ai foundry
25 TopicsUnderstanding Small Language Modes
Small Language Models (SLMs) bring AI from the cloud to your device. Unlike Large Language Models that require massive compute and energy, SLMs run locally, offering speed, privacy, and efficiency. They’re ideal for edge applications like mobile, robotics, and IoT.I want to show my agent a picture—Can I?
Welcome to Agent Support—a developer advice column for those head-scratching moments when you’re building an AI agent! Each post answers a question inspired by real conversations in the AI developer community, offering practical advice and tips. To kick things off, we’re tackling a common challenge for anyone experimenting with multimodal agents: working with image input. Let’s dive in! Dear Agent Support, I’m building an AI agent, and I’d like to include screenshots or product photos as part of the input. But I’m not sure if that’s even possible, or if I need to use a different kind of model altogether. Can I actually upload an image and have the agent process it? Great question, and one that trips up a lot of people early on! The short answer is: yes, some models can process images—but not all of them. Let’s break that down a bit. 🧠 Understanding Image Input When we talk about image input or image attachments, we’re talking about the ability to send a non-text file (like a .png, .jpg, or screenshot) into your prompt and have the model analyze or interpret it. That could mean describing what’s in the image, extracting text from it, answering questions about a chart, or giving feedback on a design layout. 🚫 Not All Models Support Image Input That said, this isn’t something every model can do. Most base language models are trained on text data only, they’re not designed to interpret non-text inputs like images. In most tools and interfaces, the option to upload an image only appears if the selected model supports it, since platforms typically hide or disable features that aren't compatible with a model's capabilities. So, if your current chat interface doesn’t mention anything about vision or image input, it’s likely because the model itself isn’t equipped to handle it. That’s where multimodal models come in. These are models that have been trained (or extended) to understand both text and images, and sometimes other data types too. Think of them as being fluent in more than one language, except in this case, one of those “languages” is visual. 🔎 How to Find Image-Supporting Models If you’re trying to figure out which models support images, the AI Toolkit is a great place to start! The extension includes a built-in Model Catalog where you can filter models by Feature—like Image Attachment—so you can skip the guesswork. Here’s how to do it: Open the Model Catalog from the AI Toolkit panel in Visual Studio Code. Click the Feature filter near the search bar. Select Image Attachment. Browse the filtered results to see which models can accept visual input. Once you've got your filtered list, you can check out the model details or try one in the Playground to test how it handles image-based prompts. 🧪 Test Before You Build Before you plug a model into your agent and start wiring things together, it’s a good idea to test how the model handles image input on its own. This gives you a quick feel for the model’s behavior and helps you catch any limitations before you're deep into building. You can do this in the Playground, where you can upload an image and pair it with a simple prompt like: “Describe the contents of this image.” OR “Summarize what’s happening in this screenshot.” If the model supports image input, you’ll be able to attach a file and get a response based on its visual analysis. If you don’t see the option to upload an image, double-check that the model you’ve selected has image capabilities—this is usually a model issue, not a UI bug. 🔁 Recap Here’s a quick rundown of what we covered: Not all models support image input—you’ll need a multimodal model specifically built to handle visual data. Most platforms won’t let you upload an image unless the model supports it, so if you don’t see that option, it’s probably a model limitation. You can use the AI Toolkit’s Model Catalog to filter models by capability—just check the box for Image Attachment. Test the model in the Playground before integrating it into your agent to make sure it behaves the way you expect. 📺 Want to Go Deeper? Check out my latest video on how to choose the right model for your agent—it’s part of the Build an Agent Series, where I walk through the building blocks of turning an idea into a working AI agent. And if you’re looking to sharpen your model instincts, don’t miss Model Mondays—a weekly series that helps developers like you build your Model IQ, one spotlight at a time. Whether you’re just starting out or already building AI-powered apps, it’s a great way to stay current and confident in your model choices. 👉 Explore the series and catch the next episode: aka.ms/model-mondays/rsvp If you're just getting started with building agents, check out our Agents for Beginners curriculum. And for all your general AI and AI agent questions, join us in the Azure AI Foundry Discord! You can find me hanging out there answering your questions about the AI Toolkit. I'm looking forward to chatting with you there! Whatever you're building, the right model is out there—and with the right tools, you'll know exactly how to find it.On‑Device AI with Windows AI Foundry
From “waiting” to “instant”- without sending data away AI is everywhere, but speed, privacy, and reliability are critical. Users expect instant answers without compromise. On-device AI makes that possible: fast, private and available, even when the network isn’t - empowering apps to deliver seamless experiences. Imagine an intelligent assistant that works in seconds, without sending a text to the cloud. This approach brings speed and data control to the places that need it most; while still letting you tap into cloud power when it makes sense. Windows AI Foundry: A Local Home for Models Windows AI Foundry is a developer toolkit that makes it simple to run AI models directly on Windows devices. It uses ONNX Runtime under the hood and can leverage CPU, GPU (via DirectML), or NPU acceleration, without requiring you to manage those details. The principle is straightforward: Keep the model and the data on the same device. Inference becomes faster, and data stays local by default unless you explicitly choose to use the cloud. Foundry Local Foundry Local is the engine that powers this experience. Think of it as local AI runtime - fast, private, and easy to integrate into an app. Why Adopt On‑Device AI? Faster, more responsive apps: Local inference often reduces perceived latency and improves user experience. Privacy‑first by design: Keep sensitive data on the device; avoid cloud round trips unless the user opts in. Offline capability: An app can provide AI features even without a network connection. Cost control: Reduce cloud compute and data costs for common, high‑volume tasks. This approach is especially useful in regulated industries, field‑work tools, and any app where users expect quick, on‑device responses. Hybrid Pattern for Real Apps On-device AI doesn’t replace the cloud, it complements it. Here’s how: Standalone On‑Device: Quick, private actions like document summarization, local search, and offline assistants. Cloud‑Enhanced (Optional): Large-context models, up-to-date knowledge, or heavy multimodal workloads. Design an app to keep data local by default and surface cloud options transparently with user consent and clear disclosures. Windows AI Foundry supports hybrid workflows: Use Foundry Local for real-time inference. Sync with Azure AI services for model updates, telemetry, and advanced analytics. Implement fallback strategies for resource-intensive scenarios. Application Workflow Code Example 1. Only On-Device: Tries Foundry Local first, falls back to ONNX if foundry_runtime.check_foundry_available(): # Use on-device Foundry Local models try: answer = foundry_runtime.run_inference(question, context) return answer, source="Foundry Local (On-Device)" except Exception as e: logger.warning(f"Foundry failed: {e}, trying ONNX...") if onnx_model.is_loaded(): # Fallback to local BERT ONNX model try: answer = bert_model.get_answer(question, context) return answer, source="BERT ONNX (On-Device)" except Exception as e: logger.warning(f"ONNX failed: {e}") return "Error: No local AI available" 2. Hybrid approach: On-device first, cloud as last resort def get_answer(question, context): """ Priority order: 1. Foundry Local (best: advanced + private) 2. ONNX Runtime (good: fast + private) 3. Cloud API (fallback: requires internet, less private) # in case of Hybrid approach, based on real-time scenario """ if foundry_runtime.check_foundry_available(): # Use on-device Foundry Local models try: answer = foundry_runtime.run_inference(question, context) return answer, source="Foundry Local (On-Device)" except Exception as e: logger.warning(f"Foundry failed: {e}, trying ONNX...") if onnx_model.is_loaded(): # Fallback to local BERT ONNX model try: answer = bert_model.get_answer(question, context) return answer, source="BERT ONNX (On-Device)" except Exception as e: logger.warning(f"ONNX failed: {e}, trying cloud...") # Last resort: Cloud API (requires internet) if network_available(): try: import requests response = requests.post( '{BASE_URL_AI_CHAT_COMPLETION}', headers={'Authorization': f'Bearer {API_KEY}'}, json={ 'model': '{MODEL_NAME}', 'messages': [{ 'role': 'user', 'content': f'Context: {context}\n\nQuestion: {question}' }] }, timeout=10 ) answer = response.json()['choices'][0]['message']['content'] return answer, source="Cloud API (Online)" except Exception as e: return "Error: No AI runtime available", source="Failed" else: return "Error: No internet and no local AI available", source="Offline" Demo Project Output: Foundry Local answering context-based questions offline : The Foundry Local engine ran the Phi-4-mini model offline and retrieved context-based data. : The Foundry Local engine ran the Phi-4-mini model offline and mentioned that there is no answer. Practical Use Cases Privacy-First Reading Assistant: Summarize documents locally without sending text to the cloud. Healthcare Apps: Analyze medical data on-device for compliance. Financial Tools: Risk scoring without exposing sensitive financial data. IoT & Edge Devices: Real-time anomaly detection without network dependency. Conclusion On-device AI isn’t just a trend - it’s a shift toward smarter, faster, and more secure applications. With Windows AI Foundry and Foundry Local, developers can deliver experiences that respect user specific data, reduce latency, and work even when connectivity fails. By combining local inference with optional cloud enhancements, you get the best of both worlds: instant performance and scalable intelligence. Whether you’re creating document summarizers, offline assistants, or compliance-ready solutions, this approach ensures your apps stay responsive, reliable, and user-centric. References Get started with Foundry Local - Foundry Local | Microsoft Learn What is Windows AI Foundry? | Microsoft Learn https://devblogs.microsoft.com/foundry/unlock-instant-on-device-ai-with-foundry-local/Impariamo a conoscere MCP: Introduzione al Model Context Protocol (MCP)
Non perderti il prossimo evento “Let’s Learn – MCP” su Microsoft Reactor il 24 di Luglio, pensato per chiunque voglia conoscere meglio il nuovo standard per agenti intelligenti (il Model Context Protocol) e imparare a metterlo in pratica. La sessione è in Italiano e le demo sono in Python, ma fa parte di una serie di live-streaming disponibili in tantissime lingue.AI Repo of the Week: Generative AI for Beginners with JavaScript
Introduction Ready to explore the fascinating world of Generative AI using your JavaScript skills? This week’s featured repository, Generative AI for Beginners with JavaScript, is your launchpad into the future of application development. Whether you're just starting out or looking to expand your AI toolbox, this open-source GitHub resource offers a rich, hands-on journey. It includes interactive lessons, quizzes, and even time-travel storytelling featuring historical legends like Leonardo da Vinci and Ada Lovelace. Each chapter combines narrative-driven learning with practical exercises, helping you understand foundational AI concepts and apply them directly in code. It’s immersive, educational, and genuinely fun. What You'll Learn 1. 🧠 Foundations of Generative AI and LLMs Start with the basics: What is generative AI? How do large language models (LLMs) work? This chapter lays the groundwork for how these technologies are transforming JavaScript development. 2. 🚀 Build Your First AI-Powered App Walk through setting up your environment and creating your first AI app. Learn how to configure prompts and unlock the potential of AI in your own projects. 3. 🎯 Prompt Engineering Essentials Get hands-on with prompt engineering techniques that shape how AI models respond. Explore strategies for crafting prompts that are clear, targeted, and effective. 4. 📦 Structured Output with JSON Learn how to guide the model to return structured data formats like JSON—critical for integrating AI into real-world applications. 5. 🔍 Retrieval-Augmented Generation (RAG) Go beyond static prompts by combining LLMs with external data sources. Discover how RAG lets your app pull in live, contextual information for more intelligent results. 6. 🛠️ Function Calling and Tool Use Give your LLM new powers! Learn how to connect your own functions and tools to your app, enabling more dynamic and actionable AI interactions. 7. 📚 Model Context Protocol (MCP) Dive into MCP, a new standard for organizing prompts, tools, and resources. Learn how it simplifies AI app development and fosters consistency across projects. 8. ⚙️ Enhancing MCP Clients with LLMs Build on what you’ve learned by integrating LLMs directly into your MCP clients. See how to make them smarter, faster, and more helpful. ✨ More chapters coming soon—watch the repo for updates! Companion App: Interact with History Experience the power of generative AI in action through the companion web app—where you can chat with historical figures and witness how JavaScript brings AI to life in real time. Conclusion Generative AI for Beginners with JavaScript is more than a course—it’s an adventure into how storytelling, coding, and AI can come together to create something fun and educational. Whether you're here to upskill, experiment, or build the next big thing, this repository is your all-in-one resource to get started with confidence. 🔗 Jump into the future of development—check out the repo and start building with AI today!AI Toolkit Extension Pack for Visual Studio Code: Ignite 2025 Update
Unlock the Latest Agentic App Capabilities—Now Available with Ignite 2025 The Ignite 2025 update delivers a major leap forward for the AI Toolkit extension pack in VS Code, introducing a unified, end-to-end environment for building, visualizing, and deploying intelligent agentic applications. This release enables developers to build and debug locally in VS Code, then deploy to the cloud with a single click. Seamlessly switch between VS Code and the Foundry portal for visualization, orchestration, and evaluation, creating a smooth roundtrip workflow that accelerates innovation and delivers a truly unified AI development experience. Download the AI Toolkit extension today and start building next-generation agentic apps in VS Code! What Can You Do with the AI Toolkit Extension Pack? Build AI Agents Using GitHub Copilot Scaffold agent applications using best-practice patterns, tool-calling examples, tracing hooks, and test scaffolds, all powered by Copilot and aligned with the Microsoft Agent Framework. Generate agent code in Python or .NET, giving you flexibility to target your preferred runtime. Build and Customize YAML Workflows Design YAML-based workflows in the Foundry portal, then continue editing and testing directly in VS Code. To customize your YAML-based workflows, instantly convert it to Agent Framework code using GitHub Copilot. Upgrade from declarative design to code-first customization without starting from scratch. Visualize Multi-Agent Workflows Envision your code-based agent workflows with an interactive graph visualizer that reveals each component and how they connect Watch in real-time how each node lights up as you run your agent. Use the visualizer to understand and debug complex agent graphs, making iteration fast and intuitive. Experiment, Debug, and Evaluate Locally Use the Hosted Agents Playground to quickly interact with your agents on your development machine. Leverage local tracing support to debug reasoning steps, tool calls, and latency hotspots—so you can quickly diagnose and fix issues. Define metrics, tasks, and datasets for agent evaluation, then implement metrics using the Foundry Evaluation SDK and orchestrate evaluations runs with the help of Copilot. Seamless Integration Across Environments Jump from Foundry Portal to VS Code Web for a development environment in your preferred code editor setting. Open YAML workflows, playgrounds, and agent templates directly in VS Code for editing and deployment. How to Get Started Install the AI Toolkit extension pack from the VS Code marketplace. Install the Azure MCP server extension to leverage GitHub Copilot to interact with your Foundry resources Select the AI Toolkit icon on the VS Code sidebar to view and build with your LLMs and agents. Select the Foundry extension icon for deeper integration and access to enterprise-grade hosting and evaluation. Install the Foundry SDK and review documentation for both AITK and Foundry. Feedback & Support Try out the extensions and let us know what you think! File issues or feedback on our GitHub repo for Foundry extension and AI Toolkit extension. Your input helps us make continuous improvements.AI Toolkit for VS Code October Update
We're thrilled to bring you the October update for the AI Toolkit for Visual Studio Code! This month marks another major milestone with version 0.24.0, introducing groundbreaking GitHub Copilot Tools Integration and additional user experience enhancements that make AI-powered development more seamless than ever. Let's dive into what's new! 👇 🚀 GitHub Copilot Tools Integration We are excited to announce the integration of GitHub Copilot Tools into AI Toolkit for VS Code. This integration empowers developers to build AI-powered applications more efficiently by leveraging Copilot's capabilities enhanced by AI Toolkit. 🤖 AI Agent Code Generation Tool This powerful tool provides best practices, guidance, steps, and code samples on Microsoft Agent Framework for GitHub Copilot to better scaffold AI agent applications. Whether you're building your first agent or scaling complex multi-agent systems, this tool ensures you follow the latest best practices and patterns. 📊 AI Agent Evaluation Planner Tool Building great AI agents requires thorough evaluation. This tool guides users through the complete process of evaluating AI agents, including: Defining evaluation metrics - Establish clear success criteria for your agents Creating evaluation datasets - Generate comprehensive test datasets Analyzing results - Understand your agent's performance and areas for improvement The Evaluation Planner works seamlessly with two specialized sub-tools: 🏃♂️ Evaluation Agent Runner Tool This tool runs agents on provided datasets and collects results, making it easy to test your agents at scale across multiple scenarios and use cases. 💻 Evaluation Code Generation Tool Get best practices, guidance, steps, and code samples on Azure AI Foundry Evaluation Framework for GitHub Copilot to better scaffold code for evaluating AI agents. 🎯 Easy Access and Usage You can access these powerful tools in two convenient ways: Direct GitHub Copilot Integration: Simply enter prompts like: Create an AI agent using Microsoft Agent Framework to help users plan a trip to Paris. Evaluate the performance of my AI agent using Azure AI Foundry Evaluation Framework. AI Toolkit Tree View: For quick access, find these tools in the AI Toolkit Tree View UI under the section `Build Agent with GitHub Copilot`. ✨ Additional Enhancements 🎨 Model Playground Improvements The user experience in Model Playground has been significantly enhanced: Resizable Divider: The divider between chat output and model settings is now resizable, allowing you to customize your workspace layout for better usability and productivity. 📚 Model Catalog Updates We've unified and streamlined the model discovery experience: Unified Local Models: The ONNX models section in the Model Catalog has been merged with Foundry Local Models on macOS and Windows platforms, providing a unified experience for discovering and selecting local models. Simplified Navigation: Find all your local model options in one place, making it easier to compare and select the right model for your use case. ## 🌟 Why This Release Matters Version 0.24.0 represents a significant step forward in making AI development more accessible and efficient: Seamless Integration: The deep integration with GitHub Copilot means AI best practices are now available right where you're already working. End-to-End Workflow: From agent creation to evaluation, you now have comprehensive tooling that guides you through the entire AI development lifecycle. Enhanced Productivity: Improved UI elements and unified experiences reduce friction and help you focus on building great AI applications. 🚀 Get Started and Share Your Feedback Ready to experience the future of AI development? Here's how to get started: 📥 Download: Install the AI Toolkit from the Visual Studio Code Marketplace 📖 Learn: Explore our comprehensive AI Toolkit Documentation 🔍 Discover: Check out the complete changelog for v0.24.0 We'd love to hear from you! Whether it's a feature request, bug report, or feedback on your experience, join the conversation and contribute directly on our GitHub repository. 🎯 What's Next? This release sets the foundation for even more exciting developments ahead. The GitHub Copilot Tools Integration opens up new possibilities for AI-assisted development, and we're just getting started. Stay tuned for more updates, and let's continue building the future of AI agent development together! 💡💬 Happy coding, and see you next month! 🚀From Cloud to Chip: Building Smarter AI at the Edge with Windows AI PCs
As AI engineers, we’ve spent years optimizing models for the cloud, scaling inference, wrangling latency, and chasing compute across clusters. But the frontier is shifting. With the rise of Windows AI PCs and powerful local accelerators, the edge is no longer a constraint it’s now a canvas. Whether you're deploying vision models to industrial cameras, optimizing speech interfaces for offline assistants, or building privacy-preserving apps for healthcare, Edge AI is where real-world intelligence meets real-time performance. Why Edge AI, Why Now? Edge AI isn’t just about running models locally, it’s about rethinking the entire lifecycle: - Latency: Decisions in milliseconds, not round-trips to the cloud. - Privacy: Sensitive data stays on-device, enabling HIPAA/GDPR compliance. - Resilience: Offline-first apps that don’t break when the network does. - Cost: Reduced cloud compute and bandwidth overhead. With Windows AI PCs powered by Intel and Qualcomm NPUs and tools like ONNX Runtime, DirectML, and Olive, developers can now optimize and deploy models with unprecedented efficiency. What You’ll Learn in Edge AI for Beginners The Edge AI for Beginners curriculum is a hands-on, open-source guide designed for engineers ready to move from theory to deployment. Multi-Language Support This content is available in over 48 languages, so you can read and study in your native language. What You'll Master This course takes you from fundamental concepts to production-ready implementations, covering: Small Language Models (SLMs) optimized for edge deployment Hardware-aware optimization across diverse platforms Real-time inference with privacy-preserving capabilities Production deployment strategies for enterprise applications Why EdgeAI Matters Edge AI represents a paradigm shift that addresses critical modern challenges: Privacy & Security: Process sensitive data locally without cloud exposure Real-time Performance: Eliminate network latency for time-critical applications Cost Efficiency: Reduce bandwidth and cloud computing expenses Resilient Operations: Maintain functionality during network outages Regulatory Compliance: Meet data sovereignty requirements Edge AI Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making. Core Principles: On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs) Offline capability: Functions without persistent internet connectivity Low latency: Immediate responses suited for real-time systems Data sovereignty: Keeps sensitive data local, improving security and compliance Small Language Models (SLMs) SLMs like Phi-4, Mistral-7B, Qwen and Gemma are optimized versions of larger LLMs, trained or distilled for: Reduced memory footprint: Efficient use of limited edge device memory Lower compute demand: Optimized for CPU and edge GPU performance Faster startup times: Quick initialization for responsive applications They unlock powerful NLP capabilities while meeting the constraints of: Embedded systems: IoT devices and industrial controllers Mobile devices: Smartphones and tablets with offline capabilities IoT Devices: Sensors and smart devices with limited resources Edge servers: Local processing units with limited GPU resources Personal Computers: Desktop and laptop deployment scenarios Course Modules & Navigation Course duration. 10 hours of content Module Topic Focus Area Key Content Level Duration 📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs 📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs 🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs 🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs ⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs 🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs 🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs 💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs 🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs Each module includes Jupyter notebooks, code samples, and deployment walkthroughs, perfect for engineers who learn by doing. Developer Highlights - 🔧 Olive: Microsoft's optimization toolchain for quantization, pruning, and acceleration. - 🧩 ONNX Runtime: Cross-platform inference engine with support for CPU, GPU, and NPU. - 🎮 DirectML: GPU-accelerated ML API for Windows, ideal for gaming and real-time apps. - 🖥️ Windows AI PCs: Devices with built-in NPUs for low-power, high-performance inference. Local AI: Beyond the Edge Local AI isn’t just about inference, it’s about autonomy. Imagine agents that: - Learn from local context - Adapt to user behavior - Respect privacy by design With tools like Agent Framework, Azure AI Foundry and Windows Copilot Studio, and Foundry Local developers can orchestrate local agents that blend LLMs, sensors, and user preferences, all without cloud dependency. Try It Yourself Ready to get started? Clone the Edge AI for Beginners GitHub repo, run the notebooks, and deploy your first model to a Windows AI PC or IoT devices Whether you're building smart kiosks, offline assistants, or industrial monitors, this curriculum gives you the scaffolding to go from prototype to production.GPT-5 Family of Models & GPT OSS Are Now Available in AI Toolkit for VS Code
AI Toolkit v0.18.3 is here—and it’s a major milestone. This release introduces full support for: The latest GPT-5 family of models OpenAI’s open-source models (GPT OSS) via Azure AI Foundry and ONNX Runtime Whether you're building in the cloud, on the edge, or experimenting locally, this update gives you more flexibility, performance, and choice than ever.How do I give my agent access to tools?
Welcome back to Agent Support—a developer advice column for those head-scratching moments when you’re building an AI agent! Each post answers a real question from the community with simple, practical guidance to help you build smarter agents. Today’s question comes from someone trying to move beyond chat-only agents into more capable, action-driven ones: 💬 Dear Agent Support I want my agent to do more than just respond with text. Ideally, it could look up information, call APIs, or even run code—but I’m not sure where to start. How do I give my agent access to tools? This is exactly where agents start to get interesting! Giving your agent tools is one of the most powerful ways to expand what it can do. But before we get into the “how,” let’s talk about what tools actually mean in this context—and how Model Context Protocol (MCP) helps you use them in a standardized, agent-friendly way. 🛠️ What Do We Mean by “Tools”? In agent terms, a tool is any external function or capability your agent can use to complete a task. That might be: A web search function A weather lookup API A calculator A database query A custom Python script When you give an agent tools, you’re giving it a way to take action—not just generate text. Think of tools as buttons the agent can press to interact with the outside world. ⚡ Why Give Your Agent Tools? Without tools, an agent is limited to what it “knows” from its training data and prompt. It can guess, summarize, and predict, but it can’t do. Tools change that! With the right tools, your agent can: Pull live data from external systems Perform dynamic calculations Trigger workflows in real time Make decisions based on changing conditions It’s the difference between an assistant that can answer trivia questions vs. one that can book your travel or manage your calendar. 🧩 So… How Does This Work? Enter Model Context Protocol (MCP). MCP is a simple, open protocol that helps agents use tools in a consistent way—whether those tools live in your app, your cloud project, or on a server you built yourself. Here’s what MCP does: Describes tools in a standardized format that models can understand Wraps the function call + input + output into a predictable schema Lets agents request tools as needed (with reasoning behind their choices) This makes it much easier to plug tools into your agent workflow without reinventing the wheel every time! 🔌 How to Connect an Agent to Tools Wiring tools into your agent might sound complex, but it doesn’t have to be! If you’ve already got a MCP server in mind, there’s a straightforward way within the AI Toolkit to expose it as a tool your agent can use. Here’s how to do it: Open the Agent Builder from the AI Toolkit panel in Visual Studio Code. Click the + New Agent button and provide a name for your agent. Select a Model for your agent. Within the Tools section, click + MCP Server. In the wizard that appears, click + Add Server. From there, you can select one of the MCP servers built my Microsoft, connect to an existing server that’s running, or even create your own using a template! After giving the server a Server ID, you’ll be given the option to select which tools from the server to add for your agent. Once connected, your agent can call tools dynamically based on the task at hand. 🧪 Test Before You Build Once you’ve connected your agent to an MCP server and added tools, don’t jump straight into full integration. It’s worth taking time to test whether the agent is calling the right tool for the job. You can do this directly in the Agent Builder: enter a test prompt that should trigger a tool in the User Prompt field, click Run, and observe how the model responds. This gives you a quick read on tool call accuracy. If the agent selects the wrong tool, it’s a sign that your system prompt might need tweaking before you move forward. However, if the agent calls the correct tool but the output still doesn’t look right, take a step back and check both sides of the interaction. It might be that the system prompt isn’t clearly guiding the agent on how to use or interpret the tool’s response. But it could also be an issue with the tool itself—whether that’s a bug in the logic, unexpected behavior, or a mismatch between input and expected output. Testing both the tool and the prompt in isolation can help you pinpoint where things are going wrong before you move on to full integration. 🔁 Recap Here’s a quick rundown of what we covered: Tools = external functions your agent can use to take action MCP = a protocol that helps your agent discover and use those tools reliably If the agent calls the wrong tool—or uses the right tool incorrectly—check your system prompt and test the tool logic separately to isolate the issue. 📺 Want to Go Deeper? Check out my latest video on how to connect your agent to a MCP server—it’s part of the Build an Agent Series, where I walk through the building blocks of turning an idea into a working AI agent. The MCP for Beginners curriculum covers all the essentials—MCP architecture, creating and debugging servers, and best practices for developing, testing, and deploying MCP servers and features in production environments. It also includes several hands-on exercises across .NET, Java, TypeScript, JavaScript and Python. 👉 Explore the full curriculum: aka.ms/AITKmcp And for all your general AI and AI agent questions, join us in the Azure AI Foundry Discord! You can find me hanging out there answering your questions about the AI Toolkit. I'm looking forward to chatting with you there! Whether you’re building a productivity agent, a data assistant, or a game bot—tools are how you turn your agent from smart to useful.