Blog Post

AI - Azure AI services Blog
6 MIN READ

Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabilities

gia_mondragon's avatar
gia_mondragon
Icon for Microsoft rankMicrosoft
Aug 17, 2023
Content and LangChain integration credit to: Fabrizio Ruocco, Principal Tech Lead, AI Global Black Belt, Microsoft

 

 

Introduction

In a fast-paced world, the ability to access relevant and accurate information quickly is critical for enhancing productivity and making informed decisions. With an ever-growing volume of digital data, being able to find the right piece of information has become a higher priority task. Thankfully, recent advancements in LLMs (Large Language Models) have transformed the landscape of information retrieval, making it more efficient and effective.

 

A significant breakthrough in this area is the development of embedding models, which have revolutionized the way we search for information. Unlike traditional keyword-based search methods, embedding models leverage the power of natural language to deliver more meaningful and contextually relevant results to end users. The embedding models work by converting words, phrases, or even entire documents into mathematical representations known as vectors. These vectors, which exist in a high-dimensional space, capture the meaning and relationships between different words and concepts.

 

What is vector search?

Vector search is a capability for indexing, storing, and retrieving vector embeddings from a search index. The vector search retrieval technique uses these vector representations to find and rank relevant results. By measuring the distance or similarity between the query vector embeddings and the indexed document vectors, vector search is capable of finding results that are contextually related to the query, even if they don’t contain the exact same keywords. 

 

You can use vector search to power similarity search, multi-modal search, recommendation engines, or applications implementing the Retrieval Augmented Generation (RAG) architecture.

 

Announcing Vector Search in Azure Cognitive Search Public Preview

Support for vector search in Azure Cognitive Search is in public preview and available through the 2023-07-01-Preview REST API, the Azure portal, and the more recent beta packages of the Azure SDKs for .NETPython, and JavaScript.

 

Vector search conceptual flow

To use vector search in Azure Cognitive Search, there are some steps that need to be followed for data ingestion and at query time.

 

Data ingestion steps

Here is a summary of the steps to prepare and load the data to the Cognitive Search index.

 

  1. Retrieve source documents from the data source. This can be accomplished by using Azure Cognitive Search built-in pull indexers or by building custom indexers through Azure Functions or Azure Logic Apps.
  2. Chunk your data before vectorizing it, since you need to account for embedding model token input limits and other model limitations.
  3. Since Cognitive Search doesn't generate embeddings at this time, your solution should include calls to an Azure OpenAI embedding model (or other embedding model) to create a vector representation of various content types (e.g., image, audio, text).
  4. Add a vector field in your index definition in Cognitive Search.
  5. Load the index with the document’s payload containing the chunks’ vector embeddings. Your index at this point should be now ready for querying.

You can index vector data as fields in documents alongside textual and other types of content.

 

Query time steps

In the same way your solution must contain calls to an embedding model to create the embeddings before you save them to an index, you need to also call the same embedding model to vectorize your search query before sending it to Cognitive Search.

 

Vector queries can be issued independently or in combination with other query types, including keyword queries (vector and keyword combination is called hybrid search) and filters in the same search request.

 

Here is the order you need to follow to perform the pure vector or hybrid search queries.

 

  1. Once the user submits the query in the client application, call the same Azure OpenAI embedding model (or other embedding model) used to create the vector embeddings that were saved initially in the index.
  2. Submit the vector or hybrid query to your Cognitive Search index.

 

 

Search modalities 

Some of the existing search modalities include the traditional full-text search (keyword search), and of course the subject of this article: vector search and hybrid search. You might be wondering when to use each approach, so here's some guidance.

 

Since vector search retrieves results that are contextually like the query, even if the exact keywords are not present in the index, it’s ideal for complex and nuanced queries, as well as for situations where synonyms or related terms are used.

On the other hand, full-text search relies on matching specific terms within the query to terms in the indexed documents. This approach is simple, fast, and effective for straightforward queries where the desired results contain the exact terms used in the search, such as product and serial numbers, identifiers and similar terms. However, this traditional keyword search can fall short when it comes to understanding context or identifying semantically similar results.

In many cases, a hybrid search approach that combines the strengths of both vector and keyword search can provide the best results. By utilizing the contextual understanding of vector search and the precision of keyword search, a hybrid system can deliver highly relevant and accurate results across a wide range of query types. Also, Cognitive Search offers a re-ranker through semantic search that in multiple scenarios returns more relevant results by applying language understanding to the initial search result.

 

For a comparison table of the search modalities refer to Announcing Vector Search in Azure Cognitive Search Public Preview.

 

What is LangChain?

LangChain is a framework for developing applications powered by language models. It allows you to connect a language model to other sources of data, interact with its environment, and create sequences of calls to achieve specific tasks.

 

You can use LangChain to build applications such as chatbots, question-answering systems, natural language generation systems, and more.

 

LangChain provides modular components and off-the-shelf chains for working with language models, as well as integrations with other tools and platforms.

 

The framework provides multiple high-level abstractions such as document loaders, text splitter and vector stores.

 

Getting started with Azure Cognitive Search in LangChain

Where does LangChain fit in the Cognitive Search vector search story? The Azure Cognitive Search LangChain integration, built in Python, provides the ability to chunk the documents, seamlessly connect an embedding model for document vectorization, store the vectorized contents in a predefined index, perform similarity search (pure vector), hybrid search and hybrid with semantic search. It also provides configurability to create your own index and apply scoring profiles to achieve better search accuracy. With LangChain, you can combine native workflows (indexing and querying) with non-native workflows (like chunking and embedding) to create an end-to-end similarity search solution.

 

Here are the minimum set of code samples and commands to integrate Cognitive Search vector functionality and LangChain. The following samples are borrowed from the Azure Cognitive Search integration page in the LangChain documentation.

 

Install an Azure Cognitive Search SDK

 

 

pip install azure-search-documents==11.4.0b6
pip install azure-identity

 

 

 

Import the required libraries

 

 

import openai
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.azuresearch import AzureSearch

 

 

 

Configure OpenAI settings

Configure the OpenAI settings to use Azure OpenAI or OpenAI:

 

 

os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "YOUR_OPENAI_ENDPOINT"
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
model: str = "text-embedding-ada-002"

 

 

 

 

Configure vector store settings

Set up the vector store settings using the Azure Cognitive Search endpoint and admin key. You can retrieve those in the Azure portal:

 

 

vector_store_address: str = "YOUR_AZURE_SEARCH_ENDPOINT"
vector_store_password: str = "YOUR_AZURE_SEARCH_ADMIN_KEY"

 

 

 

Create embeddings and vector store instances

Create instances of the OpenAIEmbeddings and AzureSearch classes:

 

 

embeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1)
index_name: str = "langchain-vector-demo"
vector_store: AzureSearch = AzureSearch(
    azure_search_endpoint=vector_store_address,
    azure_search_key=vector_store_password,
    index_name=index_name,
    embedding_function=embeddings.embed_query,
)

 

 

 

 

Insert text and embeddings into vector store

Chunks documents and adds the content (already vectorized) to the vector store:

 

 

from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter

loader = TextLoader("path_to_your_file", encoding="utf-8")

documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

vector_store.add_documents(documents=docs)

 

 

 

Perform a vector similarity search

Execute a pure vector similarity search using the similarity_search() method:

 

 

# Perform a similarity search
docs = vector_store.similarity_search(
    query="What did the president say about Ketanji Brown Jackson",
    k=3,
    search_type="similarity",
)
print(docs[0].page_content)

 

 

 

Perform a hybrid search

Execute hybrid search using the search_type or hybrid_search() method:

 

 

# Perform a hybrid search
docs = vector_store.similarity_search(
    query="What did the president say about Ketanji Brown Jackson",
    k=3, 
    search_type="hybrid"
)
print(docs[0].page_content)

 

 

 

 

For the full code and more samples for the LangChain and Cognitive Search vector search integration visit the official Azure Cognitive Search LangChain integration documentation.

 

 

Updated Aug 17, 2023
Version 2.0
No CommentsBe the first to comment
"}},"componentScriptGroups({\"componentId\":\"custom.widget.Social_Sharing\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"component({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"Component","render({\"context\":{\"component\":{\"entities\":[],\"props\":{}},\"page\":{\"entities\":[\"board:Azure-AI-Services-blog\",\"message:3901448\"],\"name\":\"BlogMessagePage\",\"props\":{},\"url\":\"https://techcommunity.microsoft.com/blog/azure-ai-services-blog/azure-cognitive-search-and-langchain-a-seamless-integration-for-enhanced-vector-/3901448\"}}})":{"__typename":"ComponentRenderResult","html":""}},"componentScriptGroups({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/community/NavbarDropdownToggle\"]})":[{"__ref":"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/common/QueryHandler\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCoverImage\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCoverImage-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeTitle\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTimeToRead\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageSubject\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageSubject-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserLink\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserLink-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserRank\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserRank-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTime\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTime-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageBody\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageBody-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCustomFields\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCustomFields-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageRevision\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageRevision-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageReplyButton\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageReplyButton-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageAuthorBio\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/ranks/UserRankLabel\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserRegistrationDate\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserRegistrationDate-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeDescription\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/common/Pager/PagerLoadMorePreviousNextLinkable\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/common/Pager/PagerLoadMorePreviousNextLinkable-1737571274000"}],"message({\"id\":\"message:4066974\"})":{"__ref":"BlogReplyMessage:message:4066974"},"message({\"id\":\"message:4008446\"})":{"__ref":"BlogReplyMessage:message:4008446"},"message({\"id\":\"message:4007383\"})":{"__ref":"BlogReplyMessage:message:4007383"},"message({\"id\":\"message:3992522\"})":{"__ref":"BlogReplyMessage:message:3992522"},"message({\"id\":\"message:3991900\"})":{"__ref":"BlogReplyMessage:message:3991900"},"message({\"id\":\"message:3961397\"})":{"__ref":"BlogReplyMessage:message:3961397"},"message({\"id\":\"message:3947500\"})":{"__ref":"BlogReplyMessage:message:3947500"},"message({\"id\":\"message:3947247\"})":{"__ref":"BlogReplyMessage:message:3947247"},"message({\"id\":\"message:3941381\"})":{"__ref":"BlogReplyMessage:message:3941381"},"message({\"id\":\"message:3936921\"})":{"__ref":"BlogReplyMessage:message:3936921"},"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"components/tags/TagView/TagViewChip\"]})":[{"__ref":"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1737571274000"}],"cachedText({\"lastModified\":\"1737571274000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeIcon\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1737571274000"}]},"CachedAsset:pages-1742463397419":{"__typename":"CachedAsset","id":"pages-1742463397419","value":[{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"BlogViewAllPostsPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId/all-posts/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"CasePortalPage","type":"CASE_PORTAL","urlPath":"/caseportal","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"CreateGroupHubPage","type":"GROUP_HUB","urlPath":"/groups/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"CaseViewPage","type":"CASE_DETAILS","urlPath":"/case/:caseId/:caseNumber","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"InboxPage","type":"COMMUNITY","urlPath":"/inbox","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"HelpFAQPage","type":"COMMUNITY","urlPath":"/help","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"IdeaMessagePage","type":"IDEA_POST","urlPath":"/idea/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"IdeaViewAllIdeasPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/all-ideas/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"LoginPage","type":"USER","urlPath":"/signin","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"BlogPostPage","type":"BLOG","urlPath":"/category/:categoryId/blogs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"UserBlogPermissions.Page","type":"COMMUNITY","urlPath":"/c/user-blog-permissions/page","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ThemeEditorPage","type":"COMMUNITY","urlPath":"/designer/themes","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"TkbViewAllArticlesPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId/all-articles/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllEvents","type":"CUSTOM","urlPath":"/Events","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"OccasionEditPage","type":"EVENT","urlPath":"/event/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"OAuthAuthorizationAllowPage","type":"USER","urlPath":"/auth/authorize/allow","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"PageEditorPage","type":"COMMUNITY","urlPath":"/designer/pages","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"PostPage","type":"COMMUNITY","urlPath":"/category/:categoryId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ForumBoardPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"TkbBoardPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"EventPostPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"UserBadgesPage","type":"COMMUNITY","urlPath":"/users/:login/:userId/badges","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"GroupHubMembershipAction","type":"GROUP_HUB","urlPath":"/membership/join/:nodeId/:membershipType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"MaintenancePage","type":"COMMUNITY","urlPath":"/maintenance","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"IdeaReplyPage","type":"IDEA_REPLY","urlPath":"/idea/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"UserSettingsPage","type":"USER","urlPath":"/mysettings/:userSettingsTab","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"GroupHubsPage","type":"GROUP_HUB","urlPath":"/groups","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ForumPostPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"OccasionRsvpActionPage","type":"OCCASION","urlPath":"/event/:boardId/:messageSubject/:messageId/rsvp/:responseType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"VerifyUserEmailPage","type":"USER","urlPath":"/verifyemail/:userId/:verifyEmailToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"AllOccasionsPage","type":"OCCASION","urlPath":"/category/:categoryId/events/:boardId/all-events/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"EventBoardPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"TkbReplyPage","type":"TKB_REPLY","urlPath":"/kb/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"IdeaBoardPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"CommunityGuideLinesPage","type":"COMMUNITY","urlPath":"/communityguidelines","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"CaseCreatePage","type":"SALESFORCE_CASE_CREATION","urlPath":"/caseportal/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"TkbEditPage","type":"TKB","urlPath":"/kb/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ForgotPasswordPage","type":"USER","urlPath":"/forgotpassword","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"IdeaEditPage","type":"IDEA","urlPath":"/idea/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"TagPage","type":"COMMUNITY","urlPath":"/tag/:tagName","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"BlogBoardPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"OccasionMessagePage","type":"OCCASION_TOPIC","urlPath":"/event/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ManageContentPage","type":"COMMUNITY","urlPath":"/managecontent","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ClosedMembershipNodeNonMembersPage","type":"GROUP_HUB","urlPath":"/closedgroup/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"CommunityPage","type":"COMMUNITY","urlPath":"/","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ForumMessagePage","type":"FORUM_TOPIC","urlPath":"/discussions/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"IdeaPostPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"CommunityHub.Page","type":"CUSTOM","urlPath":"/Directory","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"BlogMessagePage","type":"BLOG_ARTICLE","urlPath":"/blog/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"RegistrationPage","type":"USER","urlPath":"/register","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"EditGroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ForumEditPage","type":"FORUM","urlPath":"/discussions/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ResetPasswordPage","type":"USER","urlPath":"/resetpassword/:userId/:resetPasswordToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllBlogs.Page","type":"CUSTOM","urlPath":"/blogs","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"TkbMessagePage","type":"TKB_ARTICLE","urlPath":"/kb/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"BlogEditPage","type":"BLOG","urlPath":"/blog/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ManageUsersPage","type":"USER","urlPath":"/users/manage/:tab?/:manageUsersTab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ForumReplyPage","type":"FORUM_REPLY","urlPath":"/discussions/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"PrivacyPolicyPage","type":"COMMUNITY","urlPath":"/privacypolicy","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"NotificationPage","type":"COMMUNITY","urlPath":"/notifications","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"UserPage","type":"USER","urlPath":"/users/:login/:userId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"OccasionReplyPage","type":"OCCASION_REPLY","urlPath":"/event/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ManageMembersPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/manage/:tab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"SearchResultsPage","type":"COMMUNITY","urlPath":"/search","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"BlogReplyPage","type":"BLOG_REPLY","urlPath":"/blog/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"GroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"TermsOfServicePage","type":"COMMUNITY","urlPath":"/termsofservice","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"CategoryPage","type":"CATEGORY","urlPath":"/category/:categoryId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"ForumViewAllTopicsPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/all-topics/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"TkbPostPage","type":"TKB","urlPath":"/category/:categoryId/kbs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1742463397419,"localOverride":null,"page":{"id":"GroupHubPostPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"}],"localOverride":false},"CachedAsset:text:en_US-components/context/AppContext/AppContextProvider-0":{"__typename":"CachedAsset","id":"text:en_US-components/context/AppContext/AppContextProvider-0","value":{"noCommunity":"Cannot find community","noUser":"Cannot find current user","noNode":"Cannot find node with id {nodeId}","noMessage":"Cannot find message with id {messageId}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-0":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-0","value":{"title":"Loading..."},"localOverride":false},"User:user:-1":{"__typename":"User","id":"user:-1","uid":-1,"login":"Deleted","email":"","avatar":null,"rank":null,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":"ANONYMOUS","registrationTime":null,"confirmEmailStatus":false,"registrationAccessLevel":"VIEW","ssoRegistrationFields":[]},"ssoId":null,"profileSettings":{"__typename":"ProfileSettings","dateDisplayStyle":{"__typename":"InheritableStringSettingWithPossibleValues","key":"layout.friendly_dates_enabled","value":"false","localValue":"true","possibleValues":["true","false"]},"dateDisplayFormat":{"__typename":"InheritableStringSetting","key":"layout.format_pattern_date","value":"MMM dd yyyy","localValue":"MM-dd-yyyy"},"language":{"__typename":"InheritableStringSettingWithPossibleValues","key":"profile.language","value":"en-US","localValue":"en","possibleValues":["en-US"]}},"deleted":false},"Theme:customTheme1":{"__typename":"Theme","id":"customTheme1"},"Category:category:AI":{"__typename":"Category","id":"category:AI","entityType":"CATEGORY","displayId":"AI","nodeType":"category","depth":3,"title":"Artificial Intelligence and Machine Learning","shortTitle":"Artificial Intelligence and Machine Learning","parent":{"__ref":"Category:category:solutions"},"categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:top":{"__typename":"Category","id":"category:top","displayId":"top","nodeType":"category","depth":0,"title":"Top","entityType":"CATEGORY","shortTitle":"Top"},"Category:category:communities":{"__typename":"Category","id":"category:communities","displayId":"communities","nodeType":"category","depth":1,"parent":{"__ref":"Category:category:top"},"title":"Communities","entityType":"CATEGORY","shortTitle":"Communities"},"Category:category:solutions":{"__typename":"Category","id":"category:solutions","displayId":"solutions","nodeType":"category","depth":2,"parent":{"__ref":"Category:category:communities"},"title":"Topics","entityType":"CATEGORY","shortTitle":"Topics"},"Blog:board:Azure-AI-Services-blog":{"__typename":"Blog","id":"board:Azure-AI-Services-blog","entityType":"BLOG","displayId":"Azure-AI-Services-blog","nodeType":"board","depth":4,"conversationStyle":"BLOG","title":"AI - Azure AI services Blog","description":"","avatar":null,"profileSettings":{"__typename":"ProfileSettings","language":null},"parent":{"__ref":"Category:category:AI"},"ancestors":{"__typename":"CoreNodeConnection","edges":[{"__typename":"CoreNodeEdge","node":{"__ref":"Community:community:gxcuf89792"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:communities"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:solutions"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:AI"}}]},"userContext":{"__typename":"NodeUserContext","canAddAttachments":false,"canUpdateNode":false,"canPostMessages":false,"isSubscribed":false},"boardPolicies":{"__typename":"BoardPolicies","canPublishArticleOnCreate":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","args":[]}}},"shortTitle":"AI - Azure AI services Blog","repliesProperties":{"__typename":"RepliesProperties","sortOrder":"REVERSE_PUBLISH_TIME","repliesFormat":"threaded"},"eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/","tagProperties":{"__typename":"TagNodeProperties","tagsEnabled":{"__typename":"PolicyResult","failureReason":null}},"requireTags":true,"tagType":"PRESET_ONLY"},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc","height":512,"width":512,"mimeType":"image/png"},"Rank:rank:4":{"__typename":"Rank","id":"rank:4","position":6,"name":"Microsoft","color":"333333","icon":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}"},"rankStyle":"OUTLINE"},"User:user:271474":{"__typename":"User","id":"user:271474","uid":271474,"login":"gia_mondragon","deleted":false,"avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS0yNzE0NzQtNDY4NDQ2aTgwNkE5MjI3RURFRjZEQUY"},"rank":{"__ref":"Rank:rank:4"},"email":"","messagesCount":27,"biography":null,"topicsCount":10,"kudosReceivedCount":39,"kudosGivenCount":32,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2019-01-24T10:07:06.318-08:00","confirmEmailStatus":null},"followersCount":null,"solutionsCount":0,"entityType":"USER","eventPath":"community:gxcuf89792/user:271474"},"BlogTopicMessage:message:3901448":{"__typename":"BlogTopicMessage","uid":3901448,"subject":"Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabilities","id":"message:3901448","revisionNum":4,"repliesCount":17,"author":{"__ref":"User:user:271474"},"depth":0,"hasGivenKudo":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"conversation":{"__ref":"Conversation:conversation:3901448"},"messagePolicies":{"__typename":"MessagePolicies","canPublishArticleOnEdit":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","args":[]}},"canModerateSpamMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","args":[]}}},"contentWorkflow":{"__typename":"ContentWorkflow","state":"PUBLISH","scheduledPublishTime":null,"scheduledTimezone":null,"userContext":{"__typename":"MessageWorkflowContext","canSubmitForReview":null,"canEdit":false,"canRecall":null,"canSubmitForPublication":null,"canReturnToAuthor":null,"canPublish":null,"canReturnToReview":null,"canSchedule":false},"shortScheduledTimezone":null},"readOnly":false,"editFrozen":false,"moderationData":{"__ref":"ModerationData:moderation_data:3901448"},"teaser":"

Unveil the power of enhanced search capabilities with Azure Cognitive Search vector search and LangChain!

","body":"
Content and LangChain integration credit to: Fabrizio Ruocco, Principal Tech Lead, AI Global Black Belt, Microsoft
\n

 

\n

 

\n

Introduction

\n

In a fast-paced world, the ability to access relevant and accurate information quickly is critical for enhancing productivity and making informed decisions. With an ever-growing volume of digital data, being able to find the right piece of information has become a higher priority task. Thankfully, recent advancements in LLMs (Large Language Models) have transformed the landscape of information retrieval, making it more efficient and effective.

\n

 

\n

A significant breakthrough in this area is the development of embedding models, which have revolutionized the way we search for information. Unlike traditional keyword-based search methods, embedding models leverage the power of natural language to deliver more meaningful and contextually relevant results to end users. The embedding models work by converting words, phrases, or even entire documents into mathematical representations known as vectors. These vectors, which exist in a high-dimensional space, capture the meaning and relationships between different words and concepts.

\n

 

\n

What is vector search?

\n

Vector search is a capability for indexing, storing, and retrieving vector embeddings from a search index. The vector search retrieval technique uses these vector representations to find and rank relevant results. By measuring the distance or similarity between the query vector embeddings and the indexed document vectors, vector search is capable of finding results that are contextually related to the query, even if they don’t contain the exact same keywords. 

\n

 

\n

You can use vector search to power similarity search, multi-modal search, recommendation engines, or applications implementing the Retrieval Augmented Generation (RAG) architecture.

\n

 

\n

Announcing Vector Search in Azure Cognitive Search Public Preview

\n

Support for vector search in Azure Cognitive Search is in public preview and available through the 2023-07-01-Preview REST API, the Azure portal, and the more recent beta packages of the Azure SDKs for .NETPython, and JavaScript.

\n

 

\n

Vector search conceptual flow

\n

To use vector search in Azure Cognitive Search, there are some steps that need to be followed for data ingestion and at query time.

\n

 

\n

Data ingestion steps

\n

Here is a summary of the steps to prepare and load the data to the Cognitive Search index.

\n

 

\n
    \n
  1. Retrieve source documents from the data source. This can be accomplished by using Azure Cognitive Search built-in pull indexers or by building custom indexers through Azure Functions or Azure Logic Apps.
  2. \n
  3. Chunk your data before vectorizing it, since you need to account for embedding model token input limits and other model limitations.
  4. \n
  5. Since Cognitive Search doesn't generate embeddings at this time, your solution should include calls to an Azure OpenAI embedding model (or other embedding model) to create a vector representation of various content types (e.g., image, audio, text).
  6. \n
  7. Add a vector field in your index definition in Cognitive Search.
  8. \n
  9. Load the index with the document’s payload containing the chunks’ vector embeddings. Your index at this point should be now ready for querying.
  10. \n
\n

You can index vector data as fields in documents alongside textual and other types of content.

\n

 

\n

Query time steps

\n

In the same way your solution must contain calls to an embedding model to create the embeddings before you save them to an index, you need to also call the same embedding model to vectorize your search query before sending it to Cognitive Search.

\n

 

\n

Vector queries can be issued independently or in combination with other query types, including keyword queries (vector and keyword combination is called hybrid search) and filters in the same search request.

\n

 

\n

Here is the order you need to follow to perform the pure vector or hybrid search queries.

\n

 

\n
    \n
  1. Once the user submits the query in the client application, call the same Azure OpenAI embedding model (or other embedding model) used to create the vector embeddings that were saved initially in the index.
  2. \n
  3. Submit the vector or hybrid query to your Cognitive Search index.
  4. \n
\n

\n

 

\n

 

\n

Search modalities 

\n

Some of the existing search modalities include the traditional full-text search (keyword search), and of course the subject of this article: vector search and hybrid search. You might be wondering when to use each approach, so here's some guidance.

\n

 

\n

Since vector search retrieves results that are contextually like the query, even if the exact keywords are not present in the index, it’s ideal for complex and nuanced queries, as well as for situations where synonyms or related terms are used.

On the other hand, full-text search relies on matching specific terms within the query to terms in the indexed documents. This approach is simple, fast, and effective for straightforward queries where the desired results contain the exact terms used in the search, such as product and serial numbers, identifiers and similar terms. However, this traditional keyword search can fall short when it comes to understanding context or identifying semantically similar results.

In many cases, a hybrid search approach that combines the strengths of both vector and keyword search can provide the best results. By utilizing the contextual understanding of vector search and the precision of keyword search, a hybrid system can deliver highly relevant and accurate results across a wide range of query types. Also, Cognitive Search offers a re-ranker through semantic search that in multiple scenarios returns more relevant results by applying language understanding to the initial search result.

\n

 

\n

For a comparison table of the search modalities refer to Announcing Vector Search in Azure Cognitive Search Public Preview.

\n

 

\n

What is LangChain?

\n

LangChain is a framework for developing applications powered by language models. It allows you to connect a language model to other sources of data, interact with its environment, and create sequences of calls to achieve specific tasks.

\n

 

\n

You can use LangChain to build applications such as chatbots, question-answering systems, natural language generation systems, and more.

\n

 

\n

LangChain provides modular components and off-the-shelf chains for working with language models, as well as integrations with other tools and platforms.

\n

 

\n

The framework provides multiple high-level abstractions such as document loaders, text splitter and vector stores.

\n

 

\n

Getting started with Azure Cognitive Search in LangChain

\n

Where does LangChain fit in the Cognitive Search vector search story? The Azure Cognitive Search LangChain integration, built in Python, provides the ability to chunk the documents, seamlessly connect an embedding model for document vectorization, store the vectorized contents in a predefined index, perform similarity search (pure vector), hybrid search and hybrid with semantic search. It also provides configurability to create your own index and apply scoring profiles to achieve better search accuracy. With LangChain, you can combine native workflows (indexing and querying) with non-native workflows (like chunking and embedding) to create an end-to-end similarity search solution.

\n

 

\n

Here are the minimum set of code samples and commands to integrate Cognitive Search vector functionality and LangChain. The following samples are borrowed from the Azure Cognitive Search integration page in the LangChain documentation.

\n

 

\n

Install an Azure Cognitive Search SDK

\n

 

\n

 

\n
pip install azure-search-documents==11.4.0b6\npip install azure-identity
\n

 

\n

 

\n

 

\n

Import the required libraries

\n

 

\n

 

\n
import openai\nimport os\nfrom langchain.embeddings.openai import OpenAIEmbeddings\nfrom langchain.vectorstores.azuresearch import AzureSearch
\n

 

\n

 

\n

 

\n

Configure OpenAI settings

\n

Configure the OpenAI settings to use Azure OpenAI or OpenAI:

\n

 

\n

 

\n
os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\nos.environ[\"OPENAI_API_BASE\"] = \"YOUR_OPENAI_ENDPOINT\"\nos.environ[\"OPENAI_API_KEY\"] = \"YOUR_OPENAI_API_KEY\"\nos.environ[\"OPENAI_API_VERSION\"] = \"2023-05-15\"\nmodel: str = \"text-embedding-ada-002\"
\n

 

\n

 

\n

 

\n

 

\n

Configure vector store settings

\n

Set up the vector store settings using the Azure Cognitive Search endpoint and admin key. You can retrieve those in the Azure portal:

\n

 

\n

 

\n
vector_store_address: str = \"YOUR_AZURE_SEARCH_ENDPOINT\"\nvector_store_password: str = \"YOUR_AZURE_SEARCH_ADMIN_KEY\"\n
\n

 

\n

 

\n

 

\n

Create embeddings and vector store instances

\n

Create instances of the OpenAIEmbeddings and AzureSearch classes:

\n

 

\n

 

\n
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1)\nindex_name: str = \"langchain-vector-demo\"\nvector_store: AzureSearch = AzureSearch(\n    azure_search_endpoint=vector_store_address,\n    azure_search_key=vector_store_password,\n    index_name=index_name,\n    embedding_function=embeddings.embed_query,\n)
\n

 

\n

 

\n

 

\n

 

\n

Insert text and embeddings into vector store

\n

Chunks documents and adds the content (already vectorized) to the vector store:

\n

 

\n

 

\n
from langchain.document_loaders import TextLoader\nfrom langchain.text_splitter import CharacterTextSplitter\n\nloader = TextLoader(\"path_to_your_file\", encoding=\"utf-8\")\n\ndocuments = loader.load()\ntext_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\ndocs = text_splitter.split_documents(documents)\n\nvector_store.add_documents(documents=docs)
\n

 

\n

 

\n

 

\n

Perform a vector similarity search

\n

Execute a pure vector similarity search using the similarity_search() method:

\n

 

\n

 

\n
# Perform a similarity search\ndocs = vector_store.similarity_search(\n    query=\"What did the president say about Ketanji Brown Jackson\",\n    k=3,\n    search_type=\"similarity\",\n)\nprint(docs[0].page_content)
\n

 

\n

 

\n

 

\n

Perform a hybrid search

\n

Execute hybrid search using the search_type or hybrid_search() method:

\n

 

\n

 

\n
# Perform a hybrid search\ndocs = vector_store.similarity_search(\n    query=\"What did the president say about Ketanji Brown Jackson\",\n    k=3, \n    search_type=\"hybrid\"\n)\nprint(docs[0].page_content)
\n

 

\n

 

\n

 

\n

 

\n

For the full code and more samples for the LangChain and Cognitive Search vector search integration visit the official Azure Cognitive Search LangChain integration documentation.

\n

 

\n

 

","body@stringLength":"17151","rawBody":"
Content and LangChain integration credit to: Fabrizio Ruocco, Principal Tech Lead, AI Global Black Belt, Microsoft
\n

 

\n

 

\n

Introduction

\n

In a fast-paced world, the ability to access relevant and accurate information quickly is critical for enhancing productivity and making informed decisions. With an ever-growing volume of digital data, being able to find the right piece of information has become a higher priority task. Thankfully, recent advancements in LLMs (Large Language Models) have transformed the landscape of information retrieval, making it more efficient and effective.

\n

 

\n

A significant breakthrough in this area is the development of embedding models, which have revolutionized the way we search for information. Unlike traditional keyword-based search methods, embedding models leverage the power of natural language to deliver more meaningful and contextually relevant results to end users. The embedding models work by converting words, phrases, or even entire documents into mathematical representations known as vectors. These vectors, which exist in a high-dimensional space, capture the meaning and relationships between different words and concepts.

\n

 

\n

What is vector search?

\n

Vector search is a capability for indexing, storing, and retrieving vector embeddings from a search index. The vector search retrieval technique uses these vector representations to find and rank relevant results. By measuring the distance or similarity between the query vector embeddings and the indexed document vectors, vector search is capable of finding results that are contextually related to the query, even if they don’t contain the exact same keywords. 

\n

 

\n

You can use vector search to power similarity search, multi-modal search, recommendation engines, or applications implementing the Retrieval Augmented Generation (RAG) architecture.

\n

 

\n

Announcing Vector Search in Azure Cognitive Search Public Preview

\n

Support for vector search in Azure Cognitive Search is in public preview and available through the 2023-07-01-Preview REST API, the Azure portal, and the more recent beta packages of the Azure SDKs for .NETPython, and JavaScript.

\n

 

\n

Vector search conceptual flow

\n

To use vector search in Azure Cognitive Search, there are some steps that need to be followed for data ingestion and at query time.

\n

 

\n

Data ingestion steps

\n

Here is a summary of the steps to prepare and load the data to the Cognitive Search index.

\n

 

\n
    \n
  1. Retrieve source documents from the data source. This can be accomplished by using Azure Cognitive Search built-in pull indexers or by building custom indexers through Azure Functions or Azure Logic Apps.
  2. \n
  3. Chunk your data before vectorizing it, since you need to account for embedding model token input limits and other model limitations.
  4. \n
  5. Since Cognitive Search doesn't generate embeddings at this time, your solution should include calls to an Azure OpenAI embedding model (or other embedding model) to create a vector representation of various content types (e.g., image, audio, text).
  6. \n
  7. Add a vector field in your index definition in Cognitive Search.
  8. \n
  9. Load the index with the document’s payload containing the chunks’ vector embeddings. Your index at this point should be now ready for querying.
  10. \n
\n

You can index vector data as fields in documents alongside textual and other types of content.

\n

 

\n

Query time steps

\n

In the same way your solution must contain calls to an embedding model to create the embeddings before you save them to an index, you need to also call the same embedding model to vectorize your search query before sending it to Cognitive Search.

\n

 

\n

Vector queries can be issued independently or in combination with other query types, including keyword queries (vector and keyword combination is called hybrid search) and filters in the same search request.

\n

 

\n

Here is the order you need to follow to perform the pure vector or hybrid search queries.

\n

 

\n
    \n
  1. Once the user submits the query in the client application, call the same Azure OpenAI embedding model (or other embedding model) used to create the vector embeddings that were saved initially in the index.
  2. \n
  3. Submit the vector or hybrid query to your Cognitive Search index.
  4. \n
\n

\n

 

\n

 

\n

Search modalities 

\n

Some of the existing search modalities include the traditional full-text search (keyword search), and of course the subject of this article: vector search and hybrid search. You might be wondering when to use each approach, so here's some guidance.

\n

 

\n

Since vector search retrieves results that are contextually like the query, even if the exact keywords are not present in the index, it’s ideal for complex and nuanced queries, as well as for situations where synonyms or related terms are used.

On the other hand, full-text search relies on matching specific terms within the query to terms in the indexed documents. This approach is simple, fast, and effective for straightforward queries where the desired results contain the exact terms used in the search, such as product and serial numbers, identifiers and similar terms. However, this traditional keyword search can fall short when it comes to understanding context or identifying semantically similar results.

In many cases, a hybrid search approach that combines the strengths of both vector and keyword search can provide the best results. By utilizing the contextual understanding of vector search and the precision of keyword search, a hybrid system can deliver highly relevant and accurate results across a wide range of query types. Also, Cognitive Search offers a re-ranker through semantic search that in multiple scenarios returns more relevant results by applying language understanding to the initial search result.

\n

 

\n

For a comparison table of the search modalities refer to Announcing Vector Search in Azure Cognitive Search Public Preview.

\n

 

\n

What is LangChain?

\n

LangChain is a framework for developing applications powered by language models. It allows you to connect a language model to other sources of data, interact with its environment, and create sequences of calls to achieve specific tasks.

\n

 

\n

You can use LangChain to build applications such as chatbots, question-answering systems, natural language generation systems, and more.

\n

 

\n

LangChain provides modular components and off-the-shelf chains for working with language models, as well as integrations with other tools and platforms.

\n

 

\n

The framework provides multiple high-level abstractions such as document loaders, text splitter and vector stores.

\n

 

\n

Getting started with Azure Cognitive Search in LangChain

\n

Where does LangChain fit in the Cognitive Search vector search story? The Azure Cognitive Search LangChain integration, built in Python, provides the ability to chunk the documents, seamlessly connect an embedding model for document vectorization, store the vectorized contents in a predefined index, perform similarity search (pure vector), hybrid search and hybrid with semantic search. It also provides configurability to create your own index and apply scoring profiles to achieve better search accuracy. With LangChain, you can combine native workflows (indexing and querying) with non-native workflows (like chunking and embedding) to create an end-to-end similarity search solution.

\n

 

\n

Here are the minimum set of code samples and commands to integrate Cognitive Search vector functionality and LangChain. The following samples are borrowed from the Azure Cognitive Search integration page in the LangChain documentation.

\n

 

\n

Install an Azure Cognitive Search SDK

\n

 

\n

 

\npip install azure-search-documents==11.4.0b6\npip install azure-identity\n

 

\n

 

\n

 

\n

Import the required libraries

\n

 

\n

 

\nimport openai\nimport os\nfrom langchain.embeddings.openai import OpenAIEmbeddings\nfrom langchain.vectorstores.azuresearch import AzureSearch\n

 

\n

 

\n

 

\n

Configure OpenAI settings

\n

Configure the OpenAI settings to use Azure OpenAI or OpenAI:

\n

 

\n

 

\nos.environ[\"OPENAI_API_TYPE\"] = \"azure\"\nos.environ[\"OPENAI_API_BASE\"] = \"YOUR_OPENAI_ENDPOINT\"\nos.environ[\"OPENAI_API_KEY\"] = \"YOUR_OPENAI_API_KEY\"\nos.environ[\"OPENAI_API_VERSION\"] = \"2023-05-15\"\nmodel: str = \"text-embedding-ada-002\"\n

 

\n

 

\n

 

\n

 

\n

Configure vector store settings

\n

Set up the vector store settings using the Azure Cognitive Search endpoint and admin key. You can retrieve those in the Azure portal:

\n

 

\n

 

\nvector_store_address: str = \"YOUR_AZURE_SEARCH_ENDPOINT\"\nvector_store_password: str = \"YOUR_AZURE_SEARCH_ADMIN_KEY\"\n\n

 

\n

 

\n

 

\n

Create embeddings and vector store instances

\n

Create instances of the OpenAIEmbeddings and AzureSearch classes:

\n

 

\n

 

\nembeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1)\nindex_name: str = \"langchain-vector-demo\"\nvector_store: AzureSearch = AzureSearch(\n azure_search_endpoint=vector_store_address,\n azure_search_key=vector_store_password,\n index_name=index_name,\n embedding_function=embeddings.embed_query,\n)\n

 

\n

 

\n

 

\n

 

\n

Insert text and embeddings into vector store

\n

Chunks documents and adds the content (already vectorized) to the vector store:

\n

 

\n

 

\nfrom langchain.document_loaders import TextLoader\nfrom langchain.text_splitter import CharacterTextSplitter\n\nloader = TextLoader(\"path_to_your_file\", encoding=\"utf-8\")\n\ndocuments = loader.load()\ntext_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\ndocs = text_splitter.split_documents(documents)\n\nvector_store.add_documents(documents=docs)\n

 

\n

 

\n

 

\n

Perform a vector similarity search

\n

Execute a pure vector similarity search using the similarity_search() method:

\n

 

\n

 

\n# Perform a similarity search\ndocs = vector_store.similarity_search(\n query=\"What did the president say about Ketanji Brown Jackson\",\n k=3,\n search_type=\"similarity\",\n)\nprint(docs[0].page_content)\n

 

\n

 

\n

 

\n

Perform a hybrid search

\n

Execute hybrid search using the search_type or hybrid_search() method:

\n

 

\n

 

\n# Perform a hybrid search\ndocs = vector_store.similarity_search(\n query=\"What did the president say about Ketanji Brown Jackson\",\n k=3, \n search_type=\"hybrid\"\n)\nprint(docs[0].page_content)\n

 

\n

 

\n

 

\n

 

\n

For the full code and more samples for the LangChain and Cognitive Search vector search integration visit the official Azure Cognitive Search LangChain integration documentation.

\n

 

\n

 

","kudosSumWeight":6,"postTime":"2023-08-17T06:00:00.044-07:00","images":{"__typename":"AssociatedImageConnection","edges":[{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDE","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zOTAxNDQ4LTQ5ODUzNmlFMjdCOTBDQjMxNUZCMkEy?revision=4\"}"}}],"totalCount":1,"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"attachments":{"__typename":"AttachmentConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"tags":{"__typename":"TagConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDE","node":{"__typename":"Tag","id":"tag:azure ai search","text":"azure ai search","time":"2019-12-04T13:04:54.809-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDI","node":{"__typename":"Tag","id":"tag:azure openai service","text":"azure openai service","time":"2022-12-14T08:49:09.396-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDM","node":{"__typename":"Tag","id":"tag:vectors","text":"vectors","time":"2023-05-11T19:18:48.771-07:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}}]},"timeToRead":6,"rawTeaser":"

Unveil the power of enhanced search capabilities with Azure Cognitive Search vector search and LangChain!

","introduction":"","coverImage":null,"coverImageProperties":{"__typename":"CoverImageProperties","style":"STANDARD","titlePosition":"BOTTOM","altText":""},"currentRevision":{"__ref":"Revision:revision:3901448_4"},"latestVersion":{"__typename":"FriendlyVersion","major":"2","minor":"0"},"metrics":{"__typename":"MessageMetrics","views":54296},"visibilityScope":"PUBLIC","canonicalUrl":null,"seoTitle":null,"seoDescription":null,"placeholder":false,"originalMessageForPlaceholder":null,"contributors":{"__typename":"UserConnection","edges":[]},"nonCoAuthorContributors":{"__typename":"UserConnection","edges":[]},"coAuthors":{"__typename":"UserConnection","edges":[]},"blogMessagePolicies":{"__typename":"BlogMessagePolicies","canDoAuthoringActionsOnBlog":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","key":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","args":[]}}},"archivalData":null,"replies":{"__typename":"MessageConnection","edges":[{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCw0MDY2OTc0","node":{"__ref":"BlogReplyMessage:message:4066974"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCw0MDA4NDQ2","node":{"__ref":"BlogReplyMessage:message:4008446"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCw0MDA3Mzgz","node":{"__ref":"BlogReplyMessage:message:4007383"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCwzOTkyNTIy","node":{"__ref":"BlogReplyMessage:message:3992522"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCwzOTkxOTAw","node":{"__ref":"BlogReplyMessage:message:3991900"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCwzOTYxMzk3","node":{"__ref":"BlogReplyMessage:message:3961397"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCwzOTQ3NTAw","node":{"__ref":"BlogReplyMessage:message:3947500"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCwzOTQ3MjQ3","node":{"__ref":"BlogReplyMessage:message:3947247"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCwzOTQxMzgx","node":{"__ref":"BlogReplyMessage:message:3941381"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCwzOTM2OTIx","node":{"__ref":"BlogReplyMessage:message:3936921"}}],"pageInfo":{"__typename":"PageInfo","hasNextPage":true,"endCursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDA2Njk3NCwzOTM2OTIx","hasPreviousPage":false,"startCursor":null}},"customFields":[],"revisions({\"constraints\":{\"isPublished\":{\"eq\":true}},\"first\":1})":{"__typename":"RevisionConnection","totalCount":4}},"Conversation:conversation:3901448":{"__typename":"Conversation","id":"conversation:3901448","solved":false,"topic":{"__ref":"BlogTopicMessage:message:3901448"},"lastPostingActivityTime":"2024-02-25T18:56:33.260-08:00","lastPostTime":"2024-02-25T18:56:33.260-08:00","unreadReplyCount":17,"isSubscribed":false},"ModerationData:moderation_data:3901448":{"__typename":"ModerationData","id":"moderation_data:3901448","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zOTAxNDQ4LTQ5ODUzNmlFMjdCOTBDQjMxNUZCMkEy?revision=4\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zOTAxNDQ4LTQ5ODUzNmlFMjdCOTBDQjMxNUZCMkEy?revision=4","title":"gia_mondragon_0-1692235573122.png","associationType":"BODY","width":1633,"height":654,"altText":null},"Revision:revision:3901448_4":{"__typename":"Revision","id":"revision:3901448_4","lastEditTime":"2023-08-17T09:05:26.965-07:00"},"CachedAsset:theme:customTheme1-1742463396888":{"__typename":"CachedAsset","id":"theme:customTheme1-1742463396888","value":{"id":"customTheme1","animation":{"fast":"150ms","normal":"250ms","slow":"500ms","slowest":"750ms","function":"cubic-bezier(0.07, 0.91, 0.51, 1)","__typename":"AnimationThemeSettings"},"avatar":{"borderRadius":"50%","collections":["default"],"__typename":"AvatarThemeSettings"},"basics":{"browserIcon":{"imageAssetName":"favicon-1730836283320.png","imageLastModified":"1730836286415","__typename":"ThemeAsset"},"customerLogo":{"imageAssetName":"favicon-1730836271365.png","imageLastModified":"1730836274203","__typename":"ThemeAsset"},"maximumWidthOfPageContent":"1300px","oneColumnNarrowWidth":"800px","gridGutterWidthMd":"30px","gridGutterWidthXs":"10px","pageWidthStyle":"WIDTH_OF_BROWSER","__typename":"BasicsThemeSettings"},"buttons":{"borderRadiusSm":"3px","borderRadius":"3px","borderRadiusLg":"5px","paddingY":"5px","paddingYLg":"7px","paddingYHero":"var(--lia-bs-btn-padding-y-lg)","paddingX":"12px","paddingXLg":"16px","paddingXHero":"60px","fontStyle":"NORMAL","fontWeight":"700","textTransform":"NONE","disabledOpacity":0.5,"primaryTextColor":"var(--lia-bs-white)","primaryTextHoverColor":"var(--lia-bs-white)","primaryTextActiveColor":"var(--lia-bs-white)","primaryBgColor":"var(--lia-bs-primary)","primaryBgHoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.85))","primaryBgActiveColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.7))","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","primaryBorderActive":"1px solid transparent","primaryBorderFocus":"1px solid var(--lia-bs-white)","primaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","secondaryTextColor":"var(--lia-bs-gray-900)","secondaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","secondaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","secondaryBgColor":"var(--lia-bs-gray-200)","secondaryBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","secondaryBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","secondaryBorder":"1px solid transparent","secondaryBorderHover":"1px solid transparent","secondaryBorderActive":"1px solid transparent","secondaryBorderFocus":"1px solid transparent","secondaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","tertiaryTextColor":"var(--lia-bs-gray-900)","tertiaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","tertiaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","tertiaryBgColor":"transparent","tertiaryBgHoverColor":"transparent","tertiaryBgActiveColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.04)","tertiaryBorder":"1px solid transparent","tertiaryBorderHover":"1px solid hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","tertiaryBorderActive":"1px solid transparent","tertiaryBorderFocus":"1px solid transparent","tertiaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","destructiveTextColor":"var(--lia-bs-danger)","destructiveTextHoverColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.95))","destructiveTextActiveColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.9))","destructiveBgColor":"var(--lia-bs-gray-200)","destructiveBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","destructiveBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","destructiveBorder":"1px solid transparent","destructiveBorderHover":"1px solid transparent","destructiveBorderActive":"1px solid transparent","destructiveBorderFocus":"1px solid transparent","destructiveBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","__typename":"ButtonsThemeSettings"},"border":{"color":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","mainContent":"NONE","sideContent":"LIGHT","radiusSm":"3px","radius":"5px","radiusLg":"9px","radius50":"100vw","__typename":"BorderThemeSettings"},"boxShadow":{"xs":"0 0 0 1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.08), 0 3px 0 -1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.16)","sm":"0 2px 4px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.12)","md":"0 5px 15px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","lg":"0 10px 30px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","__typename":"BoxShadowThemeSettings"},"cards":{"bgColor":"var(--lia-panel-bg-color)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":"var(--lia-box-shadow-xs)","__typename":"CardsThemeSettings"},"chip":{"maxWidth":"300px","height":"30px","__typename":"ChipThemeSettings"},"coreTypes":{"defaultMessageLinkColor":"var(--lia-bs-link-color)","defaultMessageLinkDecoration":"none","defaultMessageLinkFontStyle":"NORMAL","defaultMessageLinkFontWeight":"400","defaultMessageFontStyle":"NORMAL","defaultMessageFontWeight":"400","forumColor":"#4099E2","forumFontFamily":"var(--lia-bs-font-family-base)","forumFontWeight":"var(--lia-default-message-font-weight)","forumLineHeight":"var(--lia-bs-line-height-base)","forumFontStyle":"var(--lia-default-message-font-style)","forumMessageLinkColor":"var(--lia-default-message-link-color)","forumMessageLinkDecoration":"var(--lia-default-message-link-decoration)","forumMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","forumMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","forumSolvedColor":"#148563","blogColor":"#1CBAA0","blogFontFamily":"var(--lia-bs-font-family-base)","blogFontWeight":"var(--lia-default-message-font-weight)","blogLineHeight":"1.75","blogFontStyle":"var(--lia-default-message-font-style)","blogMessageLinkColor":"var(--lia-default-message-link-color)","blogMessageLinkDecoration":"var(--lia-default-message-link-decoration)","blogMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","blogMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","tkbColor":"#4C6B90","tkbFontFamily":"var(--lia-bs-font-family-base)","tkbFontWeight":"var(--lia-default-message-font-weight)","tkbLineHeight":"1.75","tkbFontStyle":"var(--lia-default-message-font-style)","tkbMessageLinkColor":"var(--lia-default-message-link-color)","tkbMessageLinkDecoration":"var(--lia-default-message-link-decoration)","tkbMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","tkbMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaColor":"#4099E2","qandaFontFamily":"var(--lia-bs-font-family-base)","qandaFontWeight":"var(--lia-default-message-font-weight)","qandaLineHeight":"var(--lia-bs-line-height-base)","qandaFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkColor":"var(--lia-default-message-link-color)","qandaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","qandaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaSolvedColor":"#3FA023","ideaColor":"#FF8000","ideaFontFamily":"var(--lia-bs-font-family-base)","ideaFontWeight":"var(--lia-default-message-font-weight)","ideaLineHeight":"var(--lia-bs-line-height-base)","ideaFontStyle":"var(--lia-default-message-font-style)","ideaMessageLinkColor":"var(--lia-default-message-link-color)","ideaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","ideaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","ideaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","contestColor":"#FCC845","contestFontFamily":"var(--lia-bs-font-family-base)","contestFontWeight":"var(--lia-default-message-font-weight)","contestLineHeight":"var(--lia-bs-line-height-base)","contestFontStyle":"var(--lia-default-message-link-font-style)","contestMessageLinkColor":"var(--lia-default-message-link-color)","contestMessageLinkDecoration":"var(--lia-default-message-link-decoration)","contestMessageLinkFontStyle":"ITALIC","contestMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","occasionColor":"#D13A1F","occasionFontFamily":"var(--lia-bs-font-family-base)","occasionFontWeight":"var(--lia-default-message-font-weight)","occasionLineHeight":"var(--lia-bs-line-height-base)","occasionFontStyle":"var(--lia-default-message-font-style)","occasionMessageLinkColor":"var(--lia-default-message-link-color)","occasionMessageLinkDecoration":"var(--lia-default-message-link-decoration)","occasionMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","occasionMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","grouphubColor":"#333333","categoryColor":"#949494","communityColor":"#FFFFFF","productColor":"#949494","__typename":"CoreTypesThemeSettings"},"colors":{"black":"#000000","white":"#FFFFFF","gray100":"#F7F7F7","gray200":"#F7F7F7","gray300":"#E8E8E8","gray400":"#D9D9D9","gray500":"#CCCCCC","gray600":"#717171","gray700":"#707070","gray800":"#545454","gray900":"#333333","dark":"#545454","light":"#F7F7F7","primary":"#0069D4","secondary":"#333333","bodyText":"#333333","bodyBg":"#FFFFFF","info":"#409AE2","success":"#41C5AE","warning":"#FCC844","danger":"#BC341B","alertSystem":"#FF6600","textMuted":"#707070","highlight":"#FFFCAD","outline":"var(--lia-bs-primary)","custom":["#D3F5A4","#243A5E"],"__typename":"ColorsThemeSettings"},"divider":{"size":"3px","marginLeft":"4px","marginRight":"4px","borderRadius":"50%","bgColor":"var(--lia-bs-gray-600)","bgColorActive":"var(--lia-bs-gray-600)","__typename":"DividerThemeSettings"},"dropdown":{"fontSize":"var(--lia-bs-font-size-sm)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius-sm)","dividerBg":"var(--lia-bs-gray-300)","itemPaddingY":"5px","itemPaddingX":"20px","headerColor":"var(--lia-bs-gray-700)","__typename":"DropdownThemeSettings"},"email":{"link":{"color":"#0069D4","hoverColor":"#0061c2","decoration":"none","hoverDecoration":"underline","__typename":"EmailLinkSettings"},"border":{"color":"#e4e4e4","__typename":"EmailBorderSettings"},"buttons":{"borderRadiusLg":"5px","paddingXLg":"16px","paddingYLg":"7px","fontWeight":"700","primaryTextColor":"#ffffff","primaryTextHoverColor":"#ffffff","primaryBgColor":"#0069D4","primaryBgHoverColor":"#005cb8","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","__typename":"EmailButtonsSettings"},"panel":{"borderRadius":"5px","borderColor":"#e4e4e4","__typename":"EmailPanelSettings"},"__typename":"EmailThemeSettings"},"emoji":{"skinToneDefault":"#ffcd43","skinToneLight":"#fae3c5","skinToneMediumLight":"#e2cfa5","skinToneMedium":"#daa478","skinToneMediumDark":"#a78058","skinToneDark":"#5e4d43","__typename":"EmojiThemeSettings"},"heading":{"color":"var(--lia-bs-body-color)","fontFamily":"Segoe UI","fontStyle":"NORMAL","fontWeight":"400","h1FontSize":"34px","h2FontSize":"32px","h3FontSize":"28px","h4FontSize":"24px","h5FontSize":"20px","h6FontSize":"16px","lineHeight":"1.3","subHeaderFontSize":"11px","subHeaderFontWeight":"500","h1LetterSpacing":"normal","h2LetterSpacing":"normal","h3LetterSpacing":"normal","h4LetterSpacing":"normal","h5LetterSpacing":"normal","h6LetterSpacing":"normal","subHeaderLetterSpacing":"2px","h1FontWeight":"var(--lia-bs-headings-font-weight)","h2FontWeight":"var(--lia-bs-headings-font-weight)","h3FontWeight":"var(--lia-bs-headings-font-weight)","h4FontWeight":"var(--lia-bs-headings-font-weight)","h5FontWeight":"var(--lia-bs-headings-font-weight)","h6FontWeight":"var(--lia-bs-headings-font-weight)","__typename":"HeadingThemeSettings"},"icons":{"size10":"10px","size12":"12px","size14":"14px","size16":"16px","size20":"20px","size24":"24px","size30":"30px","size40":"40px","size50":"50px","size60":"60px","size80":"80px","size120":"120px","size160":"160px","__typename":"IconsThemeSettings"},"imagePreview":{"bgColor":"var(--lia-bs-gray-900)","titleColor":"var(--lia-bs-white)","controlColor":"var(--lia-bs-white)","controlBgColor":"var(--lia-bs-gray-800)","__typename":"ImagePreviewThemeSettings"},"input":{"borderColor":"var(--lia-bs-gray-600)","disabledColor":"var(--lia-bs-gray-600)","focusBorderColor":"var(--lia-bs-primary)","labelMarginBottom":"10px","btnFontSize":"var(--lia-bs-font-size-sm)","focusBoxShadow":"0 0 0 3px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","checkLabelMarginBottom":"2px","checkboxBorderRadius":"3px","borderRadiusSm":"var(--lia-bs-border-radius-sm)","borderRadius":"var(--lia-bs-border-radius)","borderRadiusLg":"var(--lia-bs-border-radius-lg)","formTextMarginTop":"4px","textAreaBorderRadius":"var(--lia-bs-border-radius)","activeFillColor":"var(--lia-bs-primary)","__typename":"InputThemeSettings"},"loading":{"dotDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.2)","dotLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.5)","barDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.06)","barLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.4)","__typename":"LoadingThemeSettings"},"link":{"color":"var(--lia-bs-primary)","hoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) - 10%))","decoration":"none","hoverDecoration":"underline","__typename":"LinkThemeSettings"},"listGroup":{"itemPaddingY":"15px","itemPaddingX":"15px","borderColor":"var(--lia-bs-gray-300)","__typename":"ListGroupThemeSettings"},"modal":{"contentTextColor":"var(--lia-bs-body-color)","contentBg":"var(--lia-bs-white)","backgroundBg":"var(--lia-bs-black)","smSize":"440px","mdSize":"760px","lgSize":"1080px","backdropOpacity":0.3,"contentBoxShadowXs":"var(--lia-bs-box-shadow-sm)","contentBoxShadow":"var(--lia-bs-box-shadow)","headerFontWeight":"700","__typename":"ModalThemeSettings"},"navbar":{"position":"FIXED","background":{"attachment":null,"clip":null,"color":"var(--lia-bs-white)","imageAssetName":"","imageLastModified":"0","origin":null,"position":"CENTER_CENTER","repeat":"NO_REPEAT","size":"COVER","__typename":"BackgroundProps"},"backgroundOpacity":0.8,"paddingTop":"15px","paddingBottom":"15px","borderBottom":"1px solid var(--lia-bs-border-color)","boxShadow":"var(--lia-bs-box-shadow-sm)","brandMarginRight":"30px","brandMarginRightSm":"10px","brandLogoHeight":"30px","linkGap":"10px","linkJustifyContent":"flex-start","linkPaddingY":"5px","linkPaddingX":"10px","linkDropdownPaddingY":"9px","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkColor":"var(--lia-bs-body-color)","linkHoverColor":"var(--lia-bs-primary)","linkFontSize":"var(--lia-bs-font-size-sm)","linkFontStyle":"NORMAL","linkFontWeight":"400","linkTextTransform":"NONE","linkLetterSpacing":"normal","linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkBgColor":"transparent","linkBgHoverColor":"transparent","linkBorder":"none","linkBorderHover":"none","linkBoxShadow":"none","linkBoxShadowHover":"none","linkTextBorderBottom":"none","linkTextBorderBottomHover":"none","dropdownPaddingTop":"10px","dropdownPaddingBottom":"15px","dropdownPaddingX":"10px","dropdownMenuOffset":"2px","dropdownDividerMarginTop":"10px","dropdownDividerMarginBottom":"10px","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","controllerIconColor":"var(--lia-bs-body-color)","controllerIconHoverColor":"var(--lia-bs-body-color)","controllerTextColor":"var(--lia-nav-controller-icon-color)","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","controllerHighlightColor":"hsla(30, 100%, 50%)","controllerHighlightTextColor":"var(--lia-yiq-light)","controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerColor":"var(--lia-nav-controller-icon-color)","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","hamburgerBgColor":"transparent","hamburgerBgHoverColor":"transparent","hamburgerBorder":"none","hamburgerBorderHover":"none","collapseMenuMarginLeft":"20px","collapseMenuDividerBg":"var(--lia-nav-link-color)","collapseMenuDividerOpacity":0.16,"__typename":"NavbarThemeSettings"},"pager":{"textColor":"var(--lia-bs-link-color)","textFontWeight":"var(--lia-font-weight-md)","textFontSize":"var(--lia-bs-font-size-sm)","__typename":"PagerThemeSettings"},"panel":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-bs-border-radius)","borderColor":"var(--lia-bs-border-color)","boxShadow":"none","__typename":"PanelThemeSettings"},"popover":{"arrowHeight":"8px","arrowWidth":"16px","maxWidth":"300px","minWidth":"100px","headerBg":"var(--lia-bs-white)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius)","boxShadow":"0 0.5rem 1rem hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.15)","__typename":"PopoverThemeSettings"},"prism":{"color":"#000000","bgColor":"#f5f2f0","fontFamily":"var(--font-family-monospace)","fontSize":"var(--lia-bs-font-size-base)","fontWeightBold":"var(--lia-bs-font-weight-bold)","fontStyleItalic":"italic","tabSize":2,"highlightColor":"#b3d4fc","commentColor":"#62707e","punctuationColor":"#6f6f6f","namespaceOpacity":"0.7","propColor":"#990055","selectorColor":"#517a00","operatorColor":"#906736","operatorBgColor":"hsla(0, 0%, 100%, 0.5)","keywordColor":"#0076a9","functionColor":"#d3284b","variableColor":"#c14700","__typename":"PrismThemeSettings"},"rte":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":" var(--lia-panel-box-shadow)","customColor1":"#bfedd2","customColor2":"#fbeeb8","customColor3":"#f8cac6","customColor4":"#eccafa","customColor5":"#c2e0f4","customColor6":"#2dc26b","customColor7":"#f1c40f","customColor8":"#e03e2d","customColor9":"#b96ad9","customColor10":"#3598db","customColor11":"#169179","customColor12":"#e67e23","customColor13":"#ba372a","customColor14":"#843fa1","customColor15":"#236fa1","customColor16":"#ecf0f1","customColor17":"#ced4d9","customColor18":"#95a5a6","customColor19":"#7e8c8d","customColor20":"#34495e","customColor21":"#000000","customColor22":"#ffffff","defaultMessageHeaderMarginTop":"40px","defaultMessageHeaderMarginBottom":"20px","defaultMessageItemMarginTop":"0","defaultMessageItemMarginBottom":"10px","diffAddedColor":"hsla(170, 53%, 51%, 0.4)","diffChangedColor":"hsla(43, 97%, 63%, 0.4)","diffNoneColor":"hsla(0, 0%, 80%, 0.4)","diffRemovedColor":"hsla(9, 74%, 47%, 0.4)","specialMessageHeaderMarginTop":"40px","specialMessageHeaderMarginBottom":"20px","specialMessageItemMarginTop":"0","specialMessageItemMarginBottom":"10px","__typename":"RteThemeSettings"},"tags":{"bgColor":"var(--lia-bs-gray-200)","bgHoverColor":"var(--lia-bs-gray-400)","borderRadius":"var(--lia-bs-border-radius-sm)","color":"var(--lia-bs-body-color)","hoverColor":"var(--lia-bs-body-color)","fontWeight":"var(--lia-font-weight-md)","fontSize":"var(--lia-font-size-xxs)","textTransform":"UPPERCASE","letterSpacing":"0.5px","__typename":"TagsThemeSettings"},"toasts":{"borderRadius":"var(--lia-bs-border-radius)","paddingX":"12px","__typename":"ToastsThemeSettings"},"typography":{"fontFamilyBase":"Segoe UI","fontStyleBase":"NORMAL","fontWeightBase":"400","fontWeightLight":"300","fontWeightNormal":"400","fontWeightMd":"500","fontWeightBold":"700","letterSpacingSm":"normal","letterSpacingXs":"normal","lineHeightBase":"1.5","fontSizeBase":"16px","fontSizeXxs":"11px","fontSizeXs":"12px","fontSizeSm":"14px","fontSizeLg":"20px","fontSizeXl":"24px","smallFontSize":"14px","customFonts":[{"source":"SERVER","name":"Segoe UI","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"},{"style":"NORMAL","weight":"300","__typename":"FontStyleData"},{"style":"NORMAL","weight":"600","__typename":"FontStyleData"},{"style":"NORMAL","weight":"700","__typename":"FontStyleData"},{"style":"ITALIC","weight":"400","__typename":"FontStyleData"}],"assetNames":["SegoeUI-normal-400.woff2","SegoeUI-normal-300.woff2","SegoeUI-normal-600.woff2","SegoeUI-normal-700.woff2","SegoeUI-italic-400.woff2"],"__typename":"CustomFont"},{"source":"SERVER","name":"MWF Fluent Icons","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"}],"assetNames":["MWFFluentIcons-normal-400.woff2"],"__typename":"CustomFont"}],"__typename":"TypographyThemeSettings"},"unstyledListItem":{"marginBottomSm":"5px","marginBottomMd":"10px","marginBottomLg":"15px","marginBottomXl":"20px","marginBottomXxl":"25px","__typename":"UnstyledListItemThemeSettings"},"yiq":{"light":"#ffffff","dark":"#000000","__typename":"YiqThemeSettings"},"colorLightness":{"primaryDark":0.36,"primaryLight":0.74,"primaryLighter":0.89,"primaryLightest":0.95,"infoDark":0.39,"infoLight":0.72,"infoLighter":0.85,"infoLightest":0.93,"successDark":0.24,"successLight":0.62,"successLighter":0.8,"successLightest":0.91,"warningDark":0.39,"warningLight":0.68,"warningLighter":0.84,"warningLightest":0.93,"dangerDark":0.41,"dangerLight":0.72,"dangerLighter":0.89,"dangerLightest":0.95,"__typename":"ColorLightnessThemeSettings"},"localOverride":false,"__typename":"Theme"},"localOverride":false},"CachedAsset:text:en_US-components/common/EmailVerification-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/common/EmailVerification-1737571274000","value":{"email.verification.title":"Email Verification Required","email.verification.message.update.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. To change your email, visit My Settings.","email.verification.message.resend.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. Resend email."},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-1737571274000","value":{"title":"Loading..."},"localOverride":false},"CachedAsset:quilt:o365.prod:pages/blogs/BlogMessagePage:board:Azure-AI-Services-blog-1742463395033":{"__typename":"CachedAsset","id":"quilt:o365.prod:pages/blogs/BlogMessagePage:board:Azure-AI-Services-blog-1742463395033","value":{"id":"BlogMessagePage","container":{"id":"Common","headerProps":{"backgroundImageProps":null,"backgroundColor":null,"addComponents":null,"removeComponents":["community.widget.bannerWidget"],"componentOrder":null,"__typename":"QuiltContainerSectionProps"},"headerComponentProps":{"community.widget.breadcrumbWidget":{"disableLastCrumbForDesktop":false}},"footerProps":null,"footerComponentProps":null,"items":[{"id":"blog-article","layout":"ONE_COLUMN","bgColor":null,"showTitle":null,"showDescription":null,"textPosition":null,"textColor":null,"sectionEditLevel":"LOCKED","bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"OneColumnQuiltSection","columnMap":{"main":[{"id":"blogs.widget.blogArticleWidget","className":"lia-blog-container","props":null,"__typename":"QuiltComponent"}],"__typename":"OneSectionColumns"}},{"id":"section-1729184836777","layout":"MAIN_SIDE","bgColor":"transparent","showTitle":false,"showDescription":false,"textPosition":"CENTER","textColor":"var(--lia-bs-body-color)","sectionEditLevel":null,"bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"MainSideQuiltSection","columnMap":{"main":[],"side":[{"id":"custom.widget.Social_Sharing","className":null,"props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":true,"title":"Share","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"MainSideSectionColumns"}}],"__typename":"QuiltContainer"},"__typename":"Quilt","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-pages/blogs/BlogMessagePage-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-pages/blogs/BlogMessagePage-1737571274000","value":{"title":"{contextMessageSubject} | {communityTitle}","errorMissing":"This blog post cannot be found","name":"Blog Message Page","section.blog-article.title":"Blog Post","archivedMessageTitle":"This Content Has Been Archived","section.section-1729184836777.title":"","section.section-1729184836777.description":"","section.CncIde.title":"Blog Post","section.tifEmD.description":"","section.tifEmD.title":""},"localOverride":false},"CachedAsset:quiltWrapper:o365.prod:Common:1742463214906":{"__typename":"CachedAsset","id":"quiltWrapper:o365.prod:Common:1742463214906","value":{"id":"Common","header":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"community.widget.navbarWidget","props":{"showUserName":true,"showRegisterLink":true,"useIconLanguagePicker":true,"useLabelLanguagePicker":true,"className":"QuiltComponent_lia-component-edit-mode__0nCcm","links":{"sideLinks":[],"mainLinks":[{"children":[],"linkType":"INTERNAL","id":"gxcuf89792","params":{},"routeName":"CommunityPage"},{"children":[],"linkType":"EXTERNAL","id":"external-link","url":"/Directory","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft365","params":{"categoryId":"microsoft365"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-teams","params":{"categoryId":"MicrosoftTeams"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows","params":{"categoryId":"Windows"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-securityand-compliance","params":{"categoryId":"microsoft-security"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"outlook","params":{"categoryId":"Outlook"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"planner","params":{"categoryId":"Planner"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows-server","params":{"categoryId":"Windows-Server"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"azure","params":{"categoryId":"Azure"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"exchange","params":{"categoryId":"Exchange"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-endpoint-manager","params":{"categoryId":"microsoft-endpoint-manager"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-q-l-server","params":{"categoryId":"SQL-Server"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-2","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities","url":"/","target":"BLANK"},{"children":[{"linkType":"INTERNAL","id":"education-sector","params":{"categoryId":"EducationSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"a-i","params":{"categoryId":"AI"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"i-t-ops-talk","params":{"categoryId":"ITOpsTalk"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"partner-community","params":{"categoryId":"PartnerCommunity"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-mechanics","params":{"categoryId":"MicrosoftMechanics"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"healthcare-and-life-sciences","params":{"categoryId":"HealthcareAndLifeSciences"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"public-sector","params":{"categoryId":"PublicSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"io-t","params":{"categoryId":"IoT"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"driving-adoption","params":{"categoryId":"DrivingAdoption"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-m-b","params":{"categoryId":"SMB"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"startupsat-microsoft","params":{"categoryId":"StartupsatMicrosoft"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-1","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities-1","url":"/","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external","url":"/Blogs","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external-1","url":"/Events","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft-learn-1","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-learn-blog","params":{"boardId":"MicrosoftLearnBlog","categoryId":"MicrosoftLearn"},"routeName":"BlogBoardPage"},{"linkType":"EXTERNAL","id":"external-10","url":"https://learningroomdirectory.microsoft.com/","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-3","url":"https://docs.microsoft.com/learn/dynamics365/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-4","url":"https://docs.microsoft.com/learn/m365/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-5","url":"https://docs.microsoft.com/learn/topics/sci/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-6","url":"https://docs.microsoft.com/learn/powerplatform/?wt.mc_id=techcom_header-webpage-powerplatform","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-7","url":"https://docs.microsoft.com/learn/github/?wt.mc_id=techcom_header-webpage-github","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-8","url":"https://docs.microsoft.com/learn/teams/?wt.mc_id=techcom_header-webpage-teams","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-9","url":"https://docs.microsoft.com/learn/dotnet/?wt.mc_id=techcom_header-webpage-dotnet","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-2","url":"https://docs.microsoft.com/learn/azure/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"}],"linkType":"INTERNAL","id":"microsoft-learn","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"children":[],"linkType":"INTERNAL","id":"community-info-center","params":{"categoryId":"Community-Info-Center"},"routeName":"CategoryPage"}]},"style":{"boxShadow":"var(--lia-bs-box-shadow-sm)","controllerHighlightColor":"hsla(30, 100%, 50%)","linkFontWeight":"400","dropdownDividerMarginBottom":"10px","hamburgerBorderHover":"none","linkBoxShadowHover":"none","linkFontSize":"14px","backgroundOpacity":0.8,"controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerBgColor":"transparent","hamburgerColor":"var(--lia-nav-controller-icon-color)","linkTextBorderBottom":"none","brandLogoHeight":"30px","linkBgHoverColor":"transparent","linkLetterSpacing":"normal","collapseMenuDividerOpacity":0.16,"dropdownPaddingBottom":"15px","paddingBottom":"15px","dropdownMenuOffset":"2px","hamburgerBgHoverColor":"transparent","borderBottom":"1px solid var(--lia-bs-border-color)","hamburgerBorder":"none","dropdownPaddingX":"10px","brandMarginRightSm":"10px","linkBoxShadow":"none","collapseMenuDividerBg":"var(--lia-nav-link-color)","linkColor":"var(--lia-bs-body-color)","linkJustifyContent":"flex-start","dropdownPaddingTop":"10px","controllerHighlightTextColor":"var(--lia-yiq-dark)","controllerTextColor":"var(--lia-nav-controller-icon-color)","background":{"imageAssetName":"","color":"var(--lia-bs-white)","size":"COVER","repeat":"NO_REPEAT","position":"CENTER_CENTER","imageLastModified":""},"linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkHoverColor":"var(--lia-bs-body-color)","position":"FIXED","linkBorder":"none","linkTextBorderBottomHover":"2px solid var(--lia-bs-body-color)","brandMarginRight":"30px","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","linkBorderHover":"none","collapseMenuMarginLeft":"20px","linkFontStyle":"NORMAL","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","linkPaddingX":"10px","linkPaddingY":"5px","paddingTop":"15px","linkTextTransform":"NONE","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","linkBgColor":"transparent","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkDropdownPaddingY":"9px","controllerIconColor":"var(--lia-bs-body-color)","dropdownDividerMarginTop":"10px","linkGap":"10px","controllerIconHoverColor":"var(--lia-bs-body-color)"},"showSearchIcon":false,"languagePickerStyle":"iconAndLabel"},"__typename":"QuiltComponent"},{"id":"community.widget.breadcrumbWidget","props":{"backgroundColor":"transparent","linkHighlightColor":"var(--lia-bs-primary)","visualEffects":{"showBottomBorder":true},"linkTextColor":"var(--lia-bs-gray-700)"},"__typename":"QuiltComponent"},{"id":"custom.widget.community_banner","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"usePageWidth":false,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"},{"id":"custom.widget.HeroBanner","props":{"widgetVisibility":"signedInOrAnonymous","usePageWidth":false,"useTitle":true,"cMax_items":3,"useBackground":false,"title":"","lazyLoad":false,"widgetChooser":"custom.widget.HeroBanner"},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"footer":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"custom.widget.MicrosoftFooter","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"__typename":"QuiltWrapper","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/ActionFeedback-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/common/ActionFeedback-1737571274000","value":{"joinedGroupHub.title":"Welcome","joinedGroupHub.message":"You are now a member of this group and are subscribed to updates.","groupHubInviteNotFound.title":"Invitation Not Found","groupHubInviteNotFound.message":"Sorry, we could not find your invitation to the group. The owner may have canceled the invite.","groupHubNotFound.title":"Group Not Found","groupHubNotFound.message":"The grouphub you tried to join does not exist. It may have been deleted.","existingGroupHubMember.title":"Already Joined","existingGroupHubMember.message":"You are already a member of this group.","accountLocked.title":"Account Locked","accountLocked.message":"Your account has been locked due to multiple failed attempts. Try again in {lockoutTime} minutes.","editedGroupHub.title":"Changes Saved","editedGroupHub.message":"Your group has been updated.","leftGroupHub.title":"Goodbye","leftGroupHub.message":"You are no longer a member of this group and will not receive future updates.","deletedGroupHub.title":"Deleted","deletedGroupHub.message":"The group has been deleted.","groupHubCreated.title":"Group Created","groupHubCreated.message":"{groupHubName} is ready to use","accountClosed.title":"Account Closed","accountClosed.message":"The account has been closed and you will now be redirected to the homepage","resetTokenExpired.title":"Reset Password Link has Expired","resetTokenExpired.message":"Try resetting your password again","invalidUrl.title":"Invalid URL","invalidUrl.message":"The URL you're using is not recognized. Verify your URL and try again.","accountClosedForUser.title":"Account Closed","accountClosedForUser.message":"{userName}'s account is closed","inviteTokenInvalid.title":"Invitation Invalid","inviteTokenInvalid.message":"Your invitation to the community has been canceled or expired.","inviteTokenError.title":"Invitation Verification Failed","inviteTokenError.message":"The url you are utilizing is not recognized. Verify your URL and try again","pageNotFound.title":"Access Denied","pageNotFound.message":"You do not have access to this area of the community or it doesn't exist","eventAttending.title":"Responded as Attending","eventAttending.message":"You'll be notified when there's new activity and reminded as the event approaches","eventInterested.title":"Responded as Interested","eventInterested.message":"You'll be notified when there's new activity and reminded as the event approaches","eventNotFound.title":"Event Not Found","eventNotFound.message":"The event you tried to respond to does not exist.","redirectToRelatedPage.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.message":"The content you are trying to access is archived","redirectToRelatedPage.message":"The content you are trying to access is archived","relatedUrl.archivalLink.flyoutMessage":"The content you are trying to access is archived View Archived Content"},"localOverride":false},"CachedAsset:component:custom.widget.community_banner-en-1742463429946":{"__typename":"CachedAsset","id":"component:custom.widget.community_banner-en-1742463429946","value":{"component":{"id":"custom.widget.community_banner","template":{"id":"community_banner","markupLanguage":"HANDLEBARS","style":".community-banner {\n a.top-bar.btn {\n top: 0px;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0px;\n background: #0068b8;\n color: white;\n padding: 10px 0px;\n display:block;\n box-shadow:none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0px !important;\n font-size:14px;\n }\n}","texts":null,"defaults":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.community_banner","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_community_banner_community-banner_1a5zb_1 {\n a.custom_widget_community_banner_top-bar_1a5zb_2.custom_widget_community_banner_btn_1a5zb_2 {\n top: 0;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0;\n background: #0068b8;\n color: white;\n padding: 0.625rem 0;\n display:block;\n box-shadow:none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0 !important;\n font-size:0.875rem;\n }\n}","tokens":{"community-banner":"custom_widget_community_banner_community-banner_1a5zb_1","top-bar":"custom_widget_community_banner_top-bar_1a5zb_2","btn":"custom_widget_community_banner_btn_1a5zb_2"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.HeroBanner-en-1742463429946":{"__typename":"CachedAsset","id":"component:custom.widget.HeroBanner-en-1742463429946","value":{"component":{"id":"custom.widget.HeroBanner","template":{"id":"HeroBanner","markupLanguage":"REACT","style":null,"texts":{"searchPlaceholderText":"Search this community","followActionText":"Follow","unfollowActionText":"Following","searchOnHoverText":"Please enter your search term(s) and then press return key to complete a search."},"defaults":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.HeroBanner","form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"__typename":"Component","localOverride":false},"globalCss":null,"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"}},"localOverride":false},"CachedAsset:component:custom.widget.Social_Sharing-en-1742463429946":{"__typename":"CachedAsset","id":"component:custom.widget.Social_Sharing-en-1742463429946","value":{"component":{"id":"custom.widget.Social_Sharing","template":{"id":"Social_Sharing","markupLanguage":"HANDLEBARS","style":".social-share {\n .sharing-options {\n position: relative;\n margin: 0;\n padding: 0;\n line-height: 10px;\n display: flex;\n justify-content: left;\n gap: 5px;\n list-style-type: none;\n li {\n text-align: left;\n a {\n min-width: 30px;\n min-height: 30px;\n display: block;\n padding: 1px;\n .social-share-linkedin {\n img {\n background-color: rgb(0, 119, 181);\n }\n }\n .social-share-facebook {\n img {\n background-color: rgb(59, 89, 152);\n }\n }\n .social-share-x {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .social-share-rss {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .social-share-reddit {\n img {\n background-color: rgb(255, 69, 0);\n }\n }\n .social-share-email {\n img {\n background-color: rgb(132, 132, 132);\n }\n }\n }\n a {\n img {\n height: 2rem;\n }\n }\n }\n }\n}\n","texts":null,"defaults":{"config":{"applicablePages":[],"description":"Adds buttons to share to various social media websites","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.Social_Sharing","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"Adds buttons to share to various social media websites","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_Social_Sharing_social-share_c7xxz_1 {\n .custom_widget_Social_Sharing_sharing-options_c7xxz_2 {\n position: relative;\n margin: 0;\n padding: 0;\n line-height: 0.625rem;\n display: flex;\n justify-content: left;\n gap: 0.3125rem;\n list-style-type: none;\n li {\n text-align: left;\n a {\n min-width: 1.875rem;\n min-height: 1.875rem;\n display: block;\n padding: 0.0625rem;\n .custom_widget_Social_Sharing_social-share-linkedin_c7xxz_18 {\n img {\n background-color: rgb(0, 119, 181);\n }\n }\n .custom_widget_Social_Sharing_social-share-facebook_c7xxz_23 {\n img {\n background-color: rgb(59, 89, 152);\n }\n }\n .custom_widget_Social_Sharing_social-share-x_c7xxz_28 {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-rss_c7xxz_33 {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-reddit_c7xxz_38 {\n img {\n background-color: rgb(255, 69, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-email_c7xxz_43 {\n img {\n background-color: rgb(132, 132, 132);\n }\n }\n }\n a {\n img {\n height: 2rem;\n }\n }\n }\n }\n}\n","tokens":{"social-share":"custom_widget_Social_Sharing_social-share_c7xxz_1","sharing-options":"custom_widget_Social_Sharing_sharing-options_c7xxz_2","social-share-linkedin":"custom_widget_Social_Sharing_social-share-linkedin_c7xxz_18","social-share-facebook":"custom_widget_Social_Sharing_social-share-facebook_c7xxz_23","social-share-x":"custom_widget_Social_Sharing_social-share-x_c7xxz_28","social-share-rss":"custom_widget_Social_Sharing_social-share-rss_c7xxz_33","social-share-reddit":"custom_widget_Social_Sharing_social-share-reddit_c7xxz_38","social-share-email":"custom_widget_Social_Sharing_social-share-email_c7xxz_43"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.MicrosoftFooter-en-1742463429946":{"__typename":"CachedAsset","id":"component:custom.widget.MicrosoftFooter-en-1742463429946","value":{"component":{"id":"custom.widget.MicrosoftFooter","template":{"id":"MicrosoftFooter","markupLanguage":"HANDLEBARS","style":".context-uhf {\n min-width: 280px;\n font-size: 15px;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.c-uhff-link {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.c-uhff {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.c-uhff-nav {\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n .c-heading-4 {\n color: #616161;\n word-break: break-word;\n font-size: 15px;\n line-height: 20px;\n padding: 36px 0 4px;\n font-weight: 600;\n }\n .c-uhff-nav-row {\n .c-uhff-nav-group {\n display: block;\n float: left;\n min-height: 1px;\n vertical-align: text-top;\n padding: 0 12px;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.c-list.f-bare {\n font-size: 11px;\n line-height: 16px;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 8px 0;\n margin: 0;\n }\n }\n }\n }\n}\n.c-uhff-base {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 30px 5% 16px;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.c-uhff-ccpa {\n font-size: 11px;\n line-height: 16px;\n float: left;\n margin: 3px 0;\n }\n a.c-uhff-ccpa:hover {\n text-decoration: underline;\n }\n ul.c-list {\n font-size: 11px;\n line-height: 16px;\n float: right;\n margin: 3px 0;\n color: #616161;\n li {\n padding: 0 24px 4px 0;\n display: inline-block;\n }\n }\n .c-list.f-bare {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 30px 24px 16px;\n }\n}\n","texts":{"New tab":"What's New","New 1":"Surface Laptop Studio 2","New 2":"Surface Laptop Go 3","New 3":"Surface Pro 9","New 4":"Surface Laptop 5","New 5":"Surface Studio 2+","New 6":"Copilot in Windows","New 7":"Microsoft 365","New 8":"Windows 11 apps","Store tab":"Microsoft Store","Store 1":"Account Profile","Store 2":"Download Center","Store 3":"Microsoft Store Support","Store 4":"Returns","Store 5":"Order tracking","Store 6":"Certified Refurbished","Store 7":"Microsoft Store Promise","Store 8":"Flexible Payments","Education tab":"Education","Edu 1":"Microsoft in education","Edu 2":"Devices for education","Edu 3":"Microsoft Teams for Education","Edu 4":"Microsoft 365 Education","Edu 5":"How to buy for your school","Edu 6":"Educator Training and development","Edu 7":"Deals for students and parents","Edu 8":"Azure for students","Business tab":"Business","Bus 1":"Microsoft Cloud","Bus 2":"Microsoft Security","Bus 3":"Dynamics 365","Bus 4":"Microsoft 365","Bus 5":"Microsoft Power Platform","Bus 6":"Microsoft Teams","Bus 7":"Microsoft Industry","Bus 8":"Small Business","Developer tab":"Developer & IT","Dev 1":"Azure","Dev 2":"Developer Center","Dev 3":"Documentation","Dev 4":"Microsoft Learn","Dev 5":"Microsoft Tech Community","Dev 6":"Azure Marketplace","Dev 7":"AppSource","Dev 8":"Visual Studio","Company tab":"Company","Com 1":"Careers","Com 2":"About Microsoft","Com 3":"Company News","Com 4":"Privacy at Microsoft","Com 5":"Investors","Com 6":"Diversity and inclusion","Com 7":"Accessiblity","Com 8":"Sustainibility"},"defaults":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.MicrosoftFooter","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_MicrosoftFooter_context-uhf_f95yq_1 {\n min-width: 17.5rem;\n font-size: 0.9375rem;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-link_f95yq_12 {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff_f95yq_12 {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.custom_widget_MicrosoftFooter_c-uhff-nav_f95yq_35 {\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n .custom_widget_MicrosoftFooter_c-heading-4_f95yq_49 {\n color: #616161;\n word-break: break-word;\n font-size: 0.9375rem;\n line-height: 1.25rem;\n padding: 2.25rem 0 0.25rem;\n font-weight: 600;\n }\n .custom_widget_MicrosoftFooter_c-uhff-nav-row_f95yq_57 {\n .custom_widget_MicrosoftFooter_c-uhff-nav-group_f95yq_58 {\n display: block;\n float: left;\n min-height: 0.0625rem;\n vertical-align: text-top;\n padding: 0 0.75rem;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.custom_widget_MicrosoftFooter_c-list_f95yq_78.custom_widget_MicrosoftFooter_f-bare_f95yq_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 0.5rem 0;\n margin: 0;\n }\n }\n }\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff-base_f95yq_94 {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 1.875rem 5% 1rem;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: left;\n margin: 0.1875rem 0;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107:hover {\n text-decoration: underline;\n }\n ul.custom_widget_MicrosoftFooter_c-list_f95yq_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: right;\n margin: 0.1875rem 0;\n color: #616161;\n li {\n padding: 0 1.5rem 0.25rem 0;\n display: inline-block;\n }\n }\n .custom_widget_MicrosoftFooter_c-list_f95yq_78.custom_widget_MicrosoftFooter_f-bare_f95yq_78 {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 1.875rem 1.5rem 1rem;\n }\n}\n","tokens":{"context-uhf":"custom_widget_MicrosoftFooter_context-uhf_f95yq_1","c-uhff-link":"custom_widget_MicrosoftFooter_c-uhff-link_f95yq_12","c-uhff":"custom_widget_MicrosoftFooter_c-uhff_f95yq_12","c-uhff-nav":"custom_widget_MicrosoftFooter_c-uhff-nav_f95yq_35","c-heading-4":"custom_widget_MicrosoftFooter_c-heading-4_f95yq_49","c-uhff-nav-row":"custom_widget_MicrosoftFooter_c-uhff-nav-row_f95yq_57","c-uhff-nav-group":"custom_widget_MicrosoftFooter_c-uhff-nav-group_f95yq_58","c-list":"custom_widget_MicrosoftFooter_c-list_f95yq_78","f-bare":"custom_widget_MicrosoftFooter_f-bare_f95yq_78","c-uhff-base":"custom_widget_MicrosoftFooter_c-uhff-base_f95yq_94","c-uhff-ccpa":"custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107"}},"form":null},"localOverride":false},"CachedAsset:text:en_US-components/community/Breadcrumb-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/community/Breadcrumb-1737571274000","value":{"navLabel":"Breadcrumbs","dropdown":"Additional parent page navigation"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBanner-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBanner-1737571274000","value":{"messageMarkedAsSpam":"This post has been marked as spam","messageMarkedAsSpam@board:TKB":"This article has been marked as spam","messageMarkedAsSpam@board:BLOG":"This post has been marked as spam","messageMarkedAsSpam@board:FORUM":"This discussion has been marked as spam","messageMarkedAsSpam@board:OCCASION":"This event has been marked as spam","messageMarkedAsSpam@board:IDEA":"This idea has been marked as spam","manageSpam":"Manage Spam","messageMarkedAsAbuse":"This post has been marked as abuse","messageMarkedAsAbuse@board:TKB":"This article has been marked as abuse","messageMarkedAsAbuse@board:BLOG":"This post has been marked as abuse","messageMarkedAsAbuse@board:FORUM":"This discussion has been marked as abuse","messageMarkedAsAbuse@board:OCCASION":"This event has been marked as abuse","messageMarkedAsAbuse@board:IDEA":"This idea has been marked as abuse","preModCommentAuthorText":"This comment will be published as soon as it is approved","preModCommentModeratorText":"This comment is awaiting moderation","messageMarkedAsOther":"This post has been rejected due to other reasons","messageMarkedAsOther@board:TKB":"This article has been rejected due to other reasons","messageMarkedAsOther@board:BLOG":"This post has been rejected due to other reasons","messageMarkedAsOther@board:FORUM":"This discussion has been rejected due to other reasons","messageMarkedAsOther@board:OCCASION":"This event has been rejected due to other reasons","messageMarkedAsOther@board:IDEA":"This idea has been rejected due to other reasons","messageArchived":"This post was archived on {date}","relatedUrl":"View Related Content","relatedContentText":"Showing related content","archivedContentLink":"View Archived Content"},"localOverride":false},"Category:category:Exchange":{"__typename":"Category","id":"category:Exchange","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Planner":{"__typename":"Category","id":"category:Planner","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Outlook":{"__typename":"Category","id":"category:Outlook","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Community-Info-Center":{"__typename":"Category","id":"category:Community-Info-Center","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:EducationSector":{"__typename":"Category","id":"category:EducationSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:DrivingAdoption":{"__typename":"Category","id":"category:DrivingAdoption","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Azure":{"__typename":"Category","id":"category:Azure","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows-Server":{"__typename":"Category","id":"category:Windows-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:SQL-Server":{"__typename":"Category","id":"category:SQL-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftTeams":{"__typename":"Category","id":"category:MicrosoftTeams","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PublicSector":{"__typename":"Category","id":"category:PublicSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft365":{"__typename":"Category","id":"category:microsoft365","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:IoT":{"__typename":"Category","id":"category:IoT","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:HealthcareAndLifeSciences":{"__typename":"Category","id":"category:HealthcareAndLifeSciences","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:SMB":{"__typename":"Category","id":"category:SMB","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:ITOpsTalk":{"__typename":"Category","id":"category:ITOpsTalk","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-endpoint-manager":{"__typename":"Category","id":"category:microsoft-endpoint-manager","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftLearn":{"__typename":"Category","id":"category:MicrosoftLearn","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Blog:board:MicrosoftLearnBlog":{"__typename":"Blog","id":"board:MicrosoftLearnBlog","blogPolicies":{"__typename":"BlogPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}},"boardPolicies":{"__typename":"BoardPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftMechanics":{"__typename":"Category","id":"category:MicrosoftMechanics","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:StartupsatMicrosoft":{"__typename":"Category","id":"category:StartupsatMicrosoft","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PartnerCommunity":{"__typename":"Category","id":"category:PartnerCommunity","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows":{"__typename":"Category","id":"category:Windows","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-security":{"__typename":"Category","id":"category:microsoft-security","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"QueryVariables:TopicReplyList:message:3901448:4":{"__typename":"QueryVariables","id":"TopicReplyList:message:3901448:4","value":{"id":"message:3901448","first":10,"sorts":{"postTime":{"direction":"DESC"}},"repliesFirst":3,"repliesFirstDepthThree":1,"repliesSorts":{"postTime":{"direction":"DESC"}},"useAvatar":true,"useAuthorLogin":true,"useAuthorRank":true,"useBody":true,"useKudosCount":true,"useTimeToRead":false,"useMedia":false,"useReadOnlyIcon":false,"useRepliesCount":true,"useSearchSnippet":false,"useAcceptedSolutionButton":false,"useSolvedBadge":false,"useAttachments":false,"attachmentsFirst":5,"useTags":true,"useNodeAncestors":false,"useUserHoverCard":false,"useNodeHoverCard":false,"useModerationStatus":true,"usePreviewSubjectModal":false,"useMessageStatus":true}},"ROOT_MUTATION":{"__typename":"Mutation"},"CachedAsset:text:en_US-components/community/Navbar-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/community/Navbar-1737571274000","value":{"community":"Community Home","inbox":"Inbox","manageContent":"Manage Content","tos":"Terms of Service","forgotPassword":"Forgot Password","themeEditor":"Theme Editor","edit":"Edit Navigation Bar","skipContent":"Skip to content","gxcuf89792":"Tech Community","external-1":"Events","s-m-b":"Small and Medium Businesses","windows-server":"Windows Server","education-sector":"Education Sector","driving-adoption":"Driving Adoption","microsoft-learn":"Microsoft Learn","s-q-l-server":"SQL Server","partner-community":"Microsoft Partner Community","microsoft365":"Microsoft 365","external-9":".NET","external-8":"Teams","external-7":"Github","products-services":"Products","external-6":"Power Platform","communities-1":"Topics","external-5":"Microsoft Security","planner":"Planner","external-4":"Microsoft 365","external-3":"Dynamics 365","azure":"Azure","healthcare-and-life-sciences":"Healthcare and Life Sciences","external-2":"Azure","microsoft-mechanics":"Microsoft Mechanics","microsoft-learn-1":"Community","external-10":"Learning Room Directory","microsoft-learn-blog":"Blog","windows":"Windows","i-t-ops-talk":"ITOps Talk","external-link-1":"View All","microsoft-securityand-compliance":"Microsoft Security","public-sector":"Public Sector","community-info-center":"Lounge","external-link-2":"View All","microsoft-teams":"Microsoft Teams","external":"Blogs","microsoft-endpoint-manager":"Microsoft Intune and Configuration Manager","startupsat-microsoft":"Startups at Microsoft","exchange":"Exchange","a-i":"AI and Machine Learning","io-t":"Internet of Things (IoT)","outlook":"Outlook","external-link":"Community Hubs","communities":"Products"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarHamburgerDropdown-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarHamburgerDropdown-1737571274000","value":{"hamburgerLabel":"Side Menu"},"localOverride":false},"CachedAsset:text:en_US-components/community/BrandLogo-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/community/BrandLogo-1737571274000","value":{"logoAlt":"Khoros","themeLogoAlt":"Brand Logo"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarTextLinks-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarTextLinks-1737571274000","value":{"more":"More"},"localOverride":false},"CachedAsset:text:en_US-components/authentication/AuthenticationLink-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/authentication/AuthenticationLink-1737571274000","value":{"title.login":"Sign In","title.registration":"Register","title.forgotPassword":"Forgot Password","title.multiAuthLogin":"Sign In"},"localOverride":false},"CachedAsset:text:en_US-components/nodes/NodeLink-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/nodes/NodeLink-1737571274000","value":{"place":"Place {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageView/MessageViewStandard-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageView/MessageViewStandard-1737571274000","value":{"anonymous":"Anonymous","author":"{messageAuthorLogin}","authorBy":"{messageAuthorLogin}","board":"{messageBoardTitle}","replyToUser":" to {parentAuthor}","showMoreReplies":"Show More","replyText":"Reply","repliesText":"Replies","markedAsSolved":"Marked as Solved","movedMessagePlaceholder.BLOG":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.TKB":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.FORUM":"{count, plural, =0 {This reply has been} other {These replies have been} }","movedMessagePlaceholder.IDEA":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.OCCASION":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholderUrlText":"moved.","messageStatus":"Status: ","statusChanged":"Status changed: {previousStatus} to {currentStatus}","statusAdded":"Status added: {status}","statusRemoved":"Status removed: {status}","labelExpand":"expand replies","labelCollapse":"collapse replies","unhelpfulReason.reason1":"Content is outdated","unhelpfulReason.reason2":"Article is missing information","unhelpfulReason.reason3":"Content is for a different Product","unhelpfulReason.reason4":"Doesn't match what I was searching for"},"localOverride":false},"CachedAsset:text:en_US-components/messages/ThreadedReplyList-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/ThreadedReplyList-1737571274000","value":{"title":"{count, plural, one{# Reply} other{# Replies}}","title@board:BLOG":"{count, plural, one{# Comment} other{# Comments}}","title@board:TKB":"{count, plural, one{# Comment} other{# Comments}}","title@board:IDEA":"{count, plural, one{# Comment} other{# Comments}}","title@board:OCCASION":"{count, plural, one{# Comment} other{# Comments}}","noRepliesTitle":"No Replies","noRepliesTitle@board:BLOG":"No Comments","noRepliesTitle@board:TKB":"No Comments","noRepliesTitle@board:IDEA":"No Comments","noRepliesTitle@board:OCCASION":"No Comments","noRepliesDescription":"Be the first to reply","noRepliesDescription@board:BLOG":"Be the first to comment","noRepliesDescription@board:TKB":"Be the first to comment","noRepliesDescription@board:IDEA":"Be the first to comment","noRepliesDescription@board:OCCASION":"Be the first to comment","messageReadOnlyAlert:BLOG":"Comments have been turned off for this post","messageReadOnlyAlert:TKB":"Comments have been turned off for this article","messageReadOnlyAlert:IDEA":"Comments have been turned off for this idea","messageReadOnlyAlert:FORUM":"Replies have been turned off for this discussion","messageReadOnlyAlert:OCCASION":"Comments have been turned off for this event"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyCallToAction-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyCallToAction-1737571274000","value":{"leaveReply":"Leave a reply...","leaveReply@board:BLOG@message:root":"Leave a comment...","leaveReply@board:TKB@message:root":"Leave a comment...","leaveReply@board:IDEA@message:root":"Leave a comment...","leaveReply@board:OCCASION@message:root":"Leave a comment...","repliesTurnedOff.FORUM":"Replies are turned off for this topic","repliesTurnedOff.BLOG":"Comments are turned off for this topic","repliesTurnedOff.TKB":"Comments are turned off for this topic","repliesTurnedOff.IDEA":"Comments are turned off for this topic","repliesTurnedOff.OCCASION":"Comments are turned off for this topic","infoText":"Stop poking me!"},"localOverride":false},"Rank:rank:37":{"__typename":"Rank","id":"rank:37","position":18,"name":"Copper Contributor","color":"333333","icon":null,"rankStyle":"TEXT"},"User:user:2330589":{"__typename":"User","id":"user:2330589","uid":2330589,"login":"aradhana1285","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-02-25T18:53:03.346-08:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-4.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2330589"},"ModerationData:moderation_data:4066974":{"__typename":"ModerationData","id":"moderation_data:4066974","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4066974":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2330589"},"id":"message:4066974","revisionNum":1,"uid":4066974,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:4066974"},"body":"

Hi gia_mondragon  ,

Thanks for this wonderful article. I have one question though 

ector_store_address: str = \"YOUR_AZURE_SEARCH_ENDPOINT\"\nvector_store_password: str = \"YOUR_AZURE_SEARCH_ADMIN_KEY\"

If I have to use service principal to connect to search service how will I give that parameter in langchain Azure search ?I can not get vector store password. Basically I want something equivalent of 

ClientSecretCredential(tenant_id=tenant_id, client_id=client_id, client_secret=client_secret)

 

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"218","kudosSumWeight":0,"repliesCount":0,"postTime":"2024-02-25T18:56:33.260-08:00","lastPublishTime":"2024-02-25T18:56:33.260-08:00","metrics":{"__typename":"MessageMetrics","views":11653},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:4066974","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"ModerationData:moderation_data:4008446":{"__typename":"ModerationData","id":"moderation_data:4008446","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4008446":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:271474"},"id":"message:4008446","revisionNum":1,"uid":4008446,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:4008446"},"body":"

Hello Harshal1410 Thanks. Do you mean using other indexes built on those platforms and use AI Search as the engine? If that is the question, no, Azure AI search only works with Azure AI Search native index. You can push any data from any of those sources building your own indexer and using the Push API to get the data on an Azure AI Search index though: Data import and data ingestion - Azure AI Search | Microsoft Learn. If you are talking about Azure hosting other vector stores, you can see availability in the Marketplace accordingly: Microsoft Azure Marketplace. I hope this helps.

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"213","kudosSumWeight":0,"repliesCount":0,"postTime":"2023-12-13T16:32:27.812-08:00","lastPublishTime":"2023-12-13T16:32:27.812-08:00","metrics":{"__typename":"MessageMetrics","views":17044},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:4008446","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:2198712":{"__typename":"User","id":"user:2198712","uid":2198712,"login":"Harshal1410","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2023-12-12T22:32:33.199-08:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-12.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2198712"},"ModerationData:moderation_data:4007383":{"__typename":"ModerationData","id":"moderation_data:4007383","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4007383":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2198712"},"id":"message:4007383","revisionNum":1,"uid":4007383,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:4007383"},"body":"

gia_mondragonThank you for this wonderful article.

 

I wanted to know if there is any way to use third party vector databases such as weaviate, qdrant, pinecone etc withing Azure to store the vectorized embeddings along with Azure Search.

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"208","kudosSumWeight":0,"repliesCount":0,"postTime":"2023-12-12T22:35:54.670-08:00","lastPublishTime":"2023-12-12T22:35:54.670-08:00","metrics":{"__typename":"MessageMetrics","views":17141},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:4007383","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"ModerationData:moderation_data:3992522":{"__typename":"ModerationData","id":"moderation_data:3992522","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3992522":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:271474"},"id":"message:3992522","revisionNum":2,"uid":3992522,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:3992522"},"body":"

JyotirmoyDevops wherever you are calling the index, you need to make sure is the same you set in this step:

\n

 

\n
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1)\nindex_name: str = \"langchain-vector-demo\"\nvector_store: AzureSearch = AzureSearch(\n    azure_search_endpoint=vector_store_address,\n    azure_search_key=vector_store_password,\n    index_name=index_name,\n    embedding_function=embeddings.embed_query,\n)
\n

In this case it's called \"langchain-vector-demo\", but the name you gave it should be the one to call when interacting from a chatbot to get the answers.

\n

 

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"213","kudosSumWeight":0,"repliesCount":0,"postTime":"2023-11-26T17:13:36.239-08:00","lastPublishTime":"2023-11-26T17:14:28.030-08:00","metrics":{"__typename":"MessageMetrics","views":18841},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:3992522","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:2165856":{"__typename":"User","id":"user:2165856","uid":2165856,"login":"JyotirmoyDevops","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2023-11-24T20:10:00.984-08:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-8.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2165856"},"ModerationData:moderation_data:3991900":{"__typename":"ModerationData","id":"moderation_data:3991900","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3991900":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2165856"},"id":"message:3991900","revisionNum":1,"uid":3991900,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:3991900"},"body":"

Thank you for sharing this awesome article, I was able to create a local setup, how can I productionize this setup

 

I was able to setup a azure function app to store to azure cognitive search

 

I have a second function app to respond with questions

 

However I am having a hard time sending the correct index for the releavant document. How can I ensure when I am chatting I am using the right index

 

thanks

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"213","kudosSumWeight":1,"repliesCount":0,"postTime":"2023-11-24T20:14:02.922-08:00","lastPublishTime":"2023-11-24T20:14:02.922-08:00","metrics":{"__typename":"MessageMetrics","views":18953},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:3991900","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:2097233":{"__typename":"User","id":"user:2097233","uid":2097233,"login":"ElliotWoodLAB3","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2023-10-22T23:29:01.754-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-12.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2097233"},"ModerationData:moderation_data:3961397":{"__typename":"ModerationData","id":"moderation_data:3961397","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3961397":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2097233"},"id":"message:3961397","revisionNum":1,"uid":3961397,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:3961397"},"body":"

Hi gia_mondragon 
Is it possible to use the AzureSearch as a vector store with Security Trimming and or filters? Security filters for trimming results - Azure Cognitive Search | Microsoft Learn

Or, would it have to be first used a AzureSearch function tool, then the security trimmed results stored in a temp vector DB for questions by the user? 

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"218","kudosSumWeight":0,"repliesCount":0,"postTime":"2023-10-22T23:33:52.115-07:00","lastPublishTime":"2023-10-22T23:33:52.115-07:00","metrics":{"__typename":"MessageMetrics","views":22657},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:3961397","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"ModerationData:moderation_data:3947500":{"__typename":"ModerationData","id":"moderation_data:3947500","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3947500":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:271474"},"id":"message:3947500","revisionNum":1,"uid":3947500,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:3947500"},"body":"

Hello Daniel Gil, yes, it is valid with any index, no matter if you pushed the data directly to it or using any built-in connector or partner connector: Data sources gallery - Azure Cognitive Search | Microsoft Learn. If you're using any built-in connector, including the ones in preview, if you'd like to vectorize the data through the skillset through the skillset pipeline (Skillset concepts - Azure Cognitive Search | Microsoft Learn), you can check this example: https://github.com/Azure/cognitive-search-vector-pr/blob/main/demo-python/code/azure-search-vector-ingestion-python-sample.ipynb. This is an end to end sample, that works as a workaround while chunking and vectorization is supported natively as skills (soon) as part of the pipeline.

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"218","kudosSumWeight":1,"repliesCount":0,"postTime":"2023-10-06T07:37:27.386-07:00","lastPublishTime":"2023-10-06T07:37:27.386-07:00","metrics":{"__typename":"MessageMetrics","views":24559},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:3947500","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:34543":{"__typename":"User","id":"user:34543","uid":34543,"login":"Daniel Gil","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2016-12-20T04:44:19.602-08:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-6.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:34543"},"ModerationData:moderation_data:3947247":{"__typename":"ModerationData","id":"moderation_data:3947247","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3947247":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:34543"},"id":"message:3947247","revisionNum":1,"uid":3947247,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:3947247"},"body":"

Hi.
Is this approach valid using Azure Cognitive Search with the new Sharepoint indexer?
Thanks 
Daniel

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"113","kudosSumWeight":0,"repliesCount":0,"postTime":"2023-10-06T03:08:52.145-07:00","lastPublishTime":"2023-10-06T03:08:52.145-07:00","metrics":{"__typename":"MessageMetrics","views":24594},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:3947247","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"ModerationData:moderation_data:3941381":{"__typename":"ModerationData","id":"moderation_data:3941381","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3941381":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:271474"},"id":"message:3941381","revisionNum":1,"uid":3941381,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:3941381"},"body":"

Hello andreaslanderer, please accept our apologies but this is currently only supported in the Python version of Langchain. Supporting this in another language on the Langchain end will depend on the demand accordingly.

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"213","kudosSumWeight":0,"repliesCount":0,"postTime":"2023-09-28T14:51:04.892-07:00","lastPublishTime":"2023-09-28T14:51:04.892-07:00","metrics":{"__typename":"MessageMetrics","views":25496},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:3941381","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:2046747":{"__typename":"User","id":"user:2046747","uid":2046747,"login":"andreaslanderer","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2023-09-25T04:50:01.931-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-3.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2046747"},"ModerationData:moderation_data:3936921":{"__typename":"ModerationData","id":"moderation_data:3936921","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3936921":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2046747"},"id":"message:3936921","revisionNum":1,"uid":3936921,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:3901448"},"conversation":{"__ref":"Conversation:conversation:3901448"},"subject":"Re: Azure Cognitive Search and LangChain: A Seamless Integration for Enhanced Vector Search Capabili","moderationData":{"__ref":"ModerationData:moderation_data:3936921"},"body":"

Hello gia_mondragon 
do you know if Azure cognitive search is already supported in the JavaScript version of Langchain?
I don't see any information how to integrate with Cognitive Search.

Best regards,

Andreas

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"213","kudosSumWeight":0,"repliesCount":0,"postTime":"2023-09-25T04:53:39.705-07:00","lastPublishTime":"2023-09-25T04:53:39.705-07:00","metrics":{"__typename":"MessageMetrics","views":26163},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:3901448/message:3936921","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarDropdownToggle-1737571274000","value":{"ariaLabelClosed":"Press the down arrow to open the menu"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/QueryHandler-1737571274000","value":{"title":"Query Handler"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCoverImage-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCoverImage-1737571274000","value":{"coverImageTitle":"Cover Image"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeTitle-1737571274000","value":{"nodeTitle":"{nodeTitle, select, community {Community} other {{nodeTitle}}} "},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTimeToRead-1737571274000","value":{"minReadText":"{min} MIN READ"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageSubject-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageSubject-1737571274000","value":{"noSubject":"(no subject)"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserLink-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserLink-1737571274000","value":{"authorName":"View Profile: {author}","anonymous":"Anonymous"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserRank-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserRank-1737571274000","value":{"rankName":"{rankName}","userRank":"Author rank {rankName}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTime-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTime-1737571274000","value":{"postTime":"Published: {time}","lastPublishTime":"Last Update: {time}","conversation.lastPostingActivityTime":"Last posting activity time: {time}","conversation.lastPostTime":"Last post time: {time}","moderationData.rejectTime":"Rejected time: {time}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBody-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBody-1737571274000","value":{"showMessageBody":"Show More","mentionsErrorTitle":"{mentionsType, select, board {Board} user {User} message {Message} other {}} No Longer Available","mentionsErrorMessage":"The {mentionsType} you are trying to view has been removed from the community.","videoProcessing":"Video is being processed. Please try again in a few minutes.","bannerTitle":"Video provider requires cookies to play the video. Accept to continue or {url} it directly on the provider's site.","buttonTitle":"Accept","urlText":"watch"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCustomFields-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCustomFields-1737571274000","value":{"CustomField.default.label":"Value of {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageRevision-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageRevision-1737571274000","value":{"lastUpdatedDatePublished":"{publishCount, plural, one{Published} other{Updated}} {date}","lastUpdatedDateDraft":"Created {date}","version":"Version {major}.{minor}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyButton-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyButton-1737571274000","value":{"repliesCount":"{count}","title":"Reply","title@board:BLOG@message:root":"Comment","title@board:TKB@message:root":"Comment","title@board:IDEA@message:root":"Comment","title@board:OCCASION@message:root":"Comment"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageAuthorBio-1737571274000","value":{"sendMessage":"Send Message","actionMessage":"Follow this blog board to get notified when there's new activity","coAuthor":"CO-PUBLISHER","contributor":"CONTRIBUTOR","userProfile":"View Profile","iconlink":"Go to {name} {type}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserAvatar-1737571274000","value":{"altText":"{login}'s avatar","altTextGeneric":"User's avatar"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/ranks/UserRankLabel-1737571274000","value":{"altTitle":"Icon for {rankName} rank"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserRegistrationDate-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserRegistrationDate-1737571274000","value":{"noPrefix":"{date}","withPrefix":"Joined {date}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeAvatar-1737571274000","value":{"altTitle":"Node avatar for {nodeTitle}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeDescription-1737571274000","value":{"description":"{description}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Pager/PagerLoadMorePreviousNextLinkable-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Pager/PagerLoadMorePreviousNextLinkable-1737571274000","value":{"loadMore":"Show More"},"localOverride":false},"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-components/tags/TagView/TagViewChip-1737571274000","value":{"tagLabelName":"Tag name {tagName}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1737571274000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeIcon-1737571274000","value":{"contentType":"Content Type {style, select, FORUM {Forum} BLOG {Blog} TKB {Knowledge Base} IDEA {Ideas} OCCASION {Events} other {}} icon"},"localOverride":false}}}},"page":"/blogs/BlogMessagePage/BlogMessagePage","query":{"boardId":"azure-ai-services-blog","messageSubject":"azure-cognitive-search-and-langchain-a-seamless-integration-for-enhanced-vector-","messageId":"3901448"},"buildId":"HEhyUrv5OXNBIbfCLaOrw","runtimeConfig":{"buildInformationVisible":false,"logLevelApp":"info","logLevelMetrics":"info","openTelemetryClientEnabled":false,"openTelemetryConfigName":"o365","openTelemetryServiceVersion":"25.1.0","openTelemetryUniverse":"prod","openTelemetryCollector":"http://localhost:4318","openTelemetryRouteChangeAllowedTime":"5000","apolloDevToolsEnabled":false,"inboxMuteWipFeatureEnabled":false},"isFallback":false,"isExperimentalCompile":false,"dynamicIds":["./components/community/Navbar/NavbarWidget.tsx","./components/community/Breadcrumb/BreadcrumbWidget.tsx","./components/customComponent/CustomComponent/CustomComponent.tsx","./components/blogs/BlogArticleWidget/BlogArticleWidget.tsx","./components/external/components/ExternalComponent.tsx","./components/messages/MessageView/MessageViewStandard/MessageViewStandard.tsx","./components/messages/ThreadedReplyList/ThreadedReplyList.tsx","../shared/client/components/common/List/UnstyledList/UnstyledList.tsx","./components/messages/MessageView/MessageView.tsx","../shared/client/components/common/Pager/PagerLoadMorePreviousNextLinkable/PagerLoadMorePreviousNextLinkable.tsx","../shared/client/components/common/List/UnwrappedList/UnwrappedList.tsx","./components/tags/TagView/TagView.tsx","./components/tags/TagView/TagViewChip/TagViewChip.tsx"],"appGip":true,"scriptLoader":[{"id":"analytics","src":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/pagescripts/1730819800000/analytics.js?page.id=BlogMessagePage&entity.id=board%3Aazure-ai-services-blog&entity.id=message%3A3901448","strategy":"afterInteractive"}]}