Monitor to confirm the alert has been triggered. For deeper insight into resource health: Go to Azure Portal > Search for Service Health > Select Resource Health. Choose Azure Database for PostgreSQL Flexible Server from the dropdown. Review the health status of your server. For more information, check out the HA Health status monitoring documentation guide. Conclusion That’s a wrap for our July 2025 feature updates! Thanks for being part of our journey to make Azure Database for PostgreSQL better with every release. We’re always working to improve, and your feedback helps us do that. 💬 Got ideas, questions, or suggestions? We’d love to hear from you: https://aka.ms/pgfeedback 📢 Want to stay on top of Azure Database for PostgreSQL updates? Follow us here for the latest announcements, feature releases, and best practices: Azure Database for PostgreSQL Blog Stay tuned for more updates in our next blog!