Machine learning models are useful in analyzing patient data, helping in detecting diseases early, and enabling clinicians in creating personalized treatments. However, using these models in healthcare is challenging because it requires accessing and processing sensitive patient data while ensuring patient privacy and complying with strict regulations.
Traditional encryption methods can only protect data when it is stored and not when it is being used for computation. One way to perform computation on encrypted data is to decrypt it in a trusted region like a secure enclave, which is done in Microsoft’s product offering Azure Confidential Computing. A cryptographic way of protecting information exists that can operate directly on encrypted data without the need for decryption - this technique is known as Secure Multi-party Computation (SMPC). SMPC helps ensure that sensitive healthcare data remains secure while enabling healthcare professionals to perform computations on the data they need to provide better care for patients.
Traditional encryption vs. SMPC
While both traditional encryption methods and Secure Multi-Party Computation (SMPC) offer similar levels of data security, SMPC has the added capability of allowing computations on encrypted data. For instance, in the case of wanting to conduct model inference on an encrypted DICOM image, it's possible to directly use the encrypted image with SMPC. The additional computational load or overhead of using SMPC depends on the specific function or computation being performed on the encrypted data.
Comparison criteria
Traditional encryption methods
Secure Multi‑Party Computation (SMPC)
Data exposure
Raw data needs to be decrypted for analysis or use.
Computation is performed on encrypted data.
Inference speed
Encryption and decryption overhead is minimal.
Joint computation on encrypted data can introduce overhead in latency.
Trust assumptions
Rely on trusted third‑party or secure infrastructure.
Distributed computation with privacy assurance.
Figure 1 Traditional encryption methods vs. Secure Multi‑Party Computation (SMPC).
SMPC transforms healthcare data analysis and ML
SMPC provides a solution that allows multiple parties to work together on their data without revealing any sensitive information. It helps healthcare providers and researchers securely analyze patient data and use ML models while maintaining patient privacy.
Here are some key benefits of SMPC in the healthcare sector:
Privacy preservation. SMPC protects individual patient data during the computation process. Each party only sees their own data, and the others’ data is hidden. This lets healthcare providers and researchers work together and use more data without risking privacy.
Collaborative research. SMPC facilitates collaborative research among healthcare institutions, enabling them to pool their data resources without compromising privacy. Multiple parties can train ML models together on their combined data while keeping patient records and information safe. This helps improve the ML models in healthcare by using more and different data sources and larger samples.
Secure data sharing. SMPC helps enable healthcare providers to more securely share specific information from their datasets with other authorized parties. For example, when studying rare diseases, healthcare organizations may be able to share some patient data points or features while helping preserve their identity and privacy. This controlled sharing mechanism helps enhance research and contributes to the advancement of medical knowledge.
Privacy‑preserving ML to improve the security of fMRI data analysis in healthcare.
In this blog we explore the application of SMPC to medical image analysis via machine learning techniques for a specific use case of functional Magnetic Resonance Imaging (fMRI) analysis. Applying ML to fMRI data has the potential to revolutionize healthcare by providing insights into brain function and diagnosing neurological disorders. However, the sensitive nature of fMRI data raises significant privacy concerns. To address these challenges, one may employ privacy‑preserving ML techniques, such as data anonymization, secure data encryption, federated learning, and differential privacy, which would allow leveraging the benefits of ML in fMRI analysis while maintaining patient confidentiality and adhering to regulatory requirements.
Before diving into the details of how OnnxBridge (an end-to-end compiler for converting Onnx Models to Secure Cryptographic backends) enables secure machine learning for fMRI data, it is important to understand how fMRI is relevant for neuroscience research. Functional magnetic resonance imaging (fMRI) is a technique that measures brain activity by detecting changes in blood flow. By using fMRI, researchers can identify which brain regions are involved in different cognitive functions, such as memory, language, or emotion. This is known as functional localization. However, fMRI data is often sensitive and confidential, as it can reveal personal information about the participants’ health, preferences, or personality. Therefore, it is essential to protect the privacy and security of fMRI data when performing machine learning analysis on it.
In the rest of this blog post, we cover these topics:
What rs‑fMRI is and how it measures brain activity by detecting changes in blood flow.
How SMPC protects the privacy and security of fMRI data when performing machine learning analysis using EzPC‑OnnxBridge, a crucial part of the EzPC project from Microsoft Research India (MPC-MSRI, 2021).
How to use EzPC‑OnnxBridge for rs‑fMRI to identify brain regions involved in different cognitive functions.
What is rs‑fMRI and how is it used to localize brain networks?
Unlike traditional fMRI, which captures brain activity during specific tasks or stimuli, rs‑fMRI delves into the spontaneous fluctuations of the brain when it is in a state of rest or free thinking. It explores the intricate networks of communication among different brain regions, shedding light on the underlying functional architecture that forms the foundation of our cognition.
The power of rs‑fMRI lies in its ability to measure and analyse blood oxygen level ‑dependent (BOLD) signals. By detecting changes in blood flow and oxygenation, rs‑fMRI provides a window into the brain's dynamic activity during rest. These fluctuations in the BOLD signal, known as resting ‑state connectivity, are like whispers of communication between various regions of the brain, even when we are not consciously engaged in any cognitive task.
Through advanced computational algorithms and sophisticated statistical analysis, researchers can map and visualize these functional connections within the brain. However, it is important to note that rs‑fMRI is not without its challenges and limitations. The interpretation of resting ‑state connectivity requires careful consideration, as it represents correlations between brain regions rather than direct causality. Moreover, factors such as participant motion, physiological noise, and data pre‑processing methods can influence the results and must be rigorously addressed to help ensure data quality and reliability. Here’s where ML algorithms can help neuro‑radiologists to efficiently map and visualize brain networks towards different number of clinical applications. In this blog, we provide an example of how to use SMPC to automatically identify and localize brain networks using work published in [3].
Figure 2 Visualization of brain networks from 3D dual regression volumes.
We begin with an overview of how secure multi‑party computation (SMPC) works and then describe how EzPC‑OnnxBridge can be used in the application described above. EzPC OnnxBridge allows using SMPC without any knowledge of cryptography. We will now walk through the steps for using EzPC OnnxBridge for this application.
SMPC is a cryptographic primitive introduced in the 1980s [4,5] that helps enable two or more parties who have private data to collaborate (or compute joint functions) on their private/secret data, without sharing it in the clear with any entity. This is done through an interactive cryptographic protocol – each party performs computations on their data and exchange (seemingly random looking) messages with other parties iteratively. At the end of such an interaction, the parties learn only the output of the joint function. As an example, if two parties A and B have private inputs a and b and wish to compute the function y = f(a,b) which outputs 1 if a>b and 0, otherwise, they can run an SMPC protocol to precisely compute y and nothing else. SMPC protocols have been extensively studied in the cryptography community over the last four decades with latest research, such as the EzPC technology [6,7,8,9], making SMPC practical for large scale ML models. In the application of secure machine learning for fMRI data, we have 2 parties – one that holds the machine learning model and the other that holds an input data point for inference. For the first party, the weights of the ML model are private, while for the second party, the input data point is private. In typical applications, including ours, the model architecture is public and known to both parties.
1. Identify sensitive data We first identify the data involved in a single inferencing between two parties:
Machine Learning Model (Model Weights + Model Architecture).
Input data for inference.
Image by author using [2].
In the above the secret (or private) data to the two parties are:
Model Weights (obtained after training publicly available model architecture on private data) to one party.
Input data to the other party.
Image by author using [2].
Typically, model architectures are openly available and do not hold any proprietary data of any of the parties.
2. Strip ML model of weights Now that we know what the secret data involved in an inference are, the next step is to strip the ML model of its model weights so that the model architecture can be shared. This is shown in the figure below.
Image by author using [2].
The above step helps us confirm that the secret data is in no way involved in generating crypto protocols, and give us full control over our data, which we input only at the time of secure inference.
In the above image we can see the mlp.onnx model before and after its secret data (i.e., the weights and bias of all layers) is stripped and represented as an input value, which means the model architecture do not contain any secret data and expects it at runtime.
3. Generate SMPC protocols from architecture After we have the model architecture without weights, we need to convert this architecture to cryptographically secure protocols which will run on the secret data and give us output as if it was run without any crypto or security guarantees involved. This is done through EzPC‑OnnxBridge and is depicted below.
Image by author using [2].
4. Secure inference on private data Finally, we need to run the above generated crypto protocols for each of two parties involved. These protocols will take the secret data as input and will communicate with each other some encrypted (masked) bits and pieces of data, which have strong mathematical assurances such that at any point the data being communicated does not reveal any information about the secret data.
At the end of the computation, the output of the computation is revealed to the specified parties (one or both) involved in the computation.
Using EzPC OnnxBridge for rs-fMRI
EzPC offers an inference ‑app that serves as a front-end for SMPC operations. This application presents users with a graphical user interface (GUI) through which they can upload images and obtain results securely. Next, we’ll walk through the steps required to get the app running.
Internally, the application utilizes OnnxBridge, an ‑‑ end to end compiler, to convert Onnx files to SMPC cryptographic protocols. The compiler helps with the removal of confidential data from models before converting them to Secure Multi‑Party Computation (SMPC) protocols. Thus, EzPC provides a user ‑friendly interface that facilitates a more secure compilation and execution of machine learning models.
Let’s take a look at the practical implementation of OnnxBridge to conduct secure inference using the mlp.onnx model specifically designed for rs‑fMRI (resting‑state functional magnetic resonance imaging) images.
The setup steps from the EzPC GitHub repo will help us to get the inference‑app running. The steps will be executed in following order:
1. Install dependencies for:
Cryptographic backend
Compiler OnnxBridge
2. Set up server (model owner and model processing).
Strips the model of its weights and save them in a file.
Loads the stripped model architecture.
Generates the secure backend code for the model architecture.
Share the stripped model architecture with dealer/client.
3. Set up dealer.
Compiles the model architecture received from server.
Compute and share pre generated randomness for server/client to reduce communication drastically and speed up inference.
Note: For the randomness generation there has been no involvement of secret data.
4. Set up client (acting as image owner).
Compiles the model architecture received from server.
5. Set up inference app.
Encrypts the input image and sends it to client VM which starts inference. See screenshots below.
Step 1: Upload the image.
Step 2: Receive encryption from dealer.
Step 3: Encrypt the image.
Step 4: Start secure inference.
With the above we can see how EzPC gives us an interface and empowers us with superior cryptographic backends to follow SMPC ideally without any interaction with the secret data.
Ghate, S., Santamaria-Pang, A., Tarapov, I., Sair, H., Jones, C. (2022). Deep Labeling of fMRI Brain Networks Using Cloud Based Processing. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_21. https://doi.org/10.1007/978-3-031-20713-6_21.
Yao, A. (1982). Protocols for Secure Computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (pp. 160-164). IEEE.
Goldreich, O., Micali, S., & Wigderson, A. (1987). How to play any mental game or A completeness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (pp. 218-229). ACM.
Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., & Sharma, R. (2020). CrypTFlow: Secure TensorFlow Inference. In Proceedings of the 41st IEEE Symposium on Security and Privacy (pp. 1247-1264). IEEE.
Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A., & Sharma, R. (2020). CrypTFlow2: Practical 2 Party Secure Inference. In Proceedings of the 27th ACM Conference on Computer and Communications Security (pp. 1639-1656). ACM.
Chandran, N., Gupta, D., Rastogi, A., Sharma, R., & Tripathi, S. (2019). EzPC: Programmable and Efficient Secure Two-Party Computation for Machine Learning. In Proceedings of the 4th IEEE European Symposium on Security and Privacy (pp. 123-138). IEEE.
Gupta, K., Kumaraswamy, D., Chandran, N., Gupta, D. (2022). LLAMA: A Low Latency Math Library for Secure Inference. In Proceedings of the Privacy Enhancing Technologies Symposium (PoPETS).
Updated Feb 15, 2024
Version 2.0
No CommentsBe the first to comment
Share
"}},"componentScriptGroups({\"componentId\":\"custom.widget.Social_Sharing\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"component({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"Component","render({\"context\":{\"component\":{\"entities\":[],\"props\":{}},\"page\":{\"entities\":[\"board:HealthcareAndLifeSciencesBlog\",\"message:4057703\"],\"name\":\"BlogMessagePage\",\"props\":{},\"url\":\"https://techcommunity.microsoft.com/blog/healthcareandlifesciencesblog/leverage-secure-multi-party-computation-smpc-for-machine-learning-inference-in-r/4057703\"}}})":{"__typename":"ComponentRenderResult","html":""}},"componentScriptGroups({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/community/NavbarDropdownToggle\"]})":[{"__ref":"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/common/QueryHandler\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCoverImage\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCoverImage-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeTitle\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTimeToRead\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageSubject\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageSubject-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserLink\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserLink-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserRank\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserRank-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTime\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTime-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageBody\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageBody-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCustomFields\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCustomFields-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageRevision\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageRevision-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageReplyButton\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageReplyButton-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageAuthorBio\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/ranks/UserRankLabel\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserRegistrationDate\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserRegistrationDate-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeDescription\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"components/tags/TagView/TagViewChip\"]})":[{"__ref":"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1737115705000"}],"cachedText({\"lastModified\":\"1737115705000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeIcon\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1737115705000"}]},"CachedAsset:pages-1741250879736":{"__typename":"CachedAsset","id":"pages-1741250879736","value":[{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"BlogViewAllPostsPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId/all-posts/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"CasePortalPage","type":"CASE_PORTAL","urlPath":"/caseportal","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"CreateGroupHubPage","type":"GROUP_HUB","urlPath":"/groups/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"CaseViewPage","type":"CASE_DETAILS","urlPath":"/case/:caseId/:caseNumber","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"InboxPage","type":"COMMUNITY","urlPath":"/inbox","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"HelpFAQPage","type":"COMMUNITY","urlPath":"/help","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"IdeaMessagePage","type":"IDEA_POST","urlPath":"/idea/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"IdeaViewAllIdeasPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/all-ideas/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"LoginPage","type":"USER","urlPath":"/signin","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"BlogPostPage","type":"BLOG","urlPath":"/category/:categoryId/blogs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"UserBlogPermissions.Page","type":"COMMUNITY","urlPath":"/c/user-blog-permissions/page","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ThemeEditorPage","type":"COMMUNITY","urlPath":"/designer/themes","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"TkbViewAllArticlesPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId/all-articles/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730142000000,"localOverride":null,"page":{"id":"AllEvents","type":"CUSTOM","urlPath":"/Events","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"OccasionEditPage","type":"EVENT","urlPath":"/event/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"OAuthAuthorizationAllowPage","type":"USER","urlPath":"/auth/authorize/allow","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"PageEditorPage","type":"COMMUNITY","urlPath":"/designer/pages","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"PostPage","type":"COMMUNITY","urlPath":"/category/:categoryId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ForumBoardPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"TkbBoardPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"EventPostPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"UserBadgesPage","type":"COMMUNITY","urlPath":"/users/:login/:userId/badges","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"GroupHubMembershipAction","type":"GROUP_HUB","urlPath":"/membership/join/:nodeId/:membershipType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"MaintenancePage","type":"COMMUNITY","urlPath":"/maintenance","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"IdeaReplyPage","type":"IDEA_REPLY","urlPath":"/idea/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"UserSettingsPage","type":"USER","urlPath":"/mysettings/:userSettingsTab","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"GroupHubsPage","type":"GROUP_HUB","urlPath":"/groups","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ForumPostPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"OccasionRsvpActionPage","type":"OCCASION","urlPath":"/event/:boardId/:messageSubject/:messageId/rsvp/:responseType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"VerifyUserEmailPage","type":"USER","urlPath":"/verifyemail/:userId/:verifyEmailToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"AllOccasionsPage","type":"OCCASION","urlPath":"/category/:categoryId/events/:boardId/all-events/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"EventBoardPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"TkbReplyPage","type":"TKB_REPLY","urlPath":"/kb/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"IdeaBoardPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"CommunityGuideLinesPage","type":"COMMUNITY","urlPath":"/communityguidelines","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"CaseCreatePage","type":"SALESFORCE_CASE_CREATION","urlPath":"/caseportal/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"TkbEditPage","type":"TKB","urlPath":"/kb/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ForgotPasswordPage","type":"USER","urlPath":"/forgotpassword","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"IdeaEditPage","type":"IDEA","urlPath":"/idea/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"TagPage","type":"COMMUNITY","urlPath":"/tag/:tagName","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"BlogBoardPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"OccasionMessagePage","type":"OCCASION_TOPIC","urlPath":"/event/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ManageContentPage","type":"COMMUNITY","urlPath":"/managecontent","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ClosedMembershipNodeNonMembersPage","type":"GROUP_HUB","urlPath":"/closedgroup/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"CommunityPage","type":"COMMUNITY","urlPath":"/","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ForumMessagePage","type":"FORUM_TOPIC","urlPath":"/discussions/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"IdeaPostPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730142000000,"localOverride":null,"page":{"id":"CommunityHub.Page","type":"CUSTOM","urlPath":"/Directory","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"BlogMessagePage","type":"BLOG_ARTICLE","urlPath":"/blog/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"RegistrationPage","type":"USER","urlPath":"/register","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"EditGroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ForumEditPage","type":"FORUM","urlPath":"/discussions/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ResetPasswordPage","type":"USER","urlPath":"/resetpassword/:userId/:resetPasswordToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730142000000,"localOverride":null,"page":{"id":"AllBlogs.Page","type":"CUSTOM","urlPath":"/blogs","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"TkbMessagePage","type":"TKB_ARTICLE","urlPath":"/kb/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"BlogEditPage","type":"BLOG","urlPath":"/blog/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ManageUsersPage","type":"USER","urlPath":"/users/manage/:tab?/:manageUsersTab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ForumReplyPage","type":"FORUM_REPLY","urlPath":"/discussions/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"PrivacyPolicyPage","type":"COMMUNITY","urlPath":"/privacypolicy","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"NotificationPage","type":"COMMUNITY","urlPath":"/notifications","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"UserPage","type":"USER","urlPath":"/users/:login/:userId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"OccasionReplyPage","type":"OCCASION_REPLY","urlPath":"/event/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ManageMembersPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/manage/:tab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"SearchResultsPage","type":"COMMUNITY","urlPath":"/search","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"BlogReplyPage","type":"BLOG_REPLY","urlPath":"/blog/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"GroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"TermsOfServicePage","type":"COMMUNITY","urlPath":"/termsofservice","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"CategoryPage","type":"CATEGORY","urlPath":"/category/:categoryId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"ForumViewAllTopicsPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/all-topics/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"TkbPostPage","type":"TKB","urlPath":"/category/:categoryId/kbs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1741250879736,"localOverride":null,"page":{"id":"GroupHubPostPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"}],"localOverride":false},"CachedAsset:text:en_US-components/context/AppContext/AppContextProvider-0":{"__typename":"CachedAsset","id":"text:en_US-components/context/AppContext/AppContextProvider-0","value":{"noCommunity":"Cannot find community","noUser":"Cannot find current user","noNode":"Cannot find node with id {nodeId}","noMessage":"Cannot find message with id {messageId}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-0":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-0","value":{"title":"Loading..."},"localOverride":false},"User:user:-1":{"__typename":"User","id":"user:-1","uid":-1,"login":"Deleted","email":"","avatar":null,"rank":null,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":"ANONYMOUS","registrationTime":null,"confirmEmailStatus":false,"registrationAccessLevel":"VIEW","ssoRegistrationFields":[]},"ssoId":null,"profileSettings":{"__typename":"ProfileSettings","dateDisplayStyle":{"__typename":"InheritableStringSettingWithPossibleValues","key":"layout.friendly_dates_enabled","value":"false","localValue":"true","possibleValues":["true","false"]},"dateDisplayFormat":{"__typename":"InheritableStringSetting","key":"layout.format_pattern_date","value":"MMM dd yyyy","localValue":"MM-dd-yyyy"},"language":{"__typename":"InheritableStringSettingWithPossibleValues","key":"profile.language","value":"en-US","localValue":"en","possibleValues":["en-US"]}},"deleted":false},"Theme:customTheme1":{"__typename":"Theme","id":"customTheme1"},"Category:category:HealthcareAndLifeSciences":{"__typename":"Category","id":"category:HealthcareAndLifeSciences","entityType":"CATEGORY","displayId":"HealthcareAndLifeSciences","nodeType":"category","depth":3,"title":"Healthcare and Life Sciences","shortTitle":"Healthcare and Life Sciences","parent":{"__ref":"Category:category:solutions"},"categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:top":{"__typename":"Category","id":"category:top","displayId":"top","nodeType":"category","depth":0,"title":"Top","entityType":"CATEGORY","shortTitle":"Top"},"Category:category:communities":{"__typename":"Category","id":"category:communities","displayId":"communities","nodeType":"category","depth":1,"parent":{"__ref":"Category:category:top"},"title":"Communities","entityType":"CATEGORY","shortTitle":"Communities"},"Category:category:solutions":{"__typename":"Category","id":"category:solutions","displayId":"solutions","nodeType":"category","depth":2,"parent":{"__ref":"Category:category:communities"},"title":"Topics","entityType":"CATEGORY","shortTitle":"Topics"},"Blog:board:HealthcareAndLifeSciencesBlog":{"__typename":"Blog","id":"board:HealthcareAndLifeSciencesBlog","entityType":"BLOG","displayId":"HealthcareAndLifeSciencesBlog","nodeType":"board","depth":4,"conversationStyle":"BLOG","title":"Healthcare and Life Sciences Blog","description":"","avatar":null,"profileSettings":{"__typename":"ProfileSettings","language":null},"parent":{"__ref":"Category:category:HealthcareAndLifeSciences"},"ancestors":{"__typename":"CoreNodeConnection","edges":[{"__typename":"CoreNodeEdge","node":{"__ref":"Community:community:gxcuf89792"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:communities"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:solutions"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:HealthcareAndLifeSciences"}}]},"userContext":{"__typename":"NodeUserContext","canAddAttachments":false,"canUpdateNode":false,"canPostMessages":false,"isSubscribed":false},"boardPolicies":{"__typename":"BoardPolicies","canPublishArticleOnCreate":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","args":[]}}},"shortTitle":"Healthcare and Life Sciences Blog","repliesProperties":{"__typename":"RepliesProperties","sortOrder":"REVERSE_PUBLISH_TIME","repliesFormat":"threaded"},"tagProperties":{"__typename":"TagNodeProperties","tagsEnabled":{"__typename":"PolicyResult","failureReason":null}},"requireTags":false,"tagType":"FREEFORM_AND_PRESET"},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc","height":512,"width":512,"mimeType":"image/png"},"Rank:rank:4":{"__typename":"Rank","id":"rank:4","position":6,"name":"Microsoft","color":"333333","icon":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}"},"rankStyle":"OUTLINE"},"User:user:2256982":{"__typename":"User","id":"user:2256982","uid":2256982,"login":"Alberto_Santamaria","deleted":false,"avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS0yMjU2OTgyLTU1MTgwNmk2RUQ1Nzg5M0VGQkI1Mjg4"},"rank":{"__ref":"Rank:rank:4"},"email":"","messagesCount":3,"biography":null,"topicsCount":3,"kudosReceivedCount":7,"kudosGivenCount":0,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-01-17T10:20:48.032-08:00","confirmEmailStatus":null},"followersCount":null,"solutionsCount":0},"BlogTopicMessage:message:4057703":{"__typename":"BlogTopicMessage","uid":4057703,"subject":"Leverage Secure Multi Party Computation (SMPC) for machine learning inference in rs-fMRI datasets.","id":"message:4057703","revisionNum":8,"repliesCount":0,"author":{"__ref":"User:user:2256982"},"depth":0,"hasGivenKudo":false,"board":{"__ref":"Blog:board:HealthcareAndLifeSciencesBlog"},"conversation":{"__ref":"Conversation:conversation:4057703"},"messagePolicies":{"__typename":"MessagePolicies","canPublishArticleOnEdit":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","args":[]}},"canModerateSpamMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","args":[]}}},"contentWorkflow":{"__typename":"ContentWorkflow","state":"DRAFT","scheduledPublishTime":null,"scheduledTimezone":null,"userContext":{"__typename":"MessageWorkflowContext","canSubmitForReview":false,"canEdit":false,"canRecall":false,"canSubmitForPublication":false,"canReturnToAuthor":false,"canPublish":false,"canReturnToReview":false,"canSchedule":false},"shortScheduledTimezone":null},"readOnly":false,"editFrozen":false,"moderationData":{"__ref":"ModerationData:moderation_data:4057703"},"teaser":"
\n
This article examines the integration of machine learning with Secure Multi-Party Computation (SMPC) in healthcare, focusing on securely analyzing functional fMRI imaging data.
Machine learning models are useful in analyzing patient data, helping in detecting diseases early, and enabling clinicians in creating personalized treatments. However, using these models in healthcare is challenging because it requires accessing and processing sensitive patient data while ensuring patient privacy and complying with strict regulations.
\n
\n
Traditional encryption methods can only protect data when it is stored and not when it is being used for computation. One way to perform computation on encrypted data is to decrypt it in a trusted region like a secure enclave, which is done in Microsoft’s product offering Azure Confidential Computing. A cryptographic way of protecting information exists that can operate directly on encrypted data without the need for decryption - this technique is known as Secure Multi-party Computation (SMPC). SMPC helps ensure that sensitive healthcare data remains secure while enabling healthcare professionals to perform computations on the data they need to provide better care for patients.
\n
Traditional encryption vs. SMPC
\n
While both traditional encryption methods and Secure Multi-Party Computation (SMPC) offer similar levels of data security, SMPC has the added capability of allowing computations on encrypted data. For instance, in the case of wanting to conduct model inference on an encrypted DICOM image, it's possible to directly use the encrypted image with SMPC. The additional computational load or overhead of using SMPC depends on the specific function or computation being performed on the encrypted data.
\n
\n\n
\n
\n
Comparison criteria
\n
\n
\n
Traditional encryption methods
\n
\n
\n
Secure Multi‑Party Computation (SMPC)
\n
\n
\n
\n
\n
Data exposure
\n
\n
\n
Raw data needs to be decrypted for analysis or use.
\n
\n
\n
Computation is performed on encrypted data.
\n
\n
\n
\n
\n
Inference speed
\n
\n
\n
Encryption and decryption overhead is minimal.
\n
\n
\n
Joint computation on encrypted data can introduce overhead in latency.
\n
\n
\n
\n
\n
Trust assumptions
\n
\n
\n
Rely on trusted third‑party or secure infrastructure.
\n
\n
\n
Distributed computation with privacy assurance.
\n
\n
\n\n
\n
Figure 1 Traditional encryption methods vs. Secure Multi‑Party Computation (SMPC).
\n
\n
SMPC transforms healthcare data analysis and ML
\n
SMPC provides a solution that allows multiple parties to work together on their data without revealing any sensitive information. It helps healthcare providers and researchers securely analyze patient data and use ML models while maintaining patient privacy.
\n
\n
Here are some key benefits of SMPC in the healthcare sector:
\n
\n
Privacy preservation. SMPC protects individual patient data during the computation process. Each party only sees their own data, and the others’ data is hidden. This lets healthcare providers and researchers work together and use more data without risking privacy.
\n
Collaborative research. SMPC facilitates collaborative research among healthcare institutions, enabling them to pool their data resources without compromising privacy. Multiple parties can train ML models together on their combined data while keeping patient records and information safe. This helps improve the ML models in healthcare by using more and different data sources and larger samples.
\n
Secure data sharing. SMPC helps enable healthcare providers to more securely share specific information from their datasets with other authorized parties. For example, when studying rare diseases, healthcare organizations may be able to share some patient data points or features while helping preserve their identity and privacy. This controlled sharing mechanism helps enhance research and contributes to the advancement of medical knowledge.
\n
\n
Privacy‑preserving ML to improve the security of fMRI data analysis in healthcare.
\n
In this blog we explore the application of SMPC to medical image analysis via machine learning techniques for a specific use case of functional Magnetic Resonance Imaging (fMRI) analysis. Applying ML to fMRI data has the potential to revolutionize healthcare by providing insights into brain function and diagnosing neurological disorders. However, the sensitive nature of fMRI data raises significant privacy concerns. To address these challenges, one may employ privacy‑preserving ML techniques, such as data anonymization, secure data encryption, federated learning, and differential privacy, which would allow leveraging the benefits of ML in fMRI analysis while maintaining patient confidentiality and adhering to regulatory requirements.
\n
\n
Before diving into the details of how OnnxBridge (an end-to-end compiler for converting Onnx Models to Secure Cryptographic backends) enables secure machine learning for fMRI data, it is important to understand how fMRI is relevant for neuroscience research. Functional magnetic resonance imaging (fMRI) is a technique that measures brain activity by detecting changes in blood flow. By using fMRI, researchers can identify which brain regions are involved in different cognitive functions, such as memory, language, or emotion. This is known as functional localization. However, fMRI data is often sensitive and confidential, as it can reveal personal information about the participants’ health, preferences, or personality. Therefore, it is essential to protect the privacy and security of fMRI data when performing machine learning analysis on it.
\n
\n
In the rest of this blog post, we cover these topics:
\n
\n
What rs‑fMRI is and how it measures brain activity by detecting changes in blood flow.
\n
How SMPC protects the privacy and security of fMRI data when performing machine learning analysis using EzPC‑OnnxBridge, a crucial part of the EzPC project from Microsoft Research India (MPC-MSRI, 2021).
\n
How to use EzPC‑OnnxBridge for rs‑fMRI to identify brain regions involved in different cognitive functions.
\n
\n
What is rs‑fMRI and how is it used to localize brain networks?
\n
Unlike traditional fMRI, which captures brain activity during specific tasks or stimuli, rs‑fMRI delves into the spontaneous fluctuations of the brain when it is in a state of rest or free thinking. It explores the intricate networks of communication among different brain regions, shedding light on the underlying functional architecture that forms the foundation of our cognition.
\n
The power of rs‑fMRI lies in its ability to measure and analyse blood oxygen level ‑dependent (BOLD) signals. By detecting changes in blood flow and oxygenation, rs‑fMRI provides a window into the brain's dynamic activity during rest. These fluctuations in the BOLD signal, known as resting ‑state connectivity, are like whispers of communication between various regions of the brain, even when we are not consciously engaged in any cognitive task.
\n
Through advanced computational algorithms and sophisticated statistical analysis, researchers can map and visualize these functional connections within the brain. However, it is important to note that rs‑fMRI is not without its challenges and limitations. The interpretation of resting ‑state connectivity requires careful consideration, as it represents correlations between brain regions rather than direct causality. Moreover, factors such as participant motion, physiological noise, and data pre‑processing methods can influence the results and must be rigorously addressed to help ensure data quality and reliability. Here’s where ML algorithms can help neuro‑radiologists to efficiently map and visualize brain networks towards different number of clinical applications. In this blog, we provide an example of how to use SMPC to automatically identify and localize brain networks using work published in [3].
\n
\n
\n
Figure 2 Visualization of brain networks from 3D dual regression volumes.
We begin with an overview of how secure multi‑party computation (SMPC) works and then describe how EzPC‑OnnxBridge can be used in the application described above. EzPC OnnxBridge allows using SMPC without any knowledge of cryptography. We will now walk through the steps for using EzPC OnnxBridge for this application.
\n
\n
SMPC is a cryptographic primitive introduced in the 1980s [4,5] that helps enable two or more parties who have private data to collaborate (or compute joint functions) on their private/secret data, without sharing it in the clear with any entity. This is done through an interactive cryptographic protocol – each party performs computations on their data and exchange (seemingly random looking) messages with other parties iteratively. At the end of such an interaction, the parties learn only the output of the joint function. As an example, if two parties A and B have private inputs a and b and wish to compute the function y = f(a,b) which outputs 1 if a>b and 0, otherwise, they can run an SMPC protocol to precisely compute y and nothing else. SMPC protocols have been extensively studied in the cryptography community over the last four decades with latest research, such as the EzPC technology [6,7,8,9], making SMPC practical for large scale ML models. In the application of secure machine learning for fMRI data, we have 2 parties – one that holds the machine learning model and the other that holds an input data point for inference. For the first party, the weights of the ML model are private, while for the second party, the input data point is private. In typical applications, including ours, the model architecture is public and known to both parties.
\n
\n
1. Identify sensitive data We first identify the data involved in a single inferencing between two parties:
\n\n
Machine Learning Model (Model Weights + Model Architecture).
\n
Input data for inference.
\n\n
\n
Image by author using [2].
\n
In the above the secret (or private) data to the two parties are:
\n\n
Model Weights (obtained after training publicly available model architecture on private data) to one party.
\n
Input data to the other party.
\n\n
\n
Image by author using [2].
\n
Typically, model architectures are openly available and do not hold any proprietary data of any of the parties.
\n
\n
2. Strip ML model of weights Now that we know what the secret data involved in an inference are, the next step is to strip the ML model of its model weights so that the model architecture can be shared. This is shown in the figure below.
\n
\n
Image by author using [2].
\n
The above step helps us confirm that the secret data is in no way involved in generating crypto protocols, and give us full control over our data, which we input only at the time of secure inference.
\n
\n
In the above image we can see the mlp.onnx model before and after its secret data (i.e., the weights and bias of all layers) is stripped and represented as an input value, which means the model architecture do not contain any secret data and expects it at runtime.
\n
\n
3. Generate SMPC protocols from architecture After we have the model architecture without weights, we need to convert this architecture to cryptographically secure protocols which will run on the secret data and give us output as if it was run without any crypto or security guarantees involved. This is done through EzPC‑OnnxBridge and is depicted below.
\n
\n
Image by author using [2].
\n
\n
4. Secure inference on private data Finally, we need to run the above generated crypto protocols for each of two parties involved. These protocols will take the secret data as input and will communicate with each other some encrypted (masked) bits and pieces of data, which have strong mathematical assurances such that at any point the data being communicated does not reveal any information about the secret data.
\n
\n
At the end of the computation, the output of the computation is revealed to the specified parties (one or both) involved in the computation.
\n
\n
Using EzPC OnnxBridge for rs-fMRI
\n
EzPC offers an inference ‑app that serves as a front-end for SMPC operations. This application presents users with a graphical user interface (GUI) through which they can upload images and obtain results securely. Next, we’ll walk through the steps required to get the app running.
\n
\n
Internally, the application utilizes OnnxBridge, an ‑‑ end to end compiler, to convert Onnx files to SMPC cryptographic protocols. The compiler helps with the removal of confidential data from models before converting them to Secure Multi‑Party Computation (SMPC) protocols. Thus, EzPC provides a user ‑friendly interface that facilitates a more secure compilation and execution of machine learning models.
\n
\n
Let’s take a look at the practical implementation of OnnxBridge to conduct secure inference using the mlp.onnx model specifically designed for rs‑fMRI (resting‑state functional magnetic resonance imaging) images.
\n
\n
The setup steps from the EzPC GitHub repo will help us to get the inference‑app running. The steps will be executed in following order:
\n
\n
1. Install dependencies for:
\n
\n
Cryptographic backend
\n
Compiler OnnxBridge
\n
\n
2. Set up server (model owner and model processing).
Strips the model of its weights and save them in a file.
\n
Loads the stripped model architecture.
\n
Generates the secure backend code for the model architecture.
\n
Share the stripped model architecture with dealer/client.
\n
\n
3. Set up dealer.
\n
\n
Compiles the model architecture received from server.
\n
Compute and share pre generated randomness for server/client to reduce communication drastically and speed up inference.
\n
Note: For the randomness generation there has been no involvement of secret data.
\n
\n
4. Set up client (acting as image owner).
\n
\n
Compiles the model architecture received from server.
\n
\n
5. Set up inference app.
\n
\n
Encrypts the input image and sends it to client VM which starts inference. See screenshots below.
\n
\n
\n
\n
Step 1: Upload the image.
\n
\n
Step 2: Receive encryption from dealer.
\n
Step 3: Encrypt the image.
\n
\n
\n
Step 4: Start secure inference.
\n
\n
\n
\n
With the above we can see how EzPC gives us an interface and empowers us with superior cryptographic backends to follow SMPC ideally without any interaction with the secret data.
Ghate, S., Santamaria-Pang, A., Tarapov, I., Sair, H., Jones, C. (2022). Deep Labeling of fMRI Brain Networks Using Cloud Based Processing. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_21. https://doi.org/10.1007/978-3-031-20713-6_21.
\n
Yao, A. (1982). Protocols for Secure Computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (pp. 160-164). IEEE.
\n
Goldreich, O., Micali, S., & Wigderson, A. (1987). How to play any mental game or A completeness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (pp. 218-229). ACM.
\n
Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., & Sharma, R. (2020). CrypTFlow: Secure TensorFlow Inference. In Proceedings of the 41st IEEE Symposium on Security and Privacy (pp. 1247-1264). IEEE.
\n
Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A., & Sharma, R. (2020). CrypTFlow2: Practical 2 Party Secure Inference. In Proceedings of the 27th ACM Conference on Computer and Communications Security (pp. 1639-1656). ACM.
\n
Chandran, N., Gupta, D., Rastogi, A., Sharma, R., & Tripathi, S. (2019). EzPC: Programmable and Efficient Secure Two-Party Computation for Machine Learning. In Proceedings of the 4th IEEE European Symposium on Security and Privacy (pp. 123-138). IEEE.
\n
Gupta, K., Kumaraswamy, D., Chandran, N., Gupta, D. (2022). LLAMA: A Low Latency Math Library for Secure Inference. In Proceedings of the Privacy Enhancing Technologies Symposium (PoPETS).
Machine learning models are useful in analyzing patient data, helping in detecting diseases early, and enabling clinicians in creating personalized treatments. However, using these models in healthcare is challenging because it requires accessing and processing sensitive patient data while ensuring patient privacy and complying with strict regulations.
\n
\n
Traditional encryption methods can only protect data when it is stored and not when it is being used for computation. One way to perform computation on encrypted data is to decrypt it in a trusted region like a secure enclave, which is done in Microsoft’s product offering Azure Confidential Computing. A cryptographic way of protecting information exists that can operate directly on encrypted data without the need for decryption - this technique is known as Secure Multi-party Computation (SMPC). SMPC helps ensure that sensitive healthcare data remains secure while enabling healthcare professionals to perform computations on the data they need to provide better care for patients.
\n
Traditional encryption vs. SMPC
\n
While both traditional encryption methods and Secure Multi-Party Computation (SMPC) offer similar levels of data security, SMPC has the added capability of allowing computations on encrypted data. For instance, in the case of wanting to conduct model inference on an encrypted DICOM image, it's possible to directly use the encrypted image with SMPC. The additional computational load or overhead of using SMPC depends on the specific function or computation being performed on the encrypted data.
\n
\n\n
\n
\n
Comparison criteria
\n
\n
\n
Traditional encryption methods
\n
\n
\n
Secure Multi‑Party Computation (SMPC)
\n
\n
\n
\n
\n
Data exposure
\n
\n
\n
Raw data needs to be decrypted for analysis or use.
\n
\n
\n
Computation is performed on encrypted data.
\n
\n
\n
\n
\n
Inference speed
\n
\n
\n
Encryption and decryption overhead is minimal.
\n
\n
\n
Joint computation on encrypted data can introduce overhead in latency.
\n
\n
\n
\n
\n
Trust assumptions
\n
\n
\n
Rely on trusted third‑party or secure infrastructure.
\n
\n
\n
Distributed computation with privacy assurance.
\n
\n
\n\n
\n
Figure 1 Traditional encryption methods vs. Secure Multi‑Party Computation (SMPC).
\n
\n
SMPC transforms healthcare data analysis and ML
\n
SMPC provides a solution that allows multiple parties to work together on their data without revealing any sensitive information. It helps healthcare providers and researchers securely analyze patient data and use ML models while maintaining patient privacy.
\n
\n
Here are some key benefits of SMPC in the healthcare sector:
\n
\n
Privacy preservation. SMPC protects individual patient data during the computation process. Each party only sees their own data, and the others’ data is hidden. This lets healthcare providers and researchers work together and use more data without risking privacy.
\n
Collaborative research. SMPC facilitates collaborative research among healthcare institutions, enabling them to pool their data resources without compromising privacy. Multiple parties can train ML models together on their combined data while keeping patient records and information safe. This helps improve the ML models in healthcare by using more and different data sources and larger samples.
\n
Secure data sharing. SMPC helps enable healthcare providers to more securely share specific information from their datasets with other authorized parties. For example, when studying rare diseases, healthcare organizations may be able to share some patient data points or features while helping preserve their identity and privacy. This controlled sharing mechanism helps enhance research and contributes to the advancement of medical knowledge.
\n
\n
Privacy‑preserving ML to improve the security of fMRI data analysis in healthcare.
\n
In this blog we explore the application of SMPC to medical image analysis via machine learning techniques for a specific use case of functional Magnetic Resonance Imaging (fMRI) analysis. Applying ML to fMRI data has the potential to revolutionize healthcare by providing insights into brain function and diagnosing neurological disorders. However, the sensitive nature of fMRI data raises significant privacy concerns. To address these challenges, one may employ privacy‑preserving ML techniques, such as data anonymization, secure data encryption, federated learning, and differential privacy, which would allow leveraging the benefits of ML in fMRI analysis while maintaining patient confidentiality and adhering to regulatory requirements.
\n
\n
Before diving into the details of how OnnxBridge (an end-to-end compiler for converting Onnx Models to Secure Cryptographic backends) enables secure machine learning for fMRI data, it is important to understand how fMRI is relevant for neuroscience research. Functional magnetic resonance imaging (fMRI) is a technique that measures brain activity by detecting changes in blood flow. By using fMRI, researchers can identify which brain regions are involved in different cognitive functions, such as memory, language, or emotion. This is known as functional localization. However, fMRI data is often sensitive and confidential, as it can reveal personal information about the participants’ health, preferences, or personality. Therefore, it is essential to protect the privacy and security of fMRI data when performing machine learning analysis on it.
\n
\n
In the rest of this blog post, we cover these topics:
\n
\n
What rs‑fMRI is and how it measures brain activity by detecting changes in blood flow.
\n
How SMPC protects the privacy and security of fMRI data when performing machine learning analysis using EzPC‑OnnxBridge, a crucial part of the EzPC project from Microsoft Research India (MPC-MSRI, 2021).
\n
How to use EzPC‑OnnxBridge for rs‑fMRI to identify brain regions involved in different cognitive functions.
\n
\n
What is rs‑fMRI and how is it used to localize brain networks?
\n
Unlike traditional fMRI, which captures brain activity during specific tasks or stimuli, rs‑fMRI delves into the spontaneous fluctuations of the brain when it is in a state of rest or free thinking. It explores the intricate networks of communication among different brain regions, shedding light on the underlying functional architecture that forms the foundation of our cognition.
\n
The power of rs‑fMRI lies in its ability to measure and analyse blood oxygen level ‑dependent (BOLD) signals. By detecting changes in blood flow and oxygenation, rs‑fMRI provides a window into the brain's dynamic activity during rest. These fluctuations in the BOLD signal, known as resting ‑state connectivity, are like whispers of communication between various regions of the brain, even when we are not consciously engaged in any cognitive task.
\n
Through advanced computational algorithms and sophisticated statistical analysis, researchers can map and visualize these functional connections within the brain. However, it is important to note that rs‑fMRI is not without its challenges and limitations. The interpretation of resting ‑state connectivity requires careful consideration, as it represents correlations between brain regions rather than direct causality. Moreover, factors such as participant motion, physiological noise, and data pre‑processing methods can influence the results and must be rigorously addressed to help ensure data quality and reliability. Here’s where ML algorithms can help neuro‑radiologists to efficiently map and visualize brain networks towards different number of clinical applications. In this blog, we provide an example of how to use SMPC to automatically identify and localize brain networks using work published in [3].
\n
\n
\n
Figure 2 Visualization of brain networks from 3D dual regression volumes.
We begin with an overview of how secure multi‑party computation (SMPC) works and then describe how EzPC‑OnnxBridge can be used in the application described above. EzPC OnnxBridge allows using SMPC without any knowledge of cryptography. We will now walk through the steps for using EzPC OnnxBridge for this application.
\n
\n
SMPC is a cryptographic primitive introduced in the 1980s [4,5] that helps enable two or more parties who have private data to collaborate (or compute joint functions) on their private/secret data, without sharing it in the clear with any entity. This is done through an interactive cryptographic protocol – each party performs computations on their data and exchange (seemingly random looking) messages with other parties iteratively. At the end of such an interaction, the parties learn only the output of the joint function. As an example, if two parties A and B have private inputs a and b and wish to compute the function y = f(a,b) which outputs 1 if a>b and 0, otherwise, they can run an SMPC protocol to precisely compute y and nothing else. SMPC protocols have been extensively studied in the cryptography community over the last four decades with latest research, such as the EzPC technology [6,7,8,9], making SMPC practical for large scale ML models. In the application of secure machine learning for fMRI data, we have 2 parties – one that holds the machine learning model and the other that holds an input data point for inference. For the first party, the weights of the ML model are private, while for the second party, the input data point is private. In typical applications, including ours, the model architecture is public and known to both parties.
\n
\n
1. Identify sensitive data We first identify the data involved in a single inferencing between two parties:
\n\n
Machine Learning Model (Model Weights + Model Architecture).
\n
Input data for inference.
\n\n
\n
Image by author using [2].
\n
In the above the secret (or private) data to the two parties are:
\n\n
Model Weights (obtained after training publicly available model architecture on private data) to one party.
\n
Input data to the other party.
\n\n
\n
Image by author using [2].
\n
Typically, model architectures are openly available and do not hold any proprietary data of any of the parties.
\n
\n
2. Strip ML model of weights Now that we know what the secret data involved in an inference are, the next step is to strip the ML model of its model weights so that the model architecture can be shared. This is shown in the figure below.
\n
\n
Image by author using [2].
\n
The above step helps us confirm that the secret data is in no way involved in generating crypto protocols, and give us full control over our data, which we input only at the time of secure inference.
\n
\n
In the above image we can see the mlp.onnx model before and after its secret data (i.e., the weights and bias of all layers) is stripped and represented as an input value, which means the model architecture do not contain any secret data and expects it at runtime.
\n
\n
3. Generate SMPC protocols from architecture After we have the model architecture without weights, we need to convert this architecture to cryptographically secure protocols which will run on the secret data and give us output as if it was run without any crypto or security guarantees involved. This is done through EzPC‑OnnxBridge and is depicted below.
\n
\n
Image by author using [2].
\n
\n
4. Secure inference on private data Finally, we need to run the above generated crypto protocols for each of two parties involved. These protocols will take the secret data as input and will communicate with each other some encrypted (masked) bits and pieces of data, which have strong mathematical assurances such that at any point the data being communicated does not reveal any information about the secret data.
\n
\n
At the end of the computation, the output of the computation is revealed to the specified parties (one or both) involved in the computation.
\n
\n
Using EzPC OnnxBridge for rs-fMRI
\n
EzPC offers an inference ‑app that serves as a front-end for SMPC operations. This application presents users with a graphical user interface (GUI) through which they can upload images and obtain results securely. Next, we’ll walk through the steps required to get the app running.
\n
\n
Internally, the application utilizes OnnxBridge, an ‑‑ end to end compiler, to convert Onnx files to SMPC cryptographic protocols. The compiler helps with the removal of confidential data from models before converting them to Secure Multi‑Party Computation (SMPC) protocols. Thus, EzPC provides a user ‑friendly interface that facilitates a more secure compilation and execution of machine learning models.
\n
\n
Let’s take a look at the practical implementation of OnnxBridge to conduct secure inference using the mlp.onnx model specifically designed for rs‑fMRI (resting‑state functional magnetic resonance imaging) images.
\n
\n
The setup steps from the EzPC GitHub repo will help us to get the inference‑app running. The steps will be executed in following order:
\n
\n
1. Install dependencies for:
\n
\n
Cryptographic backend
\n
Compiler OnnxBridge
\n
\n
2. Set up server (model owner and model processing).
Strips the model of its weights and save them in a file.
\n
Loads the stripped model architecture.
\n
Generates the secure backend code for the model architecture.
\n
Share the stripped model architecture with dealer/client.
\n
\n
3. Set up dealer.
\n
\n
Compiles the model architecture received from server.
\n
Compute and share pre generated randomness for server/client to reduce communication drastically and speed up inference.
\n
Note: For the randomness generation there has been no involvement of secret data.
\n
\n
4. Set up client (acting as image owner).
\n
\n
Compiles the model architecture received from server.
\n
\n
5. Set up inference app.
\n
\n
Encrypts the input image and sends it to client VM which starts inference. See screenshots below.
\n
\n
\n
\n
Step 1: Upload the image.
\n
\n
Step 2: Receive encryption from dealer.
\n
Step 3: Encrypt the image.
\n
\n
\n
Step 4: Start secure inference.
\n
\n
\n
\n
With the above we can see how EzPC gives us an interface and empowers us with superior cryptographic backends to follow SMPC ideally without any interaction with the secret data.
Ghate, S., Santamaria-Pang, A., Tarapov, I., Sair, H., Jones, C. (2022). Deep Labeling of fMRI Brain Networks Using Cloud Based Processing. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_21. https://doi.org/10.1007/978-3-031-20713-6_21.
\n
Yao, A. (1982). Protocols for Secure Computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (pp. 160-164). IEEE.
\n
Goldreich, O., Micali, S., & Wigderson, A. (1987). How to play any mental game or A completeness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (pp. 218-229). ACM.
\n
Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., & Sharma, R. (2020). CrypTFlow: Secure TensorFlow Inference. In Proceedings of the 41st IEEE Symposium on Security and Privacy (pp. 1247-1264). IEEE.
\n
Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A., & Sharma, R. (2020). CrypTFlow2: Practical 2 Party Secure Inference. In Proceedings of the 27th ACM Conference on Computer and Communications Security (pp. 1639-1656). ACM.
\n
Chandran, N., Gupta, D., Rastogi, A., Sharma, R., & Tripathi, S. (2019). EzPC: Programmable and Efficient Secure Two-Party Computation for Machine Learning. In Proceedings of the 4th IEEE European Symposium on Security and Privacy (pp. 123-138). IEEE.
\n
Gupta, K., Kumaraswamy, D., Chandran, N., Gupta, D. (2022). LLAMA: A Low Latency Math Library for Secure Inference. In Proceedings of the Privacy Enhancing Technologies Symposium (PoPETS).
\n\n
","kudosSumWeight":0,"postTime":"2024-02-14T21:44:50.391-08:00","images":{"__typename":"AssociatedImageConnection","edges":[{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDE","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc5NWlGQzc4Q0NCMTgwREMxRUQ5?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDI","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc1OWlCMDQ0RUMwM0U1NjUwNTY3?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDM","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2MGkxMTE5QUY0RjRCOTI0OUIw?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDQ","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTgwOWlCNTY2QjJDQTNDQjRDMDFD?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDU","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTgxMGlFMzIwQTE3Q0Y3ODg1NzUy?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDY","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc4MGlDQUE1N0VCMTlEMjIwRkNE?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDc","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NGlFNjIzMDE3MTVFQkNDQTcy?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDg","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NWkwQzkzMTQ4QUY4NjNCMzVG?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDk","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NmlGNEQ5QTA4QzBEMjY3OUY1?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDEw","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2N2kxNDkwODNDQjc5NkIxQ0VB?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDEx","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2OGkzNjg1MjkwRTNGN0JBNjI5?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDEy","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2OWlDNTg2NUM5NkE0MjJBRDBF?revision=8\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDEz","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc3MGk5MDNCOTk1ODVCQTFEQjBD?revision=8\"}"}}],"totalCount":13,"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"attachments":{"__typename":"AttachmentConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"tags":{"__typename":"TagConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDE","node":{"__typename":"Tag","id":"tag:Azure API for FHIR","text":"Azure API for FHIR","time":"2021-04-01T06:01:40.996-07:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDI","node":{"__typename":"Tag","id":"tag:Ethical AI in Neuroscience","text":"Ethical AI in Neuroscience","time":"2024-02-14T21:21:49.431-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDM","node":{"__typename":"Tag","id":"tag:healthcare","text":"healthcare","time":"2019-07-12T13:49:01.840-07:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDQ","node":{"__typename":"Tag","id":"tag:life sciences","text":"life sciences","time":"2019-07-12T13:50:03.795-07:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDU","node":{"__typename":"Tag","id":"tag:Medical Imaging","text":"Medical Imaging","time":"2020-01-21T13:31:12.812-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDY","node":{"__typename":"Tag","id":"tag:Radiology","text":"Radiology","time":"2024-02-14T21:21:49.431-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDc","node":{"__typename":"Tag","id":"tag:Secure Data Analysis in Healthcare","text":"Secure Data Analysis in Healthcare","time":"2024-02-14T21:21:49.431-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}}]},"timeToRead":10,"rawTeaser":"
\n
This article examines the integration of machine learning with Secure Multi-Party Computation (SMPC) in healthcare, focusing on securely analyzing functional fMRI imaging data.
","introduction":"","coverImage":null,"coverImageProperties":{"__typename":"CoverImageProperties","style":"STANDARD","titlePosition":"BOTTOM","altText":""},"currentRevision":{"__ref":"Revision:revision:4057703_8"},"latestVersion":{"__typename":"FriendlyVersion","major":"2","minor":"0"},"metrics":{"__typename":"MessageMetrics","views":27613},"visibilityScope":"PUBLIC","canonicalUrl":null,"seoTitle":null,"seoDescription":null,"placeholder":false,"originalMessageForPlaceholder":null,"contributors":{"__typename":"UserConnection","edges":[]},"nonCoAuthorContributors":{"__typename":"UserConnection","edges":[]},"coAuthors":{"__typename":"UserConnection","edges":[]},"blogMessagePolicies":{"__typename":"BlogMessagePolicies","canDoAuthoringActionsOnBlog":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","key":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","args":[]}}},"archivalData":null,"replies":{"__typename":"MessageConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"customFields":[],"revisions({\"constraints\":{\"isPublished\":{\"eq\":true}},\"first\":1})":{"__typename":"RevisionConnection","totalCount":9}},"Conversation:conversation:4057703":{"__typename":"Conversation","id":"conversation:4057703","solved":false,"topic":{"__ref":"BlogTopicMessage:message:4057703"},"lastPostingActivityTime":"2024-02-15T13:12:45.553-08:00","lastPostTime":"2024-02-14T21:44:50.391-08:00","unreadReplyCount":0,"isSubscribed":false},"ModerationData:moderation_data:4057703":{"__typename":"ModerationData","id":"moderation_data:4057703","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc5NWlGQzc4Q0NCMTgwREMxRUQ5?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc5NWlGQzc4Q0NCMTgwREMxRUQ5?revision=8","title":"Picture_02.jpg","associationType":"TEASER","width":1100,"height":426,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc1OWlCMDQ0RUMwM0U1NjUwNTY3?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc1OWlCMDQ0RUMwM0U1NjUwNTY3?revision=8","title":"Picture_01.jpg","associationType":"BODY","width":451,"height":169,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2MGkxMTE5QUY0RjRCOTI0OUIw?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2MGkxMTE5QUY0RjRCOTI0OUIw?revision=8","title":"Picture_02.jpg","associationType":"BODY","width":1100,"height":426,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTgwOWlCNTY2QjJDQTNDQjRDMDFD?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTgwOWlCNTY2QjJDQTNDQjRDMDFD?revision=8","title":"Picture4.png","associationType":"BODY","width":814,"height":324,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTgxMGlFMzIwQTE3Q0Y3ODg1NzUy?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTgxMGlFMzIwQTE3Q0Y3ODg1NzUy?revision=8","title":"Picture5.png","associationType":"BODY","width":855,"height":338,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc4MGlDQUE1N0VCMTlEMjIwRkNE?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc4MGlDQUE1N0VCMTlEMjIwRkNE?revision=8","title":"asantama27_0-1707967600554.png","associationType":"BODY","width":888,"height":819,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NGlFNjIzMDE3MTVFQkNDQTcy?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NGlFNjIzMDE3MTVFQkNDQTcy?revision=8","title":"Picture7.png","associationType":"BODY","width":963,"height":578,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NWkwQzkzMTQ4QUY4NjNCMzVG?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NWkwQzkzMTQ4QUY4NjNCMzVG?revision=8","title":"Picture8.png","associationType":"BODY","width":451,"height":138,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NmlGNEQ5QTA4QzBEMjY3OUY1?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2NmlGNEQ5QTA4QzBEMjY3OUY1?revision=8","title":"Picture9.png","associationType":"BODY","width":903,"height":501,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2N2kxNDkwODNDQjc5NkIxQ0VB?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2N2kxNDkwODNDQjc5NkIxQ0VB?revision=8","title":"Picture10.png","associationType":"BODY","width":602,"height":510,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2OGkzNjg1MjkwRTNGN0JBNjI5?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2OGkzNjg1MjkwRTNGN0JBNjI5?revision=8","title":"Picture11.png","associationType":"BODY","width":614,"height":391,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2OWlDNTg2NUM5NkE0MjJBRDBF?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc2OWlDNTg2NUM5NkE0MjJBRDBF?revision=8","title":"Picture12.png","associationType":"BODY","width":779,"height":459,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc3MGk5MDNCOTk1ODVCQTFEQjBD?revision=8\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDU3NzAzLTU1MTc3MGk5MDNCOTk1ODVCQTFEQjBD?revision=8","title":"Picture13.png","associationType":"BODY","width":1156,"height":561,"altText":null},"Revision:revision:4057703_8":{"__typename":"Revision","id":"revision:4057703_8","lastEditTime":"2024-02-15T13:12:45.553-08:00"},"CachedAsset:theme:customTheme1-1741250879244":{"__typename":"CachedAsset","id":"theme:customTheme1-1741250879244","value":{"id":"customTheme1","animation":{"fast":"150ms","normal":"250ms","slow":"500ms","slowest":"750ms","function":"cubic-bezier(0.07, 0.91, 0.51, 1)","__typename":"AnimationThemeSettings"},"avatar":{"borderRadius":"50%","collections":["default"],"__typename":"AvatarThemeSettings"},"basics":{"browserIcon":{"imageAssetName":"favicon-1730836283320.png","imageLastModified":"1730836286415","__typename":"ThemeAsset"},"customerLogo":{"imageAssetName":"favicon-1730836271365.png","imageLastModified":"1730836274203","__typename":"ThemeAsset"},"maximumWidthOfPageContent":"1300px","oneColumnNarrowWidth":"800px","gridGutterWidthMd":"30px","gridGutterWidthXs":"10px","pageWidthStyle":"WIDTH_OF_BROWSER","__typename":"BasicsThemeSettings"},"buttons":{"borderRadiusSm":"3px","borderRadius":"3px","borderRadiusLg":"5px","paddingY":"5px","paddingYLg":"7px","paddingYHero":"var(--lia-bs-btn-padding-y-lg)","paddingX":"12px","paddingXLg":"16px","paddingXHero":"60px","fontStyle":"NORMAL","fontWeight":"700","textTransform":"NONE","disabledOpacity":0.5,"primaryTextColor":"var(--lia-bs-white)","primaryTextHoverColor":"var(--lia-bs-white)","primaryTextActiveColor":"var(--lia-bs-white)","primaryBgColor":"var(--lia-bs-primary)","primaryBgHoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.85))","primaryBgActiveColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.7))","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","primaryBorderActive":"1px solid transparent","primaryBorderFocus":"1px solid var(--lia-bs-white)","primaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","secondaryTextColor":"var(--lia-bs-gray-900)","secondaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","secondaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","secondaryBgColor":"var(--lia-bs-gray-200)","secondaryBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","secondaryBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","secondaryBorder":"1px solid transparent","secondaryBorderHover":"1px solid transparent","secondaryBorderActive":"1px solid transparent","secondaryBorderFocus":"1px solid transparent","secondaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","tertiaryTextColor":"var(--lia-bs-gray-900)","tertiaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","tertiaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","tertiaryBgColor":"transparent","tertiaryBgHoverColor":"transparent","tertiaryBgActiveColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.04)","tertiaryBorder":"1px solid transparent","tertiaryBorderHover":"1px solid hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","tertiaryBorderActive":"1px solid transparent","tertiaryBorderFocus":"1px solid transparent","tertiaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","destructiveTextColor":"var(--lia-bs-danger)","destructiveTextHoverColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.95))","destructiveTextActiveColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.9))","destructiveBgColor":"var(--lia-bs-gray-200)","destructiveBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","destructiveBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","destructiveBorder":"1px solid transparent","destructiveBorderHover":"1px solid transparent","destructiveBorderActive":"1px solid transparent","destructiveBorderFocus":"1px solid transparent","destructiveBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","__typename":"ButtonsThemeSettings"},"border":{"color":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","mainContent":"NONE","sideContent":"LIGHT","radiusSm":"3px","radius":"5px","radiusLg":"9px","radius50":"100vw","__typename":"BorderThemeSettings"},"boxShadow":{"xs":"0 0 0 1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.08), 0 3px 0 -1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.16)","sm":"0 2px 4px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.12)","md":"0 5px 15px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","lg":"0 10px 30px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","__typename":"BoxShadowThemeSettings"},"cards":{"bgColor":"var(--lia-panel-bg-color)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":"var(--lia-box-shadow-xs)","__typename":"CardsThemeSettings"},"chip":{"maxWidth":"300px","height":"30px","__typename":"ChipThemeSettings"},"coreTypes":{"defaultMessageLinkColor":"var(--lia-bs-link-color)","defaultMessageLinkDecoration":"none","defaultMessageLinkFontStyle":"NORMAL","defaultMessageLinkFontWeight":"400","defaultMessageFontStyle":"NORMAL","defaultMessageFontWeight":"400","forumColor":"#4099E2","forumFontFamily":"var(--lia-bs-font-family-base)","forumFontWeight":"var(--lia-default-message-font-weight)","forumLineHeight":"var(--lia-bs-line-height-base)","forumFontStyle":"var(--lia-default-message-font-style)","forumMessageLinkColor":"var(--lia-default-message-link-color)","forumMessageLinkDecoration":"var(--lia-default-message-link-decoration)","forumMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","forumMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","forumSolvedColor":"#148563","blogColor":"#1CBAA0","blogFontFamily":"var(--lia-bs-font-family-base)","blogFontWeight":"var(--lia-default-message-font-weight)","blogLineHeight":"1.75","blogFontStyle":"var(--lia-default-message-font-style)","blogMessageLinkColor":"var(--lia-default-message-link-color)","blogMessageLinkDecoration":"var(--lia-default-message-link-decoration)","blogMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","blogMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","tkbColor":"#4C6B90","tkbFontFamily":"var(--lia-bs-font-family-base)","tkbFontWeight":"var(--lia-default-message-font-weight)","tkbLineHeight":"1.75","tkbFontStyle":"var(--lia-default-message-font-style)","tkbMessageLinkColor":"var(--lia-default-message-link-color)","tkbMessageLinkDecoration":"var(--lia-default-message-link-decoration)","tkbMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","tkbMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaColor":"#4099E2","qandaFontFamily":"var(--lia-bs-font-family-base)","qandaFontWeight":"var(--lia-default-message-font-weight)","qandaLineHeight":"var(--lia-bs-line-height-base)","qandaFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkColor":"var(--lia-default-message-link-color)","qandaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","qandaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaSolvedColor":"#3FA023","ideaColor":"#FF8000","ideaFontFamily":"var(--lia-bs-font-family-base)","ideaFontWeight":"var(--lia-default-message-font-weight)","ideaLineHeight":"var(--lia-bs-line-height-base)","ideaFontStyle":"var(--lia-default-message-font-style)","ideaMessageLinkColor":"var(--lia-default-message-link-color)","ideaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","ideaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","ideaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","contestColor":"#FCC845","contestFontFamily":"var(--lia-bs-font-family-base)","contestFontWeight":"var(--lia-default-message-font-weight)","contestLineHeight":"var(--lia-bs-line-height-base)","contestFontStyle":"var(--lia-default-message-link-font-style)","contestMessageLinkColor":"var(--lia-default-message-link-color)","contestMessageLinkDecoration":"var(--lia-default-message-link-decoration)","contestMessageLinkFontStyle":"ITALIC","contestMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","occasionColor":"#D13A1F","occasionFontFamily":"var(--lia-bs-font-family-base)","occasionFontWeight":"var(--lia-default-message-font-weight)","occasionLineHeight":"var(--lia-bs-line-height-base)","occasionFontStyle":"var(--lia-default-message-font-style)","occasionMessageLinkColor":"var(--lia-default-message-link-color)","occasionMessageLinkDecoration":"var(--lia-default-message-link-decoration)","occasionMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","occasionMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","grouphubColor":"#333333","categoryColor":"#949494","communityColor":"#FFFFFF","productColor":"#949494","__typename":"CoreTypesThemeSettings"},"colors":{"black":"#000000","white":"#FFFFFF","gray100":"#F7F7F7","gray200":"#F7F7F7","gray300":"#E8E8E8","gray400":"#D9D9D9","gray500":"#CCCCCC","gray600":"#717171","gray700":"#707070","gray800":"#545454","gray900":"#333333","dark":"#545454","light":"#F7F7F7","primary":"#0069D4","secondary":"#333333","bodyText":"#333333","bodyBg":"#FFFFFF","info":"#409AE2","success":"#41C5AE","warning":"#FCC844","danger":"#BC341B","alertSystem":"#FF6600","textMuted":"#707070","highlight":"#FFFCAD","outline":"var(--lia-bs-primary)","custom":["#D3F5A4","#243A5E"],"__typename":"ColorsThemeSettings"},"divider":{"size":"3px","marginLeft":"4px","marginRight":"4px","borderRadius":"50%","bgColor":"var(--lia-bs-gray-600)","bgColorActive":"var(--lia-bs-gray-600)","__typename":"DividerThemeSettings"},"dropdown":{"fontSize":"var(--lia-bs-font-size-sm)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius-sm)","dividerBg":"var(--lia-bs-gray-300)","itemPaddingY":"5px","itemPaddingX":"20px","headerColor":"var(--lia-bs-gray-700)","__typename":"DropdownThemeSettings"},"email":{"link":{"color":"#0069D4","hoverColor":"#0061c2","decoration":"none","hoverDecoration":"underline","__typename":"EmailLinkSettings"},"border":{"color":"#e4e4e4","__typename":"EmailBorderSettings"},"buttons":{"borderRadiusLg":"5px","paddingXLg":"16px","paddingYLg":"7px","fontWeight":"700","primaryTextColor":"#ffffff","primaryTextHoverColor":"#ffffff","primaryBgColor":"#0069D4","primaryBgHoverColor":"#005cb8","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","__typename":"EmailButtonsSettings"},"panel":{"borderRadius":"5px","borderColor":"#e4e4e4","__typename":"EmailPanelSettings"},"__typename":"EmailThemeSettings"},"emoji":{"skinToneDefault":"#ffcd43","skinToneLight":"#fae3c5","skinToneMediumLight":"#e2cfa5","skinToneMedium":"#daa478","skinToneMediumDark":"#a78058","skinToneDark":"#5e4d43","__typename":"EmojiThemeSettings"},"heading":{"color":"var(--lia-bs-body-color)","fontFamily":"Segoe UI","fontStyle":"NORMAL","fontWeight":"400","h1FontSize":"34px","h2FontSize":"32px","h3FontSize":"28px","h4FontSize":"24px","h5FontSize":"20px","h6FontSize":"16px","lineHeight":"1.3","subHeaderFontSize":"11px","subHeaderFontWeight":"500","h1LetterSpacing":"normal","h2LetterSpacing":"normal","h3LetterSpacing":"normal","h4LetterSpacing":"normal","h5LetterSpacing":"normal","h6LetterSpacing":"normal","subHeaderLetterSpacing":"2px","h1FontWeight":"var(--lia-bs-headings-font-weight)","h2FontWeight":"var(--lia-bs-headings-font-weight)","h3FontWeight":"var(--lia-bs-headings-font-weight)","h4FontWeight":"var(--lia-bs-headings-font-weight)","h5FontWeight":"var(--lia-bs-headings-font-weight)","h6FontWeight":"var(--lia-bs-headings-font-weight)","__typename":"HeadingThemeSettings"},"icons":{"size10":"10px","size12":"12px","size14":"14px","size16":"16px","size20":"20px","size24":"24px","size30":"30px","size40":"40px","size50":"50px","size60":"60px","size80":"80px","size120":"120px","size160":"160px","__typename":"IconsThemeSettings"},"imagePreview":{"bgColor":"var(--lia-bs-gray-900)","titleColor":"var(--lia-bs-white)","controlColor":"var(--lia-bs-white)","controlBgColor":"var(--lia-bs-gray-800)","__typename":"ImagePreviewThemeSettings"},"input":{"borderColor":"var(--lia-bs-gray-600)","disabledColor":"var(--lia-bs-gray-600)","focusBorderColor":"var(--lia-bs-primary)","labelMarginBottom":"10px","btnFontSize":"var(--lia-bs-font-size-sm)","focusBoxShadow":"0 0 0 3px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","checkLabelMarginBottom":"2px","checkboxBorderRadius":"3px","borderRadiusSm":"var(--lia-bs-border-radius-sm)","borderRadius":"var(--lia-bs-border-radius)","borderRadiusLg":"var(--lia-bs-border-radius-lg)","formTextMarginTop":"4px","textAreaBorderRadius":"var(--lia-bs-border-radius)","activeFillColor":"var(--lia-bs-primary)","__typename":"InputThemeSettings"},"loading":{"dotDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.2)","dotLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.5)","barDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.06)","barLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.4)","__typename":"LoadingThemeSettings"},"link":{"color":"var(--lia-bs-primary)","hoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) - 10%))","decoration":"none","hoverDecoration":"underline","__typename":"LinkThemeSettings"},"listGroup":{"itemPaddingY":"15px","itemPaddingX":"15px","borderColor":"var(--lia-bs-gray-300)","__typename":"ListGroupThemeSettings"},"modal":{"contentTextColor":"var(--lia-bs-body-color)","contentBg":"var(--lia-bs-white)","backgroundBg":"var(--lia-bs-black)","smSize":"440px","mdSize":"760px","lgSize":"1080px","backdropOpacity":0.3,"contentBoxShadowXs":"var(--lia-bs-box-shadow-sm)","contentBoxShadow":"var(--lia-bs-box-shadow)","headerFontWeight":"700","__typename":"ModalThemeSettings"},"navbar":{"position":"FIXED","background":{"attachment":null,"clip":null,"color":"var(--lia-bs-white)","imageAssetName":"","imageLastModified":"0","origin":null,"position":"CENTER_CENTER","repeat":"NO_REPEAT","size":"COVER","__typename":"BackgroundProps"},"backgroundOpacity":0.8,"paddingTop":"15px","paddingBottom":"15px","borderBottom":"1px solid var(--lia-bs-border-color)","boxShadow":"var(--lia-bs-box-shadow-sm)","brandMarginRight":"30px","brandMarginRightSm":"10px","brandLogoHeight":"30px","linkGap":"10px","linkJustifyContent":"flex-start","linkPaddingY":"5px","linkPaddingX":"10px","linkDropdownPaddingY":"9px","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkColor":"var(--lia-bs-body-color)","linkHoverColor":"var(--lia-bs-primary)","linkFontSize":"var(--lia-bs-font-size-sm)","linkFontStyle":"NORMAL","linkFontWeight":"400","linkTextTransform":"NONE","linkLetterSpacing":"normal","linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkBgColor":"transparent","linkBgHoverColor":"transparent","linkBorder":"none","linkBorderHover":"none","linkBoxShadow":"none","linkBoxShadowHover":"none","linkTextBorderBottom":"none","linkTextBorderBottomHover":"none","dropdownPaddingTop":"10px","dropdownPaddingBottom":"15px","dropdownPaddingX":"10px","dropdownMenuOffset":"2px","dropdownDividerMarginTop":"10px","dropdownDividerMarginBottom":"10px","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","controllerIconColor":"var(--lia-bs-body-color)","controllerIconHoverColor":"var(--lia-bs-body-color)","controllerTextColor":"var(--lia-nav-controller-icon-color)","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","controllerHighlightColor":"hsla(30, 100%, 50%)","controllerHighlightTextColor":"var(--lia-yiq-light)","controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerColor":"var(--lia-nav-controller-icon-color)","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","hamburgerBgColor":"transparent","hamburgerBgHoverColor":"transparent","hamburgerBorder":"none","hamburgerBorderHover":"none","collapseMenuMarginLeft":"20px","collapseMenuDividerBg":"var(--lia-nav-link-color)","collapseMenuDividerOpacity":0.16,"__typename":"NavbarThemeSettings"},"pager":{"textColor":"var(--lia-bs-link-color)","textFontWeight":"var(--lia-font-weight-md)","textFontSize":"var(--lia-bs-font-size-sm)","__typename":"PagerThemeSettings"},"panel":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-bs-border-radius)","borderColor":"var(--lia-bs-border-color)","boxShadow":"none","__typename":"PanelThemeSettings"},"popover":{"arrowHeight":"8px","arrowWidth":"16px","maxWidth":"300px","minWidth":"100px","headerBg":"var(--lia-bs-white)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius)","boxShadow":"0 0.5rem 1rem hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.15)","__typename":"PopoverThemeSettings"},"prism":{"color":"#000000","bgColor":"#f5f2f0","fontFamily":"var(--font-family-monospace)","fontSize":"var(--lia-bs-font-size-base)","fontWeightBold":"var(--lia-bs-font-weight-bold)","fontStyleItalic":"italic","tabSize":2,"highlightColor":"#b3d4fc","commentColor":"#62707e","punctuationColor":"#6f6f6f","namespaceOpacity":"0.7","propColor":"#990055","selectorColor":"#517a00","operatorColor":"#906736","operatorBgColor":"hsla(0, 0%, 100%, 0.5)","keywordColor":"#0076a9","functionColor":"#d3284b","variableColor":"#c14700","__typename":"PrismThemeSettings"},"rte":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":" var(--lia-panel-box-shadow)","customColor1":"#bfedd2","customColor2":"#fbeeb8","customColor3":"#f8cac6","customColor4":"#eccafa","customColor5":"#c2e0f4","customColor6":"#2dc26b","customColor7":"#f1c40f","customColor8":"#e03e2d","customColor9":"#b96ad9","customColor10":"#3598db","customColor11":"#169179","customColor12":"#e67e23","customColor13":"#ba372a","customColor14":"#843fa1","customColor15":"#236fa1","customColor16":"#ecf0f1","customColor17":"#ced4d9","customColor18":"#95a5a6","customColor19":"#7e8c8d","customColor20":"#34495e","customColor21":"#000000","customColor22":"#ffffff","defaultMessageHeaderMarginTop":"40px","defaultMessageHeaderMarginBottom":"20px","defaultMessageItemMarginTop":"0","defaultMessageItemMarginBottom":"10px","diffAddedColor":"hsla(170, 53%, 51%, 0.4)","diffChangedColor":"hsla(43, 97%, 63%, 0.4)","diffNoneColor":"hsla(0, 0%, 80%, 0.4)","diffRemovedColor":"hsla(9, 74%, 47%, 0.4)","specialMessageHeaderMarginTop":"40px","specialMessageHeaderMarginBottom":"20px","specialMessageItemMarginTop":"0","specialMessageItemMarginBottom":"10px","__typename":"RteThemeSettings"},"tags":{"bgColor":"var(--lia-bs-gray-200)","bgHoverColor":"var(--lia-bs-gray-400)","borderRadius":"var(--lia-bs-border-radius-sm)","color":"var(--lia-bs-body-color)","hoverColor":"var(--lia-bs-body-color)","fontWeight":"var(--lia-font-weight-md)","fontSize":"var(--lia-font-size-xxs)","textTransform":"UPPERCASE","letterSpacing":"0.5px","__typename":"TagsThemeSettings"},"toasts":{"borderRadius":"var(--lia-bs-border-radius)","paddingX":"12px","__typename":"ToastsThemeSettings"},"typography":{"fontFamilyBase":"Segoe UI","fontStyleBase":"NORMAL","fontWeightBase":"400","fontWeightLight":"300","fontWeightNormal":"400","fontWeightMd":"500","fontWeightBold":"700","letterSpacingSm":"normal","letterSpacingXs":"normal","lineHeightBase":"1.5","fontSizeBase":"16px","fontSizeXxs":"11px","fontSizeXs":"12px","fontSizeSm":"14px","fontSizeLg":"20px","fontSizeXl":"24px","smallFontSize":"14px","customFonts":[{"source":"SERVER","name":"Segoe UI","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"},{"style":"NORMAL","weight":"300","__typename":"FontStyleData"},{"style":"NORMAL","weight":"600","__typename":"FontStyleData"},{"style":"NORMAL","weight":"700","__typename":"FontStyleData"},{"style":"ITALIC","weight":"400","__typename":"FontStyleData"}],"assetNames":["SegoeUI-normal-400.woff2","SegoeUI-normal-300.woff2","SegoeUI-normal-600.woff2","SegoeUI-normal-700.woff2","SegoeUI-italic-400.woff2"],"__typename":"CustomFont"},{"source":"SERVER","name":"MWF Fluent Icons","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"}],"assetNames":["MWFFluentIcons-normal-400.woff2"],"__typename":"CustomFont"}],"__typename":"TypographyThemeSettings"},"unstyledListItem":{"marginBottomSm":"5px","marginBottomMd":"10px","marginBottomLg":"15px","marginBottomXl":"20px","marginBottomXxl":"25px","__typename":"UnstyledListItemThemeSettings"},"yiq":{"light":"#ffffff","dark":"#000000","__typename":"YiqThemeSettings"},"colorLightness":{"primaryDark":0.36,"primaryLight":0.74,"primaryLighter":0.89,"primaryLightest":0.95,"infoDark":0.39,"infoLight":0.72,"infoLighter":0.85,"infoLightest":0.93,"successDark":0.24,"successLight":0.62,"successLighter":0.8,"successLightest":0.91,"warningDark":0.39,"warningLight":0.68,"warningLighter":0.84,"warningLightest":0.93,"dangerDark":0.41,"dangerLight":0.72,"dangerLighter":0.89,"dangerLightest":0.95,"__typename":"ColorLightnessThemeSettings"},"localOverride":false,"__typename":"Theme"},"localOverride":false},"CachedAsset:text:en_US-components/common/EmailVerification-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/common/EmailVerification-1737115705000","value":{"email.verification.title":"Email Verification Required","email.verification.message.update.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. To change your email, visit My Settings.","email.verification.message.resend.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. Resend email."},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-1737115705000","value":{"title":"Loading..."},"localOverride":false},"CachedAsset:quilt:o365.prod:pages/blogs/BlogMessagePage:board:HealthcareAndLifeSciencesBlog-1741250877369":{"__typename":"CachedAsset","id":"quilt:o365.prod:pages/blogs/BlogMessagePage:board:HealthcareAndLifeSciencesBlog-1741250877369","value":{"id":"BlogMessagePage","container":{"id":"Common","headerProps":{"backgroundImageProps":null,"backgroundColor":null,"addComponents":null,"removeComponents":["community.widget.bannerWidget"],"componentOrder":null,"__typename":"QuiltContainerSectionProps"},"headerComponentProps":{"community.widget.breadcrumbWidget":{"disableLastCrumbForDesktop":false}},"footerProps":null,"footerComponentProps":null,"items":[{"id":"blog-article","layout":"ONE_COLUMN","bgColor":null,"showTitle":null,"showDescription":null,"textPosition":null,"textColor":null,"sectionEditLevel":"LOCKED","bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"OneColumnQuiltSection","columnMap":{"main":[{"id":"blogs.widget.blogArticleWidget","className":"lia-blog-container","props":null,"__typename":"QuiltComponent"}],"__typename":"OneSectionColumns"}},{"id":"section-1729184836777","layout":"MAIN_SIDE","bgColor":"transparent","showTitle":false,"showDescription":false,"textPosition":"CENTER","textColor":"var(--lia-bs-body-color)","sectionEditLevel":null,"bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"MainSideQuiltSection","columnMap":{"main":[],"side":[{"id":"custom.widget.Social_Sharing","className":null,"props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":true,"title":"Share","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"MainSideSectionColumns"}}],"__typename":"QuiltContainer"},"__typename":"Quilt","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-pages/blogs/BlogMessagePage-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-pages/blogs/BlogMessagePage-1737115705000","value":{"title":"{contextMessageSubject} | {communityTitle}","errorMissing":"This blog post cannot be found","name":"Blog Message Page","section.blog-article.title":"Blog Post","archivedMessageTitle":"This Content Has Been Archived","section.section-1729184836777.title":"","section.section-1729184836777.description":"","section.CncIde.title":"Blog Post","section.tifEmD.description":"","section.tifEmD.title":""},"localOverride":false},"CachedAsset:quiltWrapper:o365.prod:Common:1741250821919":{"__typename":"CachedAsset","id":"quiltWrapper:o365.prod:Common:1741250821919","value":{"id":"Common","header":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"community.widget.navbarWidget","props":{"showUserName":true,"showRegisterLink":true,"useIconLanguagePicker":true,"useLabelLanguagePicker":true,"className":"QuiltComponent_lia-component-edit-mode__0nCcm","links":{"sideLinks":[],"mainLinks":[{"children":[],"linkType":"INTERNAL","id":"gxcuf89792","params":{},"routeName":"CommunityPage"},{"children":[],"linkType":"EXTERNAL","id":"external-link","url":"/Directory","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft365","params":{"categoryId":"microsoft365"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-teams","params":{"categoryId":"MicrosoftTeams"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows","params":{"categoryId":"Windows"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-securityand-compliance","params":{"categoryId":"microsoft-security"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"outlook","params":{"categoryId":"Outlook"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"planner","params":{"categoryId":"Planner"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows-server","params":{"categoryId":"Windows-Server"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"azure","params":{"categoryId":"Azure"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"exchange","params":{"categoryId":"Exchange"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-endpoint-manager","params":{"categoryId":"microsoft-endpoint-manager"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-q-l-server","params":{"categoryId":"SQL-Server"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-2","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities","url":"/","target":"BLANK"},{"children":[{"linkType":"INTERNAL","id":"education-sector","params":{"categoryId":"EducationSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"a-i","params":{"categoryId":"AI"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"i-t-ops-talk","params":{"categoryId":"ITOpsTalk"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"partner-community","params":{"categoryId":"PartnerCommunity"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-mechanics","params":{"categoryId":"MicrosoftMechanics"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"healthcare-and-life-sciences","params":{"categoryId":"HealthcareAndLifeSciences"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"public-sector","params":{"categoryId":"PublicSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"io-t","params":{"categoryId":"IoT"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"driving-adoption","params":{"categoryId":"DrivingAdoption"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-m-b","params":{"categoryId":"SMB"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"startupsat-microsoft","params":{"categoryId":"StartupsatMicrosoft"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-1","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities-1","url":"/","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external","url":"/Blogs","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external-1","url":"/Events","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft-learn-1","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-learn-blog","params":{"boardId":"MicrosoftLearnBlog","categoryId":"MicrosoftLearn"},"routeName":"BlogBoardPage"},{"linkType":"EXTERNAL","id":"external-10","url":"https://learningroomdirectory.microsoft.com/","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-3","url":"https://docs.microsoft.com/learn/dynamics365/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-4","url":"https://docs.microsoft.com/learn/m365/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-5","url":"https://docs.microsoft.com/learn/topics/sci/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-6","url":"https://docs.microsoft.com/learn/powerplatform/?wt.mc_id=techcom_header-webpage-powerplatform","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-7","url":"https://docs.microsoft.com/learn/github/?wt.mc_id=techcom_header-webpage-github","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-8","url":"https://docs.microsoft.com/learn/teams/?wt.mc_id=techcom_header-webpage-teams","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-9","url":"https://docs.microsoft.com/learn/dotnet/?wt.mc_id=techcom_header-webpage-dotnet","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-2","url":"https://docs.microsoft.com/learn/azure/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"}],"linkType":"INTERNAL","id":"microsoft-learn","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"children":[],"linkType":"INTERNAL","id":"community-info-center","params":{"categoryId":"Community-Info-Center"},"routeName":"CategoryPage"}]},"style":{"boxShadow":"var(--lia-bs-box-shadow-sm)","controllerHighlightColor":"hsla(30, 100%, 50%)","linkFontWeight":"400","dropdownDividerMarginBottom":"10px","hamburgerBorderHover":"none","linkBoxShadowHover":"none","linkFontSize":"14px","backgroundOpacity":0.8,"controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerBgColor":"transparent","hamburgerColor":"var(--lia-nav-controller-icon-color)","linkTextBorderBottom":"none","brandLogoHeight":"30px","linkBgHoverColor":"transparent","linkLetterSpacing":"normal","collapseMenuDividerOpacity":0.16,"dropdownPaddingBottom":"15px","paddingBottom":"15px","dropdownMenuOffset":"2px","hamburgerBgHoverColor":"transparent","borderBottom":"1px solid var(--lia-bs-border-color)","hamburgerBorder":"none","dropdownPaddingX":"10px","brandMarginRightSm":"10px","linkBoxShadow":"none","collapseMenuDividerBg":"var(--lia-nav-link-color)","linkColor":"var(--lia-bs-body-color)","linkJustifyContent":"flex-start","dropdownPaddingTop":"10px","controllerHighlightTextColor":"var(--lia-yiq-dark)","controllerTextColor":"var(--lia-nav-controller-icon-color)","background":{"imageAssetName":"","color":"var(--lia-bs-white)","size":"COVER","repeat":"NO_REPEAT","position":"CENTER_CENTER","imageLastModified":""},"linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkHoverColor":"var(--lia-bs-body-color)","position":"FIXED","linkBorder":"none","linkTextBorderBottomHover":"2px solid var(--lia-bs-body-color)","brandMarginRight":"30px","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","linkBorderHover":"none","collapseMenuMarginLeft":"20px","linkFontStyle":"NORMAL","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","linkPaddingX":"10px","linkPaddingY":"5px","paddingTop":"15px","linkTextTransform":"NONE","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","linkBgColor":"transparent","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkDropdownPaddingY":"9px","controllerIconColor":"var(--lia-bs-body-color)","dropdownDividerMarginTop":"10px","linkGap":"10px","controllerIconHoverColor":"var(--lia-bs-body-color)"},"showSearchIcon":false,"languagePickerStyle":"iconAndLabel"},"__typename":"QuiltComponent"},{"id":"community.widget.breadcrumbWidget","props":{"backgroundColor":"transparent","linkHighlightColor":"var(--lia-bs-primary)","visualEffects":{"showBottomBorder":true},"linkTextColor":"var(--lia-bs-gray-700)"},"__typename":"QuiltComponent"},{"id":"custom.widget.community_banner","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"usePageWidth":false,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"},{"id":"custom.widget.HeroBanner","props":{"widgetVisibility":"signedInOrAnonymous","usePageWidth":false,"useTitle":true,"cMax_items":3,"useBackground":false,"title":"","lazyLoad":false,"widgetChooser":"custom.widget.HeroBanner"},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"footer":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"custom.widget.MicrosoftFooter","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"__typename":"QuiltWrapper","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/ActionFeedback-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/common/ActionFeedback-1737115705000","value":{"joinedGroupHub.title":"Welcome","joinedGroupHub.message":"You are now a member of this group and are subscribed to updates.","groupHubInviteNotFound.title":"Invitation Not Found","groupHubInviteNotFound.message":"Sorry, we could not find your invitation to the group. The owner may have canceled the invite.","groupHubNotFound.title":"Group Not Found","groupHubNotFound.message":"The grouphub you tried to join does not exist. It may have been deleted.","existingGroupHubMember.title":"Already Joined","existingGroupHubMember.message":"You are already a member of this group.","accountLocked.title":"Account Locked","accountLocked.message":"Your account has been locked due to multiple failed attempts. Try again in {lockoutTime} minutes.","editedGroupHub.title":"Changes Saved","editedGroupHub.message":"Your group has been updated.","leftGroupHub.title":"Goodbye","leftGroupHub.message":"You are no longer a member of this group and will not receive future updates.","deletedGroupHub.title":"Deleted","deletedGroupHub.message":"The group has been deleted.","groupHubCreated.title":"Group Created","groupHubCreated.message":"{groupHubName} is ready to use","accountClosed.title":"Account Closed","accountClosed.message":"The account has been closed and you will now be redirected to the homepage","resetTokenExpired.title":"Reset Password Link has Expired","resetTokenExpired.message":"Try resetting your password again","invalidUrl.title":"Invalid URL","invalidUrl.message":"The URL you're using is not recognized. Verify your URL and try again.","accountClosedForUser.title":"Account Closed","accountClosedForUser.message":"{userName}'s account is closed","inviteTokenInvalid.title":"Invitation Invalid","inviteTokenInvalid.message":"Your invitation to the community has been canceled or expired.","inviteTokenError.title":"Invitation Verification Failed","inviteTokenError.message":"The url you are utilizing is not recognized. Verify your URL and try again","pageNotFound.title":"Access Denied","pageNotFound.message":"You do not have access to this area of the community or it doesn't exist","eventAttending.title":"Responded as Attending","eventAttending.message":"You'll be notified when there's new activity and reminded as the event approaches","eventInterested.title":"Responded as Interested","eventInterested.message":"You'll be notified when there's new activity and reminded as the event approaches","eventNotFound.title":"Event Not Found","eventNotFound.message":"The event you tried to respond to does not exist.","redirectToRelatedPage.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.message":"The content you are trying to access is archived","redirectToRelatedPage.message":"The content you are trying to access is archived","relatedUrl.archivalLink.flyoutMessage":"The content you are trying to access is archived View Archived Content"},"localOverride":false},"CachedAsset:component:custom.widget.community_banner-en-1741250951319":{"__typename":"CachedAsset","id":"component:custom.widget.community_banner-en-1741250951319","value":{"component":{"id":"custom.widget.community_banner","template":{"id":"community_banner","markupLanguage":"HANDLEBARS","style":".community-banner {\n a.top-bar.btn {\n top: 0px;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0px;\n background: #0068b8;\n color: white;\n padding: 10px 0px;\n display:block;\n box-shadow:none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0px !important;\n font-size:14px;\n }\n}","texts":null,"defaults":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.community_banner","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_community_banner_community-banner_1a5zb_1 {\n a.custom_widget_community_banner_top-bar_1a5zb_2.custom_widget_community_banner_btn_1a5zb_2 {\n top: 0;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0;\n background: #0068b8;\n color: white;\n padding: 0.625rem 0;\n display:block;\n box-shadow:none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0 !important;\n font-size:0.875rem;\n }\n}","tokens":{"community-banner":"custom_widget_community_banner_community-banner_1a5zb_1","top-bar":"custom_widget_community_banner_top-bar_1a5zb_2","btn":"custom_widget_community_banner_btn_1a5zb_2"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.HeroBanner-en-1741250951319":{"__typename":"CachedAsset","id":"component:custom.widget.HeroBanner-en-1741250951319","value":{"component":{"id":"custom.widget.HeroBanner","template":{"id":"HeroBanner","markupLanguage":"REACT","style":null,"texts":{"searchPlaceholderText":"Search this community","followActionText":"Follow","unfollowActionText":"Following","searchOnHoverText":"Please enter your search term(s) and then press return key to complete a search."},"defaults":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.HeroBanner","form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"__typename":"Component","localOverride":false},"globalCss":null,"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"}},"localOverride":false},"CachedAsset:component:custom.widget.Social_Sharing-en-1741250951319":{"__typename":"CachedAsset","id":"component:custom.widget.Social_Sharing-en-1741250951319","value":{"component":{"id":"custom.widget.Social_Sharing","template":{"id":"Social_Sharing","markupLanguage":"HANDLEBARS","style":".social-share {\n .sharing-options {\n position: relative;\n margin: 0;\n padding: 0;\n line-height: 10px;\n display: flex;\n justify-content: left;\n gap: 5px;\n list-style-type: none;\n li {\n text-align: left;\n a {\n min-width: 30px;\n min-height: 30px;\n display: block;\n padding: 1px;\n .social-share-linkedin {\n img {\n background-color: rgb(0, 119, 181);\n }\n }\n .social-share-facebook {\n img {\n background-color: rgb(59, 89, 152);\n }\n }\n .social-share-x {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .social-share-rss {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .social-share-reddit {\n img {\n background-color: rgb(255, 69, 0);\n }\n }\n .social-share-email {\n img {\n background-color: rgb(132, 132, 132);\n }\n }\n }\n a {\n img {\n height: 2rem;\n }\n }\n }\n }\n}\n","texts":null,"defaults":{"config":{"applicablePages":[],"description":"Adds buttons to share to various social media websites","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.Social_Sharing","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"Adds buttons to share to various social media websites","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_Social_Sharing_social-share_c7xxz_1 {\n .custom_widget_Social_Sharing_sharing-options_c7xxz_2 {\n position: relative;\n margin: 0;\n padding: 0;\n line-height: 0.625rem;\n display: flex;\n justify-content: left;\n gap: 0.3125rem;\n list-style-type: none;\n li {\n text-align: left;\n a {\n min-width: 1.875rem;\n min-height: 1.875rem;\n display: block;\n padding: 0.0625rem;\n .custom_widget_Social_Sharing_social-share-linkedin_c7xxz_18 {\n img {\n background-color: rgb(0, 119, 181);\n }\n }\n .custom_widget_Social_Sharing_social-share-facebook_c7xxz_23 {\n img {\n background-color: rgb(59, 89, 152);\n }\n }\n .custom_widget_Social_Sharing_social-share-x_c7xxz_28 {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-rss_c7xxz_33 {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-reddit_c7xxz_38 {\n img {\n background-color: rgb(255, 69, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-email_c7xxz_43 {\n img {\n background-color: rgb(132, 132, 132);\n }\n }\n }\n a {\n img {\n height: 2rem;\n }\n }\n }\n }\n}\n","tokens":{"social-share":"custom_widget_Social_Sharing_social-share_c7xxz_1","sharing-options":"custom_widget_Social_Sharing_sharing-options_c7xxz_2","social-share-linkedin":"custom_widget_Social_Sharing_social-share-linkedin_c7xxz_18","social-share-facebook":"custom_widget_Social_Sharing_social-share-facebook_c7xxz_23","social-share-x":"custom_widget_Social_Sharing_social-share-x_c7xxz_28","social-share-rss":"custom_widget_Social_Sharing_social-share-rss_c7xxz_33","social-share-reddit":"custom_widget_Social_Sharing_social-share-reddit_c7xxz_38","social-share-email":"custom_widget_Social_Sharing_social-share-email_c7xxz_43"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.MicrosoftFooter-en-1741250951319":{"__typename":"CachedAsset","id":"component:custom.widget.MicrosoftFooter-en-1741250951319","value":{"component":{"id":"custom.widget.MicrosoftFooter","template":{"id":"MicrosoftFooter","markupLanguage":"HANDLEBARS","style":".context-uhf {\n min-width: 280px;\n font-size: 15px;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.c-uhff-link {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.c-uhff {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.c-uhff-nav {\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n .c-heading-4 {\n color: #616161;\n word-break: break-word;\n font-size: 15px;\n line-height: 20px;\n padding: 36px 0 4px;\n font-weight: 600;\n }\n .c-uhff-nav-row {\n .c-uhff-nav-group {\n display: block;\n float: left;\n min-height: 1px;\n vertical-align: text-top;\n padding: 0 12px;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.c-list.f-bare {\n font-size: 11px;\n line-height: 16px;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 8px 0;\n margin: 0;\n }\n }\n }\n }\n}\n.c-uhff-base {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 30px 5% 16px;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.c-uhff-ccpa {\n font-size: 11px;\n line-height: 16px;\n float: left;\n margin: 3px 0;\n }\n a.c-uhff-ccpa:hover {\n text-decoration: underline;\n }\n ul.c-list {\n font-size: 11px;\n line-height: 16px;\n float: right;\n margin: 3px 0;\n color: #616161;\n li {\n padding: 0 24px 4px 0;\n display: inline-block;\n }\n }\n .c-list.f-bare {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 30px 24px 16px;\n }\n}\n","texts":{"New tab":"What's New","New 1":"Surface Laptop Studio 2","New 2":"Surface Laptop Go 3","New 3":"Surface Pro 9","New 4":"Surface Laptop 5","New 5":"Surface Studio 2+","New 6":"Copilot in Windows","New 7":"Microsoft 365","New 8":"Windows 11 apps","Store tab":"Microsoft Store","Store 1":"Account Profile","Store 2":"Download Center","Store 3":"Microsoft Store Support","Store 4":"Returns","Store 5":"Order tracking","Store 6":"Certified Refurbished","Store 7":"Microsoft Store Promise","Store 8":"Flexible Payments","Education tab":"Education","Edu 1":"Microsoft in education","Edu 2":"Devices for education","Edu 3":"Microsoft Teams for Education","Edu 4":"Microsoft 365 Education","Edu 5":"How to buy for your school","Edu 6":"Educator Training and development","Edu 7":"Deals for students and parents","Edu 8":"Azure for students","Business tab":"Business","Bus 1":"Microsoft Cloud","Bus 2":"Microsoft Security","Bus 3":"Dynamics 365","Bus 4":"Microsoft 365","Bus 5":"Microsoft Power Platform","Bus 6":"Microsoft Teams","Bus 7":"Microsoft Industry","Bus 8":"Small Business","Developer tab":"Developer & IT","Dev 1":"Azure","Dev 2":"Developer Center","Dev 3":"Documentation","Dev 4":"Microsoft Learn","Dev 5":"Microsoft Tech Community","Dev 6":"Azure Marketplace","Dev 7":"AppSource","Dev 8":"Visual Studio","Company tab":"Company","Com 1":"Careers","Com 2":"About Microsoft","Com 3":"Company News","Com 4":"Privacy at Microsoft","Com 5":"Investors","Com 6":"Diversity and inclusion","Com 7":"Accessiblity","Com 8":"Sustainibility"},"defaults":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.MicrosoftFooter","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_MicrosoftFooter_context-uhf_f95yq_1 {\n min-width: 17.5rem;\n font-size: 0.9375rem;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-link_f95yq_12 {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff_f95yq_12 {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.custom_widget_MicrosoftFooter_c-uhff-nav_f95yq_35 {\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n .custom_widget_MicrosoftFooter_c-heading-4_f95yq_49 {\n color: #616161;\n word-break: break-word;\n font-size: 0.9375rem;\n line-height: 1.25rem;\n padding: 2.25rem 0 0.25rem;\n font-weight: 600;\n }\n .custom_widget_MicrosoftFooter_c-uhff-nav-row_f95yq_57 {\n .custom_widget_MicrosoftFooter_c-uhff-nav-group_f95yq_58 {\n display: block;\n float: left;\n min-height: 0.0625rem;\n vertical-align: text-top;\n padding: 0 0.75rem;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.custom_widget_MicrosoftFooter_c-list_f95yq_78.custom_widget_MicrosoftFooter_f-bare_f95yq_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 0.5rem 0;\n margin: 0;\n }\n }\n }\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff-base_f95yq_94 {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 1.875rem 5% 1rem;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: left;\n margin: 0.1875rem 0;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107:hover {\n text-decoration: underline;\n }\n ul.custom_widget_MicrosoftFooter_c-list_f95yq_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: right;\n margin: 0.1875rem 0;\n color: #616161;\n li {\n padding: 0 1.5rem 0.25rem 0;\n display: inline-block;\n }\n }\n .custom_widget_MicrosoftFooter_c-list_f95yq_78.custom_widget_MicrosoftFooter_f-bare_f95yq_78 {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 1.875rem 1.5rem 1rem;\n }\n}\n","tokens":{"context-uhf":"custom_widget_MicrosoftFooter_context-uhf_f95yq_1","c-uhff-link":"custom_widget_MicrosoftFooter_c-uhff-link_f95yq_12","c-uhff":"custom_widget_MicrosoftFooter_c-uhff_f95yq_12","c-uhff-nav":"custom_widget_MicrosoftFooter_c-uhff-nav_f95yq_35","c-heading-4":"custom_widget_MicrosoftFooter_c-heading-4_f95yq_49","c-uhff-nav-row":"custom_widget_MicrosoftFooter_c-uhff-nav-row_f95yq_57","c-uhff-nav-group":"custom_widget_MicrosoftFooter_c-uhff-nav-group_f95yq_58","c-list":"custom_widget_MicrosoftFooter_c-list_f95yq_78","f-bare":"custom_widget_MicrosoftFooter_f-bare_f95yq_78","c-uhff-base":"custom_widget_MicrosoftFooter_c-uhff-base_f95yq_94","c-uhff-ccpa":"custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107"}},"form":null},"localOverride":false},"CachedAsset:text:en_US-components/community/Breadcrumb-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/community/Breadcrumb-1737115705000","value":{"navLabel":"Breadcrumbs","dropdown":"Additional parent page navigation"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBanner-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBanner-1737115705000","value":{"messageMarkedAsSpam":"This post has been marked as spam","messageMarkedAsSpam@board:TKB":"This article has been marked as spam","messageMarkedAsSpam@board:BLOG":"This post has been marked as spam","messageMarkedAsSpam@board:FORUM":"This discussion has been marked as spam","messageMarkedAsSpam@board:OCCASION":"This event has been marked as spam","messageMarkedAsSpam@board:IDEA":"This idea has been marked as spam","manageSpam":"Manage Spam","messageMarkedAsAbuse":"This post has been marked as abuse","messageMarkedAsAbuse@board:TKB":"This article has been marked as abuse","messageMarkedAsAbuse@board:BLOG":"This post has been marked as abuse","messageMarkedAsAbuse@board:FORUM":"This discussion has been marked as abuse","messageMarkedAsAbuse@board:OCCASION":"This event has been marked as abuse","messageMarkedAsAbuse@board:IDEA":"This idea has been marked as abuse","preModCommentAuthorText":"This comment will be published as soon as it is approved","preModCommentModeratorText":"This comment is awaiting moderation","messageMarkedAsOther":"This post has been rejected due to other reasons","messageMarkedAsOther@board:TKB":"This article has been rejected due to other reasons","messageMarkedAsOther@board:BLOG":"This post has been rejected due to other reasons","messageMarkedAsOther@board:FORUM":"This discussion has been rejected due to other reasons","messageMarkedAsOther@board:OCCASION":"This event has been rejected due to other reasons","messageMarkedAsOther@board:IDEA":"This idea has been rejected due to other reasons","messageArchived":"This post was archived on {date}","relatedUrl":"View Related Content","relatedContentText":"Showing related content","archivedContentLink":"View Archived Content"},"localOverride":false},"Category:category:Exchange":{"__typename":"Category","id":"category:Exchange","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Planner":{"__typename":"Category","id":"category:Planner","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Outlook":{"__typename":"Category","id":"category:Outlook","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Community-Info-Center":{"__typename":"Category","id":"category:Community-Info-Center","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:EducationSector":{"__typename":"Category","id":"category:EducationSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:DrivingAdoption":{"__typename":"Category","id":"category:DrivingAdoption","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Azure":{"__typename":"Category","id":"category:Azure","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows-Server":{"__typename":"Category","id":"category:Windows-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:SQL-Server":{"__typename":"Category","id":"category:SQL-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftTeams":{"__typename":"Category","id":"category:MicrosoftTeams","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PublicSector":{"__typename":"Category","id":"category:PublicSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft365":{"__typename":"Category","id":"category:microsoft365","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:IoT":{"__typename":"Category","id":"category:IoT","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:SMB":{"__typename":"Category","id":"category:SMB","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:ITOpsTalk":{"__typename":"Category","id":"category:ITOpsTalk","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-endpoint-manager":{"__typename":"Category","id":"category:microsoft-endpoint-manager","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftLearn":{"__typename":"Category","id":"category:MicrosoftLearn","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Blog:board:MicrosoftLearnBlog":{"__typename":"Blog","id":"board:MicrosoftLearnBlog","blogPolicies":{"__typename":"BlogPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}},"boardPolicies":{"__typename":"BoardPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:AI":{"__typename":"Category","id":"category:AI","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftMechanics":{"__typename":"Category","id":"category:MicrosoftMechanics","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:StartupsatMicrosoft":{"__typename":"Category","id":"category:StartupsatMicrosoft","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PartnerCommunity":{"__typename":"Category","id":"category:PartnerCommunity","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows":{"__typename":"Category","id":"category:Windows","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-security":{"__typename":"Category","id":"category:microsoft-security","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"QueryVariables:TopicReplyList:message:4057703:8":{"__typename":"QueryVariables","id":"TopicReplyList:message:4057703:8","value":{"id":"message:4057703","first":10,"sorts":{"postTime":{"direction":"DESC"}},"repliesFirst":3,"repliesFirstDepthThree":1,"repliesSorts":{"postTime":{"direction":"DESC"}},"useAvatar":true,"useAuthorLogin":true,"useAuthorRank":true,"useBody":true,"useKudosCount":true,"useTimeToRead":false,"useMedia":false,"useReadOnlyIcon":false,"useRepliesCount":true,"useSearchSnippet":false,"useAcceptedSolutionButton":false,"useSolvedBadge":false,"useAttachments":false,"attachmentsFirst":5,"useTags":true,"useNodeAncestors":false,"useUserHoverCard":false,"useNodeHoverCard":false,"useModerationStatus":true,"usePreviewSubjectModal":false,"useMessageStatus":true}},"ROOT_MUTATION":{"__typename":"Mutation"},"CachedAsset:text:en_US-components/community/Navbar-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/community/Navbar-1737115705000","value":{"community":"Community Home","inbox":"Inbox","manageContent":"Manage Content","tos":"Terms of Service","forgotPassword":"Forgot Password","themeEditor":"Theme Editor","edit":"Edit Navigation Bar","skipContent":"Skip to content","gxcuf89792":"Tech Community","external-1":"Events","s-m-b":"Small and Medium Businesses","windows-server":"Windows Server","education-sector":"Education Sector","driving-adoption":"Driving Adoption","microsoft-learn":"Microsoft Learn","s-q-l-server":"SQL Server","partner-community":"Microsoft Partner Community","microsoft365":"Microsoft 365","external-9":".NET","external-8":"Teams","external-7":"Github","products-services":"Products","external-6":"Power Platform","communities-1":"Topics","external-5":"Microsoft Security","planner":"Planner","external-4":"Microsoft 365","external-3":"Dynamics 365","azure":"Azure","healthcare-and-life-sciences":"Healthcare and Life Sciences","external-2":"Azure","microsoft-mechanics":"Microsoft Mechanics","microsoft-learn-1":"Community","external-10":"Learning Room Directory","microsoft-learn-blog":"Blog","windows":"Windows","i-t-ops-talk":"ITOps Talk","external-link-1":"View All","microsoft-securityand-compliance":"Microsoft Security","public-sector":"Public Sector","community-info-center":"Lounge","external-link-2":"View All","microsoft-teams":"Microsoft Teams","external":"Blogs","microsoft-endpoint-manager":"Microsoft Intune and Configuration Manager","startupsat-microsoft":"Startups at Microsoft","exchange":"Exchange","a-i":"AI and Machine Learning","io-t":"Internet of Things (IoT)","outlook":"Outlook","external-link":"Community Hubs","communities":"Products"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarHamburgerDropdown-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarHamburgerDropdown-1737115705000","value":{"hamburgerLabel":"Side Menu"},"localOverride":false},"CachedAsset:text:en_US-components/community/BrandLogo-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/community/BrandLogo-1737115705000","value":{"logoAlt":"Khoros","themeLogoAlt":"Brand Logo"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarTextLinks-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarTextLinks-1737115705000","value":{"more":"More"},"localOverride":false},"CachedAsset:text:en_US-components/authentication/AuthenticationLink-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/authentication/AuthenticationLink-1737115705000","value":{"title.login":"Sign In","title.registration":"Register","title.forgotPassword":"Forgot Password","title.multiAuthLogin":"Sign In"},"localOverride":false},"CachedAsset:text:en_US-components/nodes/NodeLink-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/nodes/NodeLink-1737115705000","value":{"place":"Place {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageView/MessageViewStandard-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageView/MessageViewStandard-1737115705000","value":{"anonymous":"Anonymous","author":"{messageAuthorLogin}","authorBy":"{messageAuthorLogin}","board":"{messageBoardTitle}","replyToUser":" to {parentAuthor}","showMoreReplies":"Show More","replyText":"Reply","repliesText":"Replies","markedAsSolved":"Marked as Solved","movedMessagePlaceholder.BLOG":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.TKB":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.FORUM":"{count, plural, =0 {This reply has been} other {These replies have been} }","movedMessagePlaceholder.IDEA":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.OCCASION":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholderUrlText":"moved.","messageStatus":"Status: ","statusChanged":"Status changed: {previousStatus} to {currentStatus}","statusAdded":"Status added: {status}","statusRemoved":"Status removed: {status}","labelExpand":"expand replies","labelCollapse":"collapse replies","unhelpfulReason.reason1":"Content is outdated","unhelpfulReason.reason2":"Article is missing information","unhelpfulReason.reason3":"Content is for a different Product","unhelpfulReason.reason4":"Doesn't match what I was searching for"},"localOverride":false},"CachedAsset:text:en_US-components/messages/ThreadedReplyList-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/ThreadedReplyList-1737115705000","value":{"title":"{count, plural, one{# Reply} other{# Replies}}","title@board:BLOG":"{count, plural, one{# Comment} other{# Comments}}","title@board:TKB":"{count, plural, one{# Comment} other{# Comments}}","title@board:IDEA":"{count, plural, one{# Comment} other{# Comments}}","title@board:OCCASION":"{count, plural, one{# Comment} other{# Comments}}","noRepliesTitle":"No Replies","noRepliesTitle@board:BLOG":"No Comments","noRepliesTitle@board:TKB":"No Comments","noRepliesTitle@board:IDEA":"No Comments","noRepliesTitle@board:OCCASION":"No Comments","noRepliesDescription":"Be the first to reply","noRepliesDescription@board:BLOG":"Be the first to comment","noRepliesDescription@board:TKB":"Be the first to comment","noRepliesDescription@board:IDEA":"Be the first to comment","noRepliesDescription@board:OCCASION":"Be the first to comment","messageReadOnlyAlert:BLOG":"Comments have been turned off for this post","messageReadOnlyAlert:TKB":"Comments have been turned off for this article","messageReadOnlyAlert:IDEA":"Comments have been turned off for this idea","messageReadOnlyAlert:FORUM":"Replies have been turned off for this discussion","messageReadOnlyAlert:OCCASION":"Comments have been turned off for this event"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyCallToAction-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyCallToAction-1737115705000","value":{"leaveReply":"Leave a reply...","leaveReply@board:BLOG@message:root":"Leave a comment...","leaveReply@board:TKB@message:root":"Leave a comment...","leaveReply@board:IDEA@message:root":"Leave a comment...","leaveReply@board:OCCASION@message:root":"Leave a comment...","repliesTurnedOff.FORUM":"Replies are turned off for this topic","repliesTurnedOff.BLOG":"Comments are turned off for this topic","repliesTurnedOff.TKB":"Comments are turned off for this topic","repliesTurnedOff.IDEA":"Comments are turned off for this topic","repliesTurnedOff.OCCASION":"Comments are turned off for this topic","infoText":"Stop poking me!"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarDropdownToggle-1737115705000","value":{"ariaLabelClosed":"Press the down arrow to open the menu"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/QueryHandler-1737115705000","value":{"title":"Query Handler"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCoverImage-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCoverImage-1737115705000","value":{"coverImageTitle":"Cover Image"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeTitle-1737115705000","value":{"nodeTitle":"{nodeTitle, select, community {Community} other {{nodeTitle}}} "},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTimeToRead-1737115705000","value":{"minReadText":"{min} MIN READ"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageSubject-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageSubject-1737115705000","value":{"noSubject":"(no subject)"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserLink-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserLink-1737115705000","value":{"authorName":"View Profile: {author}","anonymous":"Anonymous"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserRank-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserRank-1737115705000","value":{"rankName":"{rankName}","userRank":"Author rank {rankName}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTime-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTime-1737115705000","value":{"postTime":"Published: {time}","lastPublishTime":"Last Update: {time}","conversation.lastPostingActivityTime":"Last posting activity time: {time}","conversation.lastPostTime":"Last post time: {time}","moderationData.rejectTime":"Rejected time: {time}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBody-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBody-1737115705000","value":{"showMessageBody":"Show More","mentionsErrorTitle":"{mentionsType, select, board {Board} user {User} message {Message} other {}} No Longer Available","mentionsErrorMessage":"The {mentionsType} you are trying to view has been removed from the community.","videoProcessing":"Video is being processed. Please try again in a few minutes.","bannerTitle":"Video provider requires cookies to play the video. Accept to continue or {url} it directly on the provider's site.","buttonTitle":"Accept","urlText":"watch"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCustomFields-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCustomFields-1737115705000","value":{"CustomField.default.label":"Value of {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageRevision-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageRevision-1737115705000","value":{"lastUpdatedDatePublished":"{publishCount, plural, one{Published} other{Updated}} {date}","lastUpdatedDateDraft":"Created {date}","version":"Version {major}.{minor}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyButton-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyButton-1737115705000","value":{"repliesCount":"{count}","title":"Reply","title@board:BLOG@message:root":"Comment","title@board:TKB@message:root":"Comment","title@board:IDEA@message:root":"Comment","title@board:OCCASION@message:root":"Comment"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageAuthorBio-1737115705000","value":{"sendMessage":"Send Message","actionMessage":"Follow this blog board to get notified when there's new activity","coAuthor":"CO-PUBLISHER","contributor":"CONTRIBUTOR","userProfile":"View Profile","iconlink":"Go to {name} {type}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserAvatar-1737115705000","value":{"altText":"{login}'s avatar","altTextGeneric":"User's avatar"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/ranks/UserRankLabel-1737115705000","value":{"altTitle":"Icon for {rankName} rank"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserRegistrationDate-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserRegistrationDate-1737115705000","value":{"noPrefix":"{date}","withPrefix":"Joined {date}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeAvatar-1737115705000","value":{"altTitle":"Node avatar for {nodeTitle}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeDescription-1737115705000","value":{"description":"{description}"},"localOverride":false},"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-components/tags/TagView/TagViewChip-1737115705000","value":{"tagLabelName":"Tag name {tagName}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1737115705000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeIcon-1737115705000","value":{"contentType":"Content Type {style, select, FORUM {Forum} BLOG {Blog} TKB {Knowledge Base} IDEA {Ideas} OCCASION {Events} other {}} icon"},"localOverride":false}}}},"page":"/blogs/BlogMessagePage/BlogMessagePage","query":{"boardId":"healthcareandlifesciencesblog","messageSubject":"leverage-secure-multi-party-computation-smpc-for-machine-learning-inference-in-r","messageId":"4057703"},"buildId":"rBSXYkarBGCCgv-Fy0Q8w","runtimeConfig":{"buildInformationVisible":false,"logLevelApp":"info","logLevelMetrics":"info","openTelemetryClientEnabled":false,"openTelemetryConfigName":"o365","openTelemetryServiceVersion":"25.1.0","openTelemetryUniverse":"prod","openTelemetryCollector":"http://localhost:4318","openTelemetryRouteChangeAllowedTime":"5000","apolloDevToolsEnabled":false,"inboxMuteWipFeatureEnabled":false},"isFallback":false,"isExperimentalCompile":false,"dynamicIds":["./components/community/Navbar/NavbarWidget.tsx","./components/community/Breadcrumb/BreadcrumbWidget.tsx","./components/customComponent/CustomComponent/CustomComponent.tsx","./components/blogs/BlogArticleWidget/BlogArticleWidget.tsx","./components/external/components/ExternalComponent.tsx","./components/messages/MessageView/MessageViewStandard/MessageViewStandard.tsx","./components/messages/ThreadedReplyList/ThreadedReplyList.tsx","../shared/client/components/common/List/UnwrappedList/UnwrappedList.tsx","./components/tags/TagView/TagView.tsx","./components/tags/TagView/TagViewChip/TagViewChip.tsx"],"appGip":true,"scriptLoader":[{"id":"analytics","src":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/pagescripts/1729284608000/analytics.js?page.id=BlogMessagePage&entity.id=board%3Ahealthcareandlifesciencesblog&entity.id=message%3A4057703","strategy":"afterInteractive"}]}