Generative AI
116 TopicsIntroducing OpenAI’s GPT-image-1.5 in Microsoft Foundry
Developers building with visual AI can often run into the same frustrations: images that drift from the prompt, inconsistent object placement, text that renders unpredictably, and editing workflows that break when iterating on a single asset. That’s why we are excited to announce OpenAI's GPT Image 1.5 is now generally available in Microsoft Foundry. This model can bring sharper image fidelity, stronger prompt alignment, and faster image generation that supports iterative workflows. Starting today, customers can request access to the model and start building in the Foundry platform. Meet GPT Image 1.5 AI driven image generation began with early models like OpenAI's DALL-E, which introduced the ability to transform text prompts into visuals. Since then, image generation models have been evolving to enhance multimodal AI across industries. GPT Image 1.5 represents continuous improvement in enterprise-grade image generation. Building on the success of GPT Image 1 and GPT Image 1 mini, these enhanced models introduce advanced capabilities that cater to both creative and operational needs. The new image models offer: Text-to-image: Stronger instruction following and highly precise editing. Image-to-image: Transform existing images to iteratively refine specific regions Improved visual fidelity: More detailed scenes and realistic rendering. Accelerated creation times: Up to 4x faster generation speed. Enterprise integration: Deploy and scale securely in Microsoft Foundry. GPT Image 1.5 delivers stronger image preservation and editing capabilities, maintaining critical details like facial likeness, lighting, composition, and color tone across iterative changes. You’ll see more consistent preservation of branded logos and key visuals, making it especially powerful for marketing, brand design, and ecommerce workflows—from graphics and logo creation to generating full product catalogs (variants, environments, and angles) from a single source image. Benchmarks Based on an internal Microsoft dataset, GPT Image 1.5 performs higher than other image generation models in prompt alignment and infographics tasks. It focuses on making clear, strong edits – performing best on single-turn modification, delivering the higher visual quality in both single and multi-turn settings. The following results were found across image generation and editing: Text to image Prompt alignment Diagram / Flowchart GPT Image 1.5 91.2% 96.9% GPT Image 1 87.3% 90.0% Qwen Image 83.9% 33.9% Nano Banana Pro 87.9% 95.3% Image editing Evaluation Aspect Modification Preservation Visual Quality Face Preservation Metrics BinaryEval SC (semantic) DINO (Visual) BinaryEval AuraFace Single-turn GPT image 1 99.2% 51.0% 0.14 79.5% 0.30 Qwen image 81.9% 63.9% 0.44 76.0% 0.85 GPT Image 1.5 100% 56.77% 0.14 89.96% 0.39 Multi-turn GPT Image 1 93.5% 54.7% 0.10 82.8% 0.24 Qwen image 77.3% 68.2% 0.43 77.6% 0.63 GPT image 1.5 92.49% 60.55% 0.15 89.46% 0.28 Using GPT Image 1.5 across industries Whether you’re creating immersive visuals for campaigns, accelerating UI and product design, or producing assets for interactive learning GPT Image 1.5 gives modern enterprises the flexibility and scalability they need. Image models can allow teams to drive deeper engagement through compelling visuals, speed up design cycles for apps, websites, and marketing initiatives, and support inclusivity by generating accessible, high‑quality content for diverse audiences. Watch how Foundry enables developers to iterate with multimodal AI across Black Forest Labs, OpenAI, and more: Microsoft Foundry empowers organizations to deploy these capabilities at scale, integrating image generation seamlessly into enterprise workflows. Explore the use of AI image generation here across industries like: Retail: Generate product imagery for catalogs, e-commerce listings, and personalized shopping experiences. Marketing: Create campaign visuals and social media graphics. Education: Develop interactive learning materials or visual aids. Entertainment: Edit storyboards, character designs, and dynamic scenes for films and games. UI/UX: Accelerate design workflows for apps and websites. Microsoft Foundry provides security and compliance with built-in content safety filters, role-based access, network isolation, and Azure Monitor logging. Integrated governance via Azure Policy, Purview, and Sentinel gives teams real-time visibility and control, so privacy and safety are embedded in every deployment. Learn more about responsible AI at Microsoft. Pricing Model Pricing (per 1M tokens) - Global GPT-image-1.5 Input Tokens: $8 Cached Input Tokens: $2 Output Tokens: $32 Cost efficiency improves as well: image inputs and outputs are now cheaper compared to GPT Image 1, enabling organizations to generate and iterate on more creative assets within the same budget. For detailed pricing, refer here. Getting started Learn more about image generation, explore code samples, and read about responsible AI protections here. Try GPT Image 1.5 in Microsoft Foundry and start building multimodal experiences today. Whether you’re designing educational materials, crafting visual narratives, or accelerating UI workflows, these models deliver the flexibility and performance your organization needs.1.8KViews0likes1CommentBlack Forest Labs FLUX.2 Visual Intelligence for Enterprise Creative now on Microsoft Foundry
Black Forest Labs’ (BFL) FLUX.2 is now available on Microsoft Foundry. Building on FLUX1.1 [pro] and FLUX.1 Kontext [pro], we’re excited to introduce FLUX.2 [pro] which continues to push the frontier for visual intelligence. FLUX.2 [pro] delivers state-of-the-art quality with pre-optimized settings, matching the best closed models for prompt adherence and visual fidelity while generating faster at lower cost. Prompt: "Cinematic film still of a woman walking alone through a narrow Madrid street at night, warm street lamps, cool blue shadows, light rain reflecting on cobblestones, moody and atmospheric, shallow depth of field, natural skin texture, subtle film grain and introspective mood" This prompt shines because it taps into FLUX.2 [pro]'s cinematic‑lighting engine, letting the model fuse warm street‑lamp glow and cool shadows into a visually striking, film‑grade composition. What’s game-changing about FLUX.2 [pro]? FLUX.2 is designed for real-world creative workflows where consistency, accuracy, and iteration speed determine whether AI generation can replace traditional production pipelines. The model understands lighting, perspective, materials, and spatial relationships. It maintains characters and products consistent across up to 10 reference images simultaneously. It adheres to brand constraints like exact hex colors and legible text. The result: production-ready assets with fewer touchups and stronger brand fidelity. What’s New: Production‑grade quality up to 4MP: High‑fidelity, coherent scenes with realistic lighting, spatial logic, and fine detail suitable for product photography and commercial use cases. Multi‑reference consistency: Reference up to 10 images simultaneously with the best character, product, and style consistency available today. Generate dozens of brand-compliant assets where identity stays perfectly aligned shot to shot. Brand‑accurate results: Exact hex‑color matching, reliable typography, and structured controls (JSON, pose guidance) mean fewer manual fixes and stronger brand compliance. Strong prompt fidelity for complex directions: Improved adherence to complex, structured instructions including multi-part prompts, compositional constraints, and JSON-based controls. 32K token context supports long, detailed workflows with exact positioning specifications, physics-aware lighting, and precise compositional requirements in a single prompt. Optimized inference: FLUX.2 [pro] delivers state-of-the-art quality with pre-optimized inference settings, generating faster at lower cost than competing closed models. FLUX.2 transforms creative production economics by enabling workflows that weren't possible with earlier systems. Teams ship complete campaigns in days instead of weeks, with fewer manual touchups and stronger brand fidelity at scale. This performance stems from FLUX.2's unified architecture, which combines generation and editing in a single latent flow matching model. How it Works FLUX.2 combines image generation and editing in a single latent flow matching architecture, coupling a Mistral‑3 24B vision‑language model (VLM) with a rectified flow transformer. The VLM brings real‑world knowledge and contextual understanding, while the flow transformer models spatial relationships, material properties, and compositional logic that earlier architectures struggled to render. FLUX.2’s architecture unifies visual generation and editing, fuses language‑grounded understanding with flow‑based spatial modeling, and delivers production‑ready, brand‑safe images with predictable control especially when you need consistent identity, exact colors, and legible typography at high resolution. Technical details can be found in the FLUX.2 VAE blog post. Top enterprise scenarios & patterns to try with FLUX.2 [pro] The addition of FLUX.2 [pro] is the next step in the evolution for delivering faster, richer, and more controllable generation unlocking a new wave of creative potential for enterprises. Bring FLUX.2 [pro] into your workflow and transform your creative pipeline from concept to production by trying out these patterns: Enterprise scenarios Patterns to try E‑commerce hero shots Start with a small set of references (product front, material/texture, logo). Prompt for a studio hero shot on a white seamless background, three‑quarter view, softbox key + subtle rim light. Include exact hex for brand accents and specify logo placement. Output at 4MP. Product variants at scale Reuse the hero references; ask for specific colorway, angle, and background variants (e.g., “Create {COLOR} variant, {ANGLE} view, {BG} background”). Keep brand hex and logo position constant across variants. Campaign consistency (character/product identity) Provide 5–10 reference images for the character/product (faces, outfits, mood boards). Request the same identity across scenes with consistent lighting/style (e.g., cinematic warm daylight) and defined environments (e.g., urban rooftop). Marketing templates & localization Define a template (e.g., 3‑column grid: left image, right text). Set headline/body sizes (e.g., 24pt/14pt), contrast ≥ 4.5:1, and brand font. Swap localized copy per locale while keeping layout and spacing consistent. Best practices to get to production readiness with Microsoft Foundry FLUX.2 [pro] brings state-of-the-art image quality to your fingertips. In Microsoft Foundry, you can turn those capabilities into predictable, governed outcomes by standardizing templates, managing references, enforcing brand rules, and controlling spend. These practices below leverage FLUX.2 [pro]’s visual intelligence and turn them into repeatable recipes, auditable artifacts, and cost‑controlled processes within a governed Foundry pipeline. Best Practice What to do Foundry tip Approved templates Create 3–5 templates (e.g., hero shot, variant gallery, packaging, social card) with sections for Composition (camera, lighting, environment), Brand (hex colors, logo placement), Typography (font, sizes, contrast), and Output (resolution, format). Store templates in Foundry as approved artifacts; version them and restrict edits via RBAC. Versioned reference sets Keep 3–10 references per subject (product: front/side/texture; talent: face/outfit/mood) and link them to templates. Save references in governed Foundry storage; reference IDs travel with the job metadata. Resolution staging Use a three‑stage plan: Concept (1–2MP) → Review (2–3MP) → Final (4MP). Leverage FLUX.1 [pro] and FLUX1.1 Kontext [pro] before the Final stage for fast iteration and cost control Enforce stage‑based quotas and cap max resolution per job; require approval to move to 4MP. Automated QA & approvals Run post‑generation checks for color match, text legibility, and safe‑area compliance; gate final renders behind a review step. Use Foundry workflows to require sign‑off at the Review stage before Final stage. Telemetry & feedback Track latency, success rate, usage, and cost per render; collect reviewer notes and refine templates. Dashboards in Foundry: monitor job health, cost, and template performance. Foundry Models continues to grow with cutting-edge additions to meet every enterprise need—including models from Black Forest Labs, OpenAI, and more. From models like GPT‑image‑1, FLUX.2 [pro], and Sora 2, Microsoft Foundry has become the place where creators push the boundaries of what’s possible. Watch how Foundry transforms creative workflows with this demo: Customer Stories As seen at Ignite 2025, real‑world customers like Sinyi Realty have already demonstrated the efficiency of Black Forest Lab’s models on Microsoft Foundry by choosing FLUX.1 Kontext [pro] for its superior performance and selective editing. For their new 'Clear All' feature, they preferred a model that preserves the original room structure and simply removes clutter, rather than generating a new space from scratch, saving time and money. Read the story to learn more. “We wanted to stay in the same workspace rather than having to maintain different platforms,” explains TeWei Hsieh, who works in data engineering and data architecture. “By keeping FLUX Kontext model in Foundry, our data scientists and data engineers can work in the same environment.” As customers like Sinyi Realty have already shown, BFL FLUX models raise the bar for speed, precision, and operational efficiency. With FLUX.2 now on Microsoft Foundry, organizations can bring that same competitive edge directly into their own production pipelines. FLUX.2 [pro] Pricing Foundry Models are fully hosted and managed on Azure. FLUX.2 [pro] is available through pay-as-you-go and on Global Standard deployment type with the following pricing: Generated image: The first generated megapixel (MP) is charged $0.03. Each subsequent megapixel is charged $0.015. Reference image(s): We charge $0.015 for each megapixel. Important Notes: For pricing, resolution is always rounded up to the next megapixel, separately for each reference image and for the generated image. 1 megapixel is counted as 1024x1024 pixels For multiple reference images, each reference image is counted as 1 megapixel Images exceeding 4 megapixels are resized to 4 megapixels Reference the Foundry Models pricing page for pricing. Build Trustworthy AI Solutions Black Forest Labs models in Foundry Models are delivered under the Microsoft Product Terms, giving you enterprise-grade security and compliance out of the box. Each FLUX endpoint offers Content Safety controls and guardrails. Runtime protections include built-in content-safety filters, role-based access control, virtual-network isolation, and automatic Azure Monitor logging. Governance signals stream directly into Azure Policy, Purview, and Microsoft Sentinel, giving security and compliance teams real-time visibility. Together, Microsoft's capabilities let you create with more confidence, knowing that privacy, security, and safety are woven into every Black Forest Labs deployment from day one. Getting Started with FLUX.2 in Microsoft Foundry If you don’t have an Azure subscription, you can sign up for an Azure account here. Search for the model name in the model catalog in Foundry under “Build.” FLUX.2-pro Open the model card in the model catalog. Click on deploy to obtain the inference API and key. View your deployment under Build > Models. You should land on the deployment page that shows you the API and key in less than a minute. You can try out your prompts in the playground. You can use the API and key with various clients. Learn More ▶️ RSVP for the next Model Monday LIVE on YouTube or On-Demand 👩💻 Explore FLUX.2 Documentation on Microsoft Learn 👋 Continue the conversation on Discord472Views0likes0CommentsIntegrate Custom Azure AI Agents with Copilot Studio and M365 Copilot
Integrating Custom Agents with Copilot Studio and M365 Copilot In today's fast-paced digital world, integrating custom agents with Copilot Studio and M365 Copilot can significantly enhance your company's digital presence and extend your CoPilot platform to your enterprise applications and data. This blog will guide you through the integration steps of bringing your custom Azure AI Agent Service within an Azure Function App, into a Copilot Studio solution and publishing it to M365 and Teams Applications. When Might This Be Necessary: Integrating custom agents with Copilot Studio and M365 Copilot is necessary when you want to extend customization to automate tasks, streamline processes, and provide better user experience for your end-users. This integration is particularly useful for organizations looking to streamline their AI Platform, extend out-of-the-box functionality, and leverage existing enterprise data and applications to optimize their operations. Custom agents built on Azure allow you to achieve greater customization and flexibility than using Copilot Studio agents alone. What You Will Need: To get started, you will need the following: Azure AI Foundry Azure OpenAI Service Copilot Studio Developer License Microsoft Teams Enterprise License M365 Copilot License Steps to Integrate Custom Agents: Create a Project in Azure AI Foundry: Navigate to Azure AI Foundry and create a project. Select 'Agents' from the 'Build and Customize' menu pane on the left side of the screen and click the blue button to create a new agent. Customize Your Agent: Your agent will automatically be assigned an Agent ID. Give your agent a name and assign the model your agent will use. Customize your agent with instructions: Add your knowledge source: You can connect to Azure AI Search, load files directly to your agent, link to Microsoft Fabric, or connect to third-party sources like Tripadvisor. In our example, we are only testing the CoPilot integration steps of the AI Agent, so we did not build out additional options of providing grounding knowledge or function calling here. Test Your Agent: Once you have created your agent, test it in the playground. If you are happy with it, you are ready to call the agent in an Azure Function. Create and Publish an Azure Function: Use the sample function code from the GitHub repository to call the Azure AI Project and Agent. Publish your Azure Function to make it available for integration. azure-ai-foundry-agent/function_app.py at main · azure-data-ai-hub/azure-ai-foundry-agent Connect your AI Agent to your Function: update the "AIProjectConnString" value to include your Project connection string from the project overview page of in the AI Foundry. Role Based Access Controls: We have to add a role for the function app on OpenAI service. Role-based access control for Azure OpenAI - Azure AI services | Microsoft Learn Enable Managed Identity on the Function App Grant "Cognitive Services OpenAI Contributor" role to the System-assigned managed identity to the Function App in the Azure OpenAI resource Grant "Azure AI Developer" role to the System-assigned managed identity for your Function App in the Azure AI Project resource from the AI Foundry Build a Flow in Power Platform: Before you begin, make sure you are working in the same environment you will use to create your Copilot Studio agent. To get started, navigate to the Power Platform (https://make.powerapps.com) to build out a flow that connects your Copilot Studio solution to your Azure Function App. When creating a new flow, select 'Build an instant cloud flow' and trigger the flow using 'Run a flow from Copilot'. Add an HTTP action to call the Function using the URL and pass the message prompt from the end user with your URL. The output of your function is plain text, so you can pass the response from your Azure AI Agent directly to your Copilot Studio solution. Create Your Copilot Studio Agent: Navigate to Microsoft Copilot Studio and select 'Agents', then 'New Agent'. Make sure you are in the same environment you used to create your cloud flow. Now select ‘Create’ button at the top of the screen From the top menu, navigate to ‘Topics’ and ‘System’. We will open up the ‘Conversation boosting’ topic. When you first open the Conversation boosting topic, you will see a template of connected nodes. Delete all but the initial ‘Trigger’ node. Now we will rebuild the conversation boosting agent to call the Flow you built in the previous step. Select 'Add an Action' and then select the option for existing Power Automate flow. Pass the response from your Custom Agent to the end user and end the current topic. My existing Cloud Flow: Add action to connect to existing Cloud Flow: When this menu pops up, you should see the option to Run the flow you created. Here, mine does not have a very unique name, but you see my flow 'Run a flow from Copilot' as a Basic action menu item. If you do not see your cloud flow here add the flow to the default solution in the environment. Go to Solutions > select the All pill > Default Solution > then add the Cloud Flow you created to the solution. Then go back to Copilot Studio, refresh and the flow will be listed there. Now complete building out the conversation boosting topic: Make Agent Available in M365 Copilot: Navigate to the 'Channels' menu and select 'Teams + Microsoft 365'. Be sure to select the box to 'Make agent available in M365 Copilot'. Save and re-publish your Copilot Agent. It may take up to 24 hours for the Copilot Agent to appear in M365 Teams agents list. Once it has loaded, select the 'Get Agents' option from the side menu of Copilot and pin your Copilot Studio Agent to your featured agent list Now, you can chat with your custom Azure AI Agent, directly from M365 Copilot! Conclusion: By following these steps, you can successfully integrate custom Azure AI Agents with Copilot Studio and M365 Copilot, enhancing you’re the utility of your existing platform and improving operational efficiency. This integration allows you to automate tasks, streamline processes, and provide better user experience for your end-users. Give it a try! Curious of how to bring custom models from your AI Foundry to your Copilot Studio solutions? Check out this blog19KViews3likes11CommentsIntroducing Cohere Rerank 4.0 in Microsoft Foundry
These new retrieval models deliver state-of-the-art accuracy, multilingual coverage across 100+ languages, and breakthrough performance for enterprise search and retrieval-augmented generation (RAG) systems. With Rerank 4.0, customers can dramatically improve the quality of search, reduce hallucinations in RAG applications, and strengthen the reasoning capabilities of their AI agents, all with just a few lines of code. Why Rerank Models Matter for Enterprise AI Retrieval is the foundation of grounded AI systems. Whether you are building an internal assistant, a customer-facing chatbot, or a domain-specific knowledge engine, the quality of the retrieved documents determines the quality of the final answer. Traditional embeddings get you close, but reranking is what gets you the right answer. Rerank improves this step by reading both the query and document together (cross-encoding), producing highly precise semantic relevance scores. This means: More accurate search results More grounded responses in RAG pipelines Lower generative model usage , reducing cost Higher trust and quality across enterprise workloads Introducing Cohere Rerank 4.0 Fast and Rerank 4.0 Pro Microsoft Foundry now offers two versions of Rerank 4.0 to meet different enterprise needs: Rerank 4.0 Fast Best balance of speed and accuracy Same latency as Cohere Rerank 3.5, with significantly higher accuracy Ideal for high-traffic applications and real-time systems Rerank 4.0 Pro Highest accuracy across all benchmarks Excels at complex, reasoning-heavy, domain-specific retrieval Tuned for industries like finance, healthcare, manufacturing, government, and energy Multilingual & Cross-Domain Performance Rerank 4.0 delivers unmatched multilingual and cross-domain performance, supporting more than 100 languages and enabling powerful cross-lingual search across complex enterprise datasets. The models achieve state-of-the-art accuracy in 10 of the world’s most important business languages, including Arabic, Chinese, French, German, Hindi, Japanese, Korean, Portuguese, Russian, and Spanish, making them exceptionally well suited for global organizations with multilingual knowledge bases, compliance archives, or international operations. Effortless Integration: Add Rerank to Any System One of the biggest benefits of Rerank 4.0 is how easy it is to adopt. You can add reranking to: Existing enterprise search Vector DB pipelines Keyword search systems Hybrid retrieval setups RAG architectures Agent workflows No infrastructure changes required. Just a few lines of code.This makes it one of the fastest ways to meaningfully upgrade grounding, precision, and search quality in enterprise AI systems. Better RAG, Better Agents, Better Outcomes In Foundry, customers can pair Cohere Rerank 4.0 with Azure Search, vector databases, Agent Service, Azure Functions, Foundry orchestration, and any LLM—including GPT-4.1, Claude, DeepSeek, and Mistral—to deliver more grounded copilots, higher-fidelity agent actions, and better reasoning from cleaner context windows. This reduces hallucinations, lowers LLM spend, and provides a foundational upgrade for mission-critical AI systems. Built for Enterprise: Security, Observability, Governance As a direct from Azure model, Rerank 4.0 is fully integrated with: Azure role-based access control (RBAC) Virtual network isolation Customer-managed keys Logging & observability Entra ID authentication Private deployments You can run Rerank 4.0 in environments that meet the strictest enterprise security and compliance needs. Optimized for Enterprise Models & High-Value Industries Rerank 4.0 is built for sectors where accuracy matters: Finance - Delivers precise retrieval for complex disclosures, compliance documents, and regulatory filings. Healthcare- Accurately retrieves clinical notes, biomedical literature, and care protocols for safer, more reliable insights. Manufacturing- Surfaces the right engineering specs, manuals, and parts data to streamline operations and reduce downtime. Government & Public Sector - Improves access to policy documents, case archives, and citizen service information with semantic precision. Energy- Understands industrial logs, safety manuals, and technical standards to support safer and more efficient operations. Pricing Model Name Deployment Type Azure Resource Region Price /1K Search Units Availability Cohere Rerank 4.0 Pro Global Standard All regions (Check this page for region details) $2.50 Public Preview, Dec 11, 2025 Cohere Rerank 4.0 Fast Global Standard All regions (Check this page for region details) $2.00 Public Preview, Dec 11, 2025 Get Started Today Cohere Rerank 4.0 Fast and Rerank 4.0 Pro are now available in Microsoft Foundry. Rerank 4.0 is one of the simplest and highest impact upgrades you can make to your enterprise AI stack, bringing better retrieval, better agents, and more trustworthy AI to every application.1.7KViews2likes0CommentsSecuring Azure AI Applications: A Deep Dive into Emerging Threats | Part 1
Why AI Security Can’t Be Ignored? Generative AI is rapidly reshaping how enterprises operate—accelerating decision-making, enhancing customer experiences, and powering intelligent automation across critical workflows. But as organizations adopt these capabilities at scale, a new challenge emerges: AI introduces security risks that traditional controls cannot fully address. AI models interpret natural language, rely on vast datasets, and behave dynamically. This flexibility enables innovation—but also creates unpredictable attack surfaces that adversaries are actively exploiting. As AI becomes embedded in business-critical operations, securing these systems is no longer optional—it is essential. The New Reality of AI Security The threat landscape surrounding AI is evolving faster than any previous technology wave. Attackers are no longer focused solely on exploiting infrastructure or APIs; they are targeting the intelligence itself—the model, its prompts, and its underlying data. These AI-specific attack vectors can: Expose sensitive or regulated data Trigger unintended or harmful actions Skew decisions made by AI-driven processes Undermine trust in automated systems As AI becomes deeply integrated into customer journeys, operations, and analytics, the impact of these attacks grows exponentially. Why These Threats Matter? Threats such as prompt manipulation and model tampering go beyond technical issues—they strike at the foundational principles of trustworthy AI. They affect: Confidentiality: Preventing accidental or malicious exposure of sensitive data through manipulated prompts. Integrity: Ensuring outputs remain accurate, unbiased, and free from tampering. Reliability: Maintaining consistent model behavior even when adversaries attempt to deceive or mislead the system. When these pillars are compromised, the consequences extend across the business: Incorrect or harmful AI recommendations Regulatory and compliance violations Damage to customer trust Operational and financial risk In regulated sectors, these threats can also impact audit readiness, risk posture, and long-term credibility. Understanding why these risks matter builds the foundation. In the upcoming blogs, we’ll explore how these threats work and practical steps to mitigate them using Azure AI’s security ecosystem. Why AI Security Remains an Evolving Discipline? Traditional security frameworks—built around identity, network boundaries, and application hardening—do not fully address how AI systems operate. Generative models introduce unique and constantly shifting challenges: Dynamic Model Behavior: Models adapt to context and data, creating a fluid and unpredictable attack surface. Natural Language Interfaces: Prompts are unstructured and expressive, making sanitization inherently difficult. Data-Driven Risks: Training and fine-tuning pipelines can be manipulated, poisoned, or misused. Rapidly Emerging Threats: Attack techniques evolve faster than most defensive mechanisms, requiring continuous learning and adaptation. Microsoft and other industry leaders are responding with robust tools—Azure AI Content Safety, Prompt Shields, Responsible AI Frameworks, encryption, isolation patterns—but technology alone cannot eliminate risk. True resilience requires a combination of tooling, governance, awareness, and proactive operational practices. Let's Build a Culture of Vigilance: AI security is not just a technical requirement—it is a strategic business necessity. Effective protection requires collaboration across: Developers Data and AI engineers Cybersecurity teams Cloud platform teams Leadership and governance functions Security for AI is a shared responsibility. Organizations must cultivate awareness, adopt secure design patterns, and continuously monitor for evolving attack techniques. Building this culture of vigilance is critical for long-term success. Key Takeaways: AI brings transformative value, but it also introduces risks that evolve as quickly as the technology itself. Strengthening your AI security posture requires more than robust tooling—it demands responsible AI practices, strong governance, and proactive monitoring. By combining Azure’s built-in security capabilities with disciplined operational practices, organizations can ensure their AI systems remain secure, compliant, and trustworthy, even as new threats emerge. What’s Next? In future blogs, we’ll explore two of the most important AI threats—Prompt Injection and Model Manipulation—and share actionable strategies to mitigate them using Azure AI’s security capabilities. Stay tuned for practical guidance, real-world scenarios, and Microsoft-backed best practices to keep your AI applications secure. Stay Tuned.!603Views3likes0CommentsFoundry Agent Service at Ignite 2025: Simple to Build. Powerful to Deploy. Trusted to Operate.
The upgraded Foundry Agent Service delivers a unified, simplified platform with managed hosting, built-in memory, tool catalogs, and seamless integration with Microsoft Agent Framework. Developers can now deploy agents faster and more securely, leveraging one-click publishing to Microsoft 365 and advanced governance features for streamlined enterprise AI operations.6.3KViews3likes1CommentThe Future of AI: The Model is Key, but the App is the Doorway
This post explores the real-world impact of GPT-5 beyond benchmark scores, focusing on how application design shapes user experience. It highlights early developer feedback, common integration challenges, and practical strategies for adapting apps to leverage the advanced capabilities of GPT-5 in Foundry Models. From prompt refinement to fine-tuning to new API controls, learn how to make the most of this powerful model.589Views3likes0CommentsDeployment Guide-Copilot Studio agent with MCP Server exposed by API Management using OAuth 2.0
Introduction In today’s enterprise landscape, enabling AI agents to interact with backend systems securely and at scale is critical. By exposing MCP servers through Azure API Management (APIM), organizations can provide controlled access to these services. When combined with OAuth 2.0 authorization code flow, this setup ensures robust, enterprise-grade security for AI agents built in Copilot Studio—empowering intelligent automation while maintaining strict access governance. Disclaimer & Caveats This article explores how to configure a MCP tool—exposed as a MCP server via APIM—for secure consumption by AI agents built in Copilot Studio. Leveraging the OAuth 2.0 Authorization Code Flow, this setup ensures enterprise-grade security by enabling delegated access without exposing user credentials. With Azure API Management now supporting MCP server capabilities in public preview, developers can expose REST APIs as MCP tools using a standardized JSON-RPC interface. This allows AI agents to invoke backend services securely and scalable, without the need to rebuild existing APIs. Copilot Studio, also in preview for MCP integration, empowers organizations to orchestrate intelligent agents that interact with these tools in real time. While this guide provides a foundational approach, every environment is unique. You can enhance security further by implementing app roles, conditional access policies, and extending your integration logic with custom Python code for advanced scenarios. ⚠️ Note: Both MCP server support in APIM and MCP tool integration in Copilot Studio are currently in public preview. As these platforms evolve rapidly, expect changes and improvements over time. Always refer to the https://learn.microsoft.com/en-us/azure/api-management/export-rest-mcp-server for the latest updates. This article is about consuming remote MCP servers. In Azure, managed identity can also be leveraged for APIM integration. What is Authorization Code Flow? The Authorization Code Flow is designed for applications that can securely store a client secret (like server-side apps). It allows the app to obtain an access token on behalf of the user without exposing their credentials. This flow uses an intermediate authorization code to exchange for tokens, adding an extra layer of security. Steps in the Flow User Authentication The user is redirected to the Authorization Server (In this case: Azure AD) to log in and grant consent. Authorization Code Issued After successful login, the Authorization Server sends an authorization code to the app via the redirect URI. Token Exchange The app sends the authorization code (plus client credentials) to the Token Endpoint to get: Access Token (for API calls) and Refresh Token (to renew access without user interaction) API Access The app uses the Access Token to call protected resources. Below diagram shows the Authorization code flow in detail. Press enter or click to view image in full size Microsoft identity platform and OAuth 2.0 authorization code flow — Microsoft identity platform | Microsoft Learn High Level Architecture Press enter or click to view image in full size This architecture can also be implemented with APIM backend app registration only. However, stay cautious in configuring redirect URIs appropriately. Remote MCP Servers using APIM Architecture APIM exposing Remote MCP servers, enabling AI agents—such as those built in Copilot Studio—to securely access backend services using standardized JSON-RPC interfaces. This integration offers a robust, scalable, and secure way to connect AI tools with enterprise APIs. Key Capabilities: Secure Gateway: APIM acts as an intelligent gateway, handling OAuth 2.0 Authorization Code Flow, authentication, and request routing. Monitoring & Observability: Integration with Azure Log Analytics and Application Insights enables deep visibility into API usage, performance, and errors. Policy Enforcement: APIM’s policy engine allows for custom rules, including token validation, header manipulation, and response transformation. Rate Limiting & Throttling: Built-in support for rate limits, quotas, and IP filtering helps protect backend services from abuse and ensures fair usage. Managed Identity & Entra ID: Secure service-to-service communication is enabled via system-assigned and user-assigned managed identities, with Entra ID handling identity and access management. Flexible Deployment: MCP servers can be hosted in Azure Functions, App Services, or Container Apps, and exposed via APIM with minimal changes to existing APIs. To learn more, visit https://learn.microsoft.com/en-us/samples/azure-samples/remote-mcp-apim-functions-python/remote-mcp-apim-functions-python/ Develop MCP server in VS Code This deployment guide provides sample MCP code written in python for ease of use. It is available on the following GitHub repo. However, you can also use your own MCP server. Clone the following repository and open in VS Code. git clone https://github.com/mafzal786/mcp-server.git Run the following to execute it locally. cd mcp-server uv venv uv sync uv run mcpserver.py Deploy MCP Server as Azure Container App In this deployment guide, MCP server is deployed in Azure Container App. It can also be deployed as Azure App service. Deploy the MCP server in Azure container App by running the following command. It can be deployed by many other various ways such as via VS Code or CI/CD pipeline. AZ Cli is used for simplicity. az containerapp up \ --resource-group <RESOURCE_GROUP_NAME> \ --name streamable-mcp-server2 \ --environment mcp \ --location <REGION> \ --source . Configure Authentication for Azure Container App 1. Sign in Azure portal. Visit the container App in Azure and Click “Authentication” as shown below. Press enter or click to view image in full size For more details, visit the following link: Enable authentication and authorization in Azure Container Apps with Microsoft Entra ID | Microsoft Learn Click Add Identity Provider as shown. 2. Select Microsoft from the drop down and leave everything as is as shown below. 3. This will create a new app registration for the container App. After it is all setup, it will look like as below. As soon as authentication is configured. it will make container app inaccessible except for OAuth. Note: If you have app registration for Azure Container App already configured, use that by selecting "pick an existing app registration in this directory" option. Review App Registration of Container App — Backend Visit App registration and click streamable-mcp-server2 as in this case. Click on Authentication tab. Verify the Redirect URIs. you should see a redirect URL for container app. URI will end with /.auth/login/aad/callback as shown in the green box in the below screenshot. Now click on “Expose an API”. Confirm Application ID URI is configured with scope as shown below. its format is api://<client id> Scope "user_impersonation" is created. Verify API Permission. Make sure you Grant admin consent for your tenant as shown below. More scope can be created depending on the requirement of data access. Note: Make sure to "Grant admin consent" before proceeding to next step. Create App registration for representing APIM API Lauch Azure Portal. Visit App registration. Click New registration. Create a new App registration as shown below. For example, "apim-mcp-backend-api" in this case. Click "Expose an API", configure Application ID URI, and add a scope as shown in the below diagram such as user_impersonation. Click "App roles" and create the following role as shown below. More roles can be created depending on the requirements and case by case basis. Here app roles are created to get the concept around it and how it will be used in APIM inbound policies in the coming sections. Create App Registration for Client App — Copilot Studio In these steps, we will be configuring app registration for the client app, such as copilot studio in this case acting as a client app. This is also mentioned in the “high level architecture” diagram in the earlier section of this article. Lauch Azure Portal. Visit App registration. Click New registration. Create a new App registration. leave the Redirect URL as of now, we will configure it later as it is provided by copilot studio when configuring custom MCP connector. 3. Click on API permission and click “Add a permission”. Click Microsoft Graph and then click “Delegated permissions”. Select email, openid, profile as shown below. 4. Make sure to Grant admin consent and it should look like as below. 5. Create a secret. click “Certificates & secrets”. Create a new client secret by clicking “New client secret”. store the value as it will be masked after some time. if that happens, you can always delete and re-create a new secret. 6. Capture the following as you would need it in configuring MCP tool in Copilot Studio. Client ID from the Overview Tab of app registration. Client secret from “Certificates & secrets” tab. 7. Configure API permissions for APIM API i.e. "apim-mcp-backend-api" in this case. Click “API permissions” tab. Click “Add a permission”. Click on “My APIs” tab as shown below and select "apim-mcp-backend-api". Note: If you don't see the app registration in "My APIs". Go to App registration. Click "Owners". Add your AD account as Owners. 8. Select "Delegated permissions". Then select the permission as shown below. 9. Select the Application permission. Select the App roles created in the apim-mcp-backend-api registration. Such as mcp.read in this case. You MUST “Grant admin consent” as final step. It is very important!!! I can’t emphasize more on that. without it, nothing will work!!! 10. End result of this client app registration should look like as mentioned in the below figure. Configure permissions for Container App registration Lauch Azure Portal. Visit app registration. Select app registration of Azure container app such as streamable-mcp-server2 in this case. Select API permissions. Add the following delegated and application permissions as shown in the below diagram. Note: Don't forget to Grant admin consent. Configure allowed token audience for Container App It defines which audience values (aud claim) in a token are considered valid for your app. When a client app requests an access token from Microsoft Entra ID (Azure AD), the token includes an aud claim that identifies the intended recipient. Your container app will only accept tokens where the aud claim matches one of the values in the Allowed Token Audiences list. This is important as it ensures that only tokens issued for your API or app are accepted and prevents misuse of tokens intended for other resources. This adds extra layer of security. In the Azure Portal, visit Azure Container App. i.e. streamable-mcp-server2. Click on "Authentication" Click "Edit" under identity provider Under "Allowed token audiences", add the application ID URI of "apim-mcp-backend-api". As this will be included as an audience in the access token. Best Practices Only include trusted client app IDs. Avoid using overly broad values like “allow all” (not recommended). Validate tokens using Microsoft libraries (MSAL) or built-in auth features. Configure MCP server in API Management Note: Provisioning an API Management resource is outside the scope of this document. If you do not already have an API Management instance, follow this QuickStart: https://learn.microsoft.com/en-us/azure/api-management/get-started-create-service-instance The following service tiers are available for preview: Classic Basic, Standard, Premium, and Basic v2, Standard v2, Premium v2. For the Classic Basic, Standard, or Premium tiers, you must join the AI Gateway Early Update group to enable MCP server features. Please allow up to 2 hours for the update to take effect. Expose an existing MCP server Follow these steps to expose an existing MCP server is API Management: In the Azure portal, navigate to your API Management instance. In the left-hand menu, under APIs, select MCP servers > + Create MCP server. Select Expose an existing MCP server. In Backend MCP server: Enter the existing MCP server base URL. Example: https://streamable-mcp-serverv2.kdhg489457dslkjgn,.eastus2.azurecontainerapps.io/mcpfor the Microsoft Azure Container App hosting MCP server. In Transport type, Streamable HTTP is selected by default. In New MCP server: Enter a Name the MCP server in API Management. In Base path, enter a route prefix for tools. Example: mcptools Optionally, enter a Description for the MCP server. Select Create. Below diagram shows the MCP servers configured in APIM for reference. Configure policies for MCP server Configure one or more API Management policies to help manage the MCP server. The policies are applied to all API operations exposed as tools in the MCP server and can be used to control access, authentication, and other aspects of the tools. To configure policies for the MCP server: In the Azure portal, navigate to your API Management instance. In the left-hand menu, under APIs, select MCP Servers. Select an MCP server from the list. In the left menu, under MCP, select Policies. In the policy editor, add or edit the policies you want to apply to the MCP server's tools. The policies are defined in XML format. <!-- - Policies are applied in the order they appear. - Position <base/> inside a section to inherit policies from the outer scope. - Comments within policies are not preserved. --> <!-- Add policies as children to the <inbound>, <outbound>, <backend>, and <on-error> elements --> <policies> <!-- Throttle, authorize, validate, cache, or transform the requests --> <inbound> <base /> <set-variable name="accessToken" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "").Replace("Bearer ", ""))" /> <!-- Log the captured access token to the trace logs --> <trace source="Access Token Debug" severity="information"> <message>@("Access Token: " + (string)context.Variables["accessToken"])</message> </trace> <set-variable name="userId" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "Bearer ").Split(' ')[1].AsJwt().Claims["oid"].FirstOrDefault())" /> <set-variable name="userName" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "Bearer ").Split(' ')[1].AsJwt().Claims["name"].FirstOrDefault())" /> <trace source="User Name Debug" severity="information"> <message>@("username: " + (string)context.Variables["userName"])</message> </trace> <set-variable name="scp" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "Bearer ").Split(' ')[1].AsJwt().Claims["scp"].FirstOrDefault())" /> <trace source="Scope Debug" severity="information"> <message>@("scope: " + (string)context.Variables["scp"])</message> </trace> <set-variable name="roles" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "Bearer ").Split(' ')[1].AsJwt().Claims["roles"].FirstOrDefault())" /> <trace source="Role Debug" severity="information"> <message>@("Roles: " + (string)context.Variables["roles"])</message> </trace> <!-- <set-variable name="requestBody" value="@{ return context.Request.Body.As<string>(preserveContent:true); }" /> <trace source="Request Body information" severity="information"> <message>@("Request body: " + (string)context.Variables["requestBody"])</message> </trace> --> <validate-azure-ad-token tenant-id="{{tenant-id}}" header-name="Authorization" failed-validation-httpcode="401" failed-validation-error-message="Unauthorized. Access token is missing or invalid."> <client-application-ids> <application-id>{{client-application-id}}</application-id> </client-application-ids> <audiences> <audience>{{audience}}</audience> </audiences> <required-claims> <claim name="roles" match="any"> <value>mcp.read</value> </claim> </required-claims> </validate-azure-ad-token> </inbound> <!-- Control if and how the requests are forwarded to services --> <backend> <base /> </backend> <!-- Customize the responses --> <outbound> <base /> </outbound> <!-- Handle exceptions and customize error responses --> <on-error> <base /> <trace source="Role Debug" severity="error"> <message>@("username: " + (string)context.Variables["userName"] + " has error in accessing the MCP server, could be auth or role related...")</message> </trace> <return-response> <set-status code="403" reason="Forbidden" /> <set-body> {"error":"Missing required scope or role"} </set-body> </return-response> </on-error> </policies> Note: Update the above inbound policy with the tenant Id, client application id, and audience as per your environment. It is recommended to use APIM "Named values" instead of hard coding inside the policy. To learn more, visit Use named values in Azure API Management policies Configure Diagnostics for APIM In this solution, APIM diagnostics are configured to forward log data to Log Analytics. Testing and validation will be carried out using insights from Log Analytics. Note: Setting up diagnostics is outside the scope of this article. However, you can visit the following link for more information. https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-use-azure-monitor Below diagram shows what Logs are being sent to Log Analytics workspace. MCP Tool configuration in Copilot Studio Lauch copilot studio at https://copilotstudio.microsoft.com/. Configuration of environment and agent is beyond the scope of this article. It is assumed, you already have environment setup and agent has been created. Following link will help you, how to create an agent in copilot studio. Quickstart: Create and deploy an agent — Microsoft Copilot Studio | Microsoft Learn Inside agent configuration, click "Add tool". 3. Click on New tool. 4. Select Model Context Protocol. 5. Provide all relevant information for MCP server. Make sure your server URL ends with your mcp setup. In this case, it is APIM MCP server URL, with base path configured in APIM in the end. Provide server name and server description. Select OAuth 2.0 radio button. 6. Provide the following in the OAuth 2.0 section Client ID of client app registration. In this case, copilot-studio-client as configured earlier. Client secret of copilot-studio-client app registration. Authorization URL: https://login.microsoftonline.com/common/oauth2/v2.0/authorize Token URL template & Refresh URL: https://login.microsoftonline.com/oauth2/v2.0/token Scopes: openid, profile, email — which we selected earlier for Microsoft Azure Graph permissions. Click “Create”. This will provide you Redirect URL. you need to configure the redirect URL in client app registration. In this case, it is copilot-agent-client. Configure Redirect URI in Client App Registration Visit client app registration. i.e. copilot-studio-client. Click Authentication Tab and provide the Web Redirect URIs as shown below. Note: Configure Redirect URIs MUST be configured in app registration. Otherwise, authorization will not complete and sign on will fail. Configure redirect URI in APIM API app registration Also configure apim-mcp-backend-api app registration with the same redirect URI as shown below. Modify MCP connector in PowerApps Now visit the https://make.powerapps.com and open the newly created connector as shown below. Select the security tab and modify the Resource URL with application ID URI of apim-mcp-backend-api configured earlier in app registration for expose an API. Add .default in the scope. Provide the secret of client app registration as it will not let you update the connector. This is extra security measure for updating the connector in Powerapps. Click Update connector. CORS Configuration CORS configuration is a MUST!!! Since our Azure Container App is a remote MCP server with totally different domain or origin. Power Apps and CORS for External Domains — Brief Overview When embedding or integrating Power Apps with external web applications or APIs, Cross-Origin Resource Sharing (CORS) becomes a critical consideration. CORS is a browser security feature that restricts web pages from making requests to a different domain than the one that served the page, unless explicitly allowed. Key Points: Power Apps hosted on *.powerapps.com or within Microsoft 365 domains will block calls to external APIs unless those APIs include the proper CORS headers. The external API must return: Access-Control-Allow-Origin: https://apps.powerapps.com (or * for all origins, though not recommended for production) Access-Control-Allow-Methods: GET, POST, OPTIONS (or as needed) Access-Control-Allow-Headers: Content-Type, Authorization (and any custom headers) If the API requires authentication (e.g., OAuth 2.0), ensure preflight OPTIONS requests are handled correctly. For scenarios where you cannot modify the external API, consider using: Power Automate flows as a proxy Azure API Management or Azure Functions to inject CORS headers Always validate security implications before enabling wide-open CORS. If the CORS are not setup. You will encounter following error in copilot studio after pressing F12 (Browser Developer) CORS policy — blocking the container app Azure container app provides very efficient way of configuring CORS in the Azure portal. Lauch Azure Portal. Visit Azure container app i.e. streamable-mcp-server2 in this case. Click on CORS under Networking section. Configure the following in Allowed Origin Section as shown below. localhost is added to make it work from local laptop, although it is not required for Copilot Studio. 4. Click on “Allowed Method” tab and provide the following. 5. Provide wild card “*” in “Allowed Headers”tab. Although, it is not recommended for production system. it is done for the sake for simplicity. Configure that for added security 6. Click “Apply”. This will configure CORS for remote application. Test the MCP custom connector We are in the final stages of configuring the connector. It is time to test it, if everything is configured correctly and works. Launch the http://make.powerapps.com and click on “Custom connectors”, select your configured connector and click “5. Test” tab as shown below. You will see Selected Connection as blank if you are running it first time. Click “+ New connection” 2. New connection will launch the Authorization flow and browser dialog will pop up for making a request for authorization code. 3. Click “Create”. 4. Complete the login process. This will create a successful connection. 5. Click “Test operation”. If the response is 406 means everything is configured correctly as shown below. Solution validation Add user in Enterprise Application for App roles Roles have been defined under the required claims in the APIM inbound policy and also configured in the apim-mcp-backend-api app registration. As a result, any request from Copilot Studio will be denied if this role is not properly assigned. This role is included in the JWT access token, which we will validate in the following sections. To assign role, perform the following steps. Visit Azure Portal. Visit Enterprise Application. Select APIM backend app registration. In this case for example, apim-mcp-backend-api Click "Users and groups" Select "Add user/group" 5. Select User or Group who should have access to the role. 6. Click "Assign". It will look like as below. Note: Role assignment for users or groups is an important step. If it is not configured, MCP server tests will fail in Copilot studio. Test MCP server in Copilot Studio Lauch copilot studio and click on the Agent you created in earlier steps and click on “Tools tab”. Select your MCP tool as shown the following figure. Make sure it is “Enabled” if you have other tools attached to the same agent, disable them for now for testing. Make sure you have connection available which we created during the testing of custom connector in earlier step. You can also initiate a fresh connection by clicking on the drop down under “Connection” as shown below. Refreshing the tools will show all the tools available in this MCP server. Provide the sample prompt such as “Give me the stock price of tesla”. This will trigger the MCP server and call the respective method to bring the stock price of Tesla. Now try a weather-related question to see more. Now invoking weather forecast tool in the MCP server. APIM Monitoring with Log Analytics We previously configured APIM diagnostic settings to forward log data to Log Analytics. In this section, we’ll review that data, as the inbound policy in APIM sends valuable information to Log Analytics. Run the Kusto query to retrieve data from the last 30 minutes. As shown, the logs capture the APIM API endpoint URL and the backend URL, which corresponds to the Azure Container App endpoint. Scrolling further, we find the TraceRecords section. This contains the information captured by APIM inbound policies and sent to Log Analytics. The figure below illustrates the TraceRecords data. In the inbound policy, we configured it to extract details from the access token—such as the token itself, username, scope, and roles—and forward them to Log Analytics. Now let's capture the access token in the clip board, launch the http://jwt.io which is JSON Web Token (JWT) debugger, and paste the access token in the ENCODED VALUE box as show below. Note the following information. aud: This shows the Application URI ID of apim-mcp-backend-api. which shows access token is requested for that audience. appid: This shows the client Id for copilot-studio-client app registration. You can also see roles and scope. These roles are specified in APIM inbound policy. Note: As you can see, roles are included in access token and if it is not assigned in the enterprise application for "apim-mcp-backend-api", all requests will be denied by APIM inbound policy configured earlier. Perform a test using another Azure AD account that does not have the app role assigned Now, let's try the copilot studio agent by logging in with another account which is not assigned for the "mcp.read" role. Let's, review the below diagram. Logged in as demo and tried to access the MCP tool in copilot studio agent. Request failed with the error "Missing required scope or roles". If you look at it, this is coming from the APIM policy configured earlier in <on-error> Let's review log analytics. As you can see request failed due to inbound APIM policy with 403 error and there is no backend URL. Error is also reported under TraceRecords as we configured it in APIM policy. Now copy the Access token from log analytics and paste it into jwt.io. You can notice in the below diagram, there is no "roles" in the access token, resulting access denied from APIM inbound policy definition to the APIM backend i.e. azure container app. Assign the app role to the demo account Let's assign the "mcp.read" role to the demo account and test if it accesses the tool. Visit Azure Portal, Lauch Enterprise application, and select "apim-mcp-backend-api" as in this example. Click "Users and groups" Click "+ Add user/group" Select demo Click "Select" Click "Assign" End result would look like as shown below. Now, login again as demo. Make sure a new access token is generated. Access token refresh happens after one hours. As you can see in the image below, this time the request is successful after assigning the "mcp.read" app roles. Now let's review the log analytics entries. Let's review the access token in JWT.io. As you can see, roles are included in the access token. Conclusion Exposing the MCP server through Azure API Management (APIM) and integrating it with Copilot Studio agents provides a secure and scalable way to extend enterprise capabilities. By implementing OAuth 2.0, you ensure robust authentication and authorization, protecting sensitive data and maintaining compliance with industry standards. Beyond security, APIM adds significant operational value. With APIM policies, you can monitor traffic, enforce rate limits, and apply fine-grained controls to manage access and performance effectively. This combination of security and governance empowers organizations to innovate confidently while maintaining control and visibility over API usage. In today’s enterprise landscape, leveraging APIM with OAuth 2.0 for MCP integration is not just best practice—it’s a strategic move toward building resilient, secure, and well-governed solutions.2.5KViews2likes2CommentsThe Future of AI: Building Weird, Warm, and Wildly Effective AI Agents
Discover how humor and heart can transform AI experiences. From the playful Emotional Support Goose to the productivity-driven Penultimate Penguin, this post explores why designing with personality matters—and how Azure AI Foundry empowers creators to build tools that are not just efficient, but engaging.1.7KViews1like0CommentsImplementing MCP Remote Servers with Azure Function App and GitHub Copilot Integration
Introduction In the evolving landscape of AI-driven applications, the ability to seamlessly connect large language models (LLMs) with external tools and data sources is becoming a cornerstone of intelligent system design. Model Context Protocol (MCP) — a specification that enables AI agents to discover and invoke tools dynamically, based on context. While MCP is powerful, implementing it from scratch can be daunting !!! That’s where Azure Functions comes in handy. With its event-driven, serverless architecture, Azure Functions now supports a preview extension for MCP, allowing developers to build remote MCP servers that are scalable, secure, and cloud-native. Further, In VS Code, GitHub Copilot Chat in Agent Mode can connect to your deployed Azure Function App acting as an MCP server. This connection allows Copilot to leverage the tools and services exposed by your function app. Why Use Azure Functions for MCP? Serverless Simplicity: Deploy MCP endpoints without managing infrastructure. Secure by Design: Leverage HTTPS, system keys, and OAuth via EasyAuth or API Management. Language Flexibility: Build in .NET, Python, or Node.js using QuickStart templates. AI Integration: Enable GitHub Copilot, VS Code, or other AI agents to invoke your tools via SSE endpoints. Prerequisites Python version 3.11 or higher Azure Functions Core Tools >= 4.0.7030 Azure Developer CLI To use Visual Studio Code to run and debug locally: Visual Studio Code Azure Functions extension An storage emulator is needed when developing azure function app in VScode. you can deploy Azurite extension in VScode to meet this requirement. Press enter or click to view image in full size You can run the Azurite in VS Code as shown below. C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\IDE\Extensions\Microsoft\Azure Storage Emulator> .\azurite.exe Press enter or click to view image in full size alternatively, you can also run Azurite in docker container as shown below. docker run -p 10000:10000 -p 10001:10001 -p 10002:10002 \ mcr.microsoft.com/azure-storage/azurite For more information about setting up Azurite, visit Use Azurite emulator for local Azure Storage development | Microsoft Learn Github Repositories Following Github repos are needed to setup this PoC. Repository for MCP server using Azure Function App https://github.com/mafzal786/mcp-azure-functions-python.git Repository for AI Foundry agent as MCP Client https://github.com/mafzal786/ai-foundry-agent-with-remote-mcp-using-azure-functionapp.git Clone the repository Run the following command to clone the repository to start building your MCP server using Azure function app. git clone https://github.com/mafzal786/mcp-azure-functions-python.git Run the MCP server in VS Code Once cloned. Open the folder in VS Code. Create a virtual environment in VS Code. Change directory to “src” in a new terminal window, install the python dependencies and start the function host locally as shown below. cd src pip install -r requirements.txt func start Note: by default this will use the webhooks route: /runtime/webhooks/mcp/sse. Later we will use this in Azure to set the key on client/host calls: /runtime/webhooks/mcp/sse?code=<system_key> Press enter or click to view image in full size MCP Inspector In a new terminal window, install and run MCP Inspector. npx @modelcontextprotocol/inspector Click to load the MCP inspector. Also provide the generated proxy session token. http://127.0.0.1:6274/#resources In the URL type and click “Connect”: http://localhost:7071/runtime/webhooks/mcp/sse Once connected, click List Tools under Tools and select “hello_mcp” tool and click “Run Tool” for testing as shown below. Press enter or click to view image in full size Select another tool such as get_stockprice and run it as shown below. Press enter or click to view image in full size Deploy Function App to Azure from VS Code For deploying function app to azure from vs code, make sure you have Azure Tools extension enabled in VS Code. To learn more about Azure Tools extension, visit the following Azure Extensions if your VS code environment is not setup for Azure development, follow Configure Visual Studio Code for Azure development with .NET — .NET | Microsoft Learn Once Azure Tools are setup, sign in to Azure account with Azure Tools Press enter or click to view image in full size Once Sign-in is completed, you should be able to see all of your existing resources in the Resources view. These resources can be managed directly in VS Code. Look for Function App in Resource, right click and click “Deploy to Function App”. Press enter or click to view image in full size If you already have it deployed, you will get the following pop-up. Click “Deploy” Press enter or click to view image in full size This will start deploying your function app to Azure. In VS Code, Azure tab will display the following. Press enter or click to view image in full size Once the deployment is completed, you can view the function app and all the tools in Azure portal under function app as shown below. Press enter or click to view image in full size Get the mcp_extension key from Functions → App Keys in Function App. Press enter or click to view image in full size This mcp_extension key would be needed in mcp.json file in VS code, if you would like to test the MCP server using Github Copilot in VS Code. Your entries in mcp.json file will look like as below for example. { "inputs": [ { "type": "promptString", "id": "functions-mcp-extension-system-key", "description": "Azure Functions MCP Extension System Key", "password": true }, { "type": "promptString", "id": "functionapp-name", "description": "Azure Functions App Name" } ], "servers": { "remote-mcp-function": { "type": "sse", "url": "https://${input:functionapp-name}.azurewebsites.net/runtime/webhooks/mcp/sse", "headers": { "x-functions-key": "${input:functions-mcp-extension-system-key}" } }, "local-mcp-function": { "type": "sse", "url": "http://0.0.0.0:7071/runtime/webhooks/mcp/sse" } } } Test Azure Function MCP Server in MCP Inspector Launch MCP Inspector and provide the Azure Function in MCP inspector URL. Provide authentication as shown below. Bearer token is mcp_extension key. Testing an MCP server with GitHub Copilot Testing an MCP server with GitHub Copilot involves configuring and utilizing the server within your development environment to provide enhanced context and capabilities to Copilot Chat. Steps to Test an MCP Server with GitHub Copilot: Ensure Agent Mode is Enabled: Open Copilot Chat in Visual Studio Code and select “Agent” mode. This mode allows Copilot to interact with external tools and services, including MCP servers. Add the MCP Server: Open the Command Palette (Ctrl+Shift+P or Cmd+Shift+P) and run the command MCP: Add Server. Press enter or click to view image in full size Follow the prompts to configure the server. You can choose to add it to your workspace settings (creating a .vscode/mcp.json file) . Select HTTP or Server-Sent events Press enter or click to view image in full size Specify the URL and click Enter Press enter or click to view image in full size Provide a name of your choice Press enter or click to view image in full size Select scope as Global or workspace. I selected Workspace Press enter or click to view image in full size This will generate mcp.json file in .vscode or create a new entry if mcp.json already exists as shown below. Click Start to “start” the server. Also make sure your Azure function app is locally running with func start command. Press enter or click to view image in full size Now Type the prompt as shown below. Press enter or click to view image in full size Try another tool as below. Press enter or click to view image in full size VS code terminal output for reference. Press enter or click to view image in full size Testing an MCP server with Claude Desktop Claude Desktop is a standalone AI application that allows users to interact with Claude AI models directly from their desktop, providing a seamless and efficient experience. you can download Claude desktop at Download Claude In this article, I have added another tool to utilize to test your MCP server running in Azure Function app. Modify claude_desktop_config.json with the following. you can find this file in window environment at C:\Users\<username>\AppData\Roaming\Claude { "mcpServers": { "my mcp": { "command": "npx", "args": [ "mcp-remote", "http://localhost:7071/runtime/webhooks/mcp/sse" ] } } } Note: If claude_desktop_config.json does not exists, click on setting in Claude desktop under user and visit developer tab. You will see you MCP server in Claude Desktop as shown below. Press enter or click to view image in full size Type the prompt such as “What is the stock price of Tesla” . After submitting, you will notice that it is invoking the tool “get_stockprice” from the MCP server running locally and configured in the .json earlier. Click Allow once or Allow always as shown below. Following output will be displayed. Press enter or click to view image in full size Now lets try weather related prompt. As you can see, it has invoked “get_weatheralerts” tool from MCP server. Press enter or click to view image in full size Azure AI Foundry agent as MCP Client Use the following Github repo to set up Azure AI Foundry agent as MCP client. git clone https://github.com/mafzal786/ai-foundry-agent-with-remote-mcp-using-azure-functionapp.git Open the code in VS code and follow the instructions mentioned in README.md file at Github repo. Once you execute the code, following output will show up in VS code. Press enter or click to view image in full size In this code, message is hard coded. Change the content to “what is weather advisory for Florida” and rerun the program. It will call get_weatheralerts tool and output will look like as below. Press enter or click to view image in full size Conclusion The integration of Model Context Protocol (MCP) with Azure Functions marks a pivotal step in democratizing AI agent development. By leveraging Azure’s serverless architecture, developers can now build remote MCP servers that scale automatically, integrate seamlessly with other Azure services, and expose modular tools to intelligent agents like GitHub Copilot. This setup not only simplifies the deployment and management of MCP servers but also enhances the developer experience — allowing tools to be invoked contextually by AI agents in environments like VS Code, GitHub Codespaces, or Copilot Studio[2]. Whether you’re building a tool to query logs, calculate metrics, or manage data, Azure Functions provides the flexibility, security, and scalability needed to bring your AI-powered workflows to life. As the MCP spec continues to evolve, and GitHub Copilot expands its agentic capabilities, this architecture positions you to stay ahead — offering a robust foundation for cloud-native AI tooling that’s both powerful and future-proof.1.2KViews1like1Comment