First published on MSDN on Mar 30, 2017
The
The first couple of layers of the NET# definition for AlexNet look something like this:
After downloading the 10 zip files, use the following code to extract them and create the actual
The trick here is to use any data as long as it conforms to the input shape and then train the model for 0 iterations to create the model. To enable GPU acceleration, please refer to an earlier blog .
Besides the differences mentioned in the Caffe AlexNet implementation, another difference is that
The
rxNeuralNet
model in
MicrosoftML
package supports custom neural networks defined using the
NET#
language. We can use the
NET#
language to define a
convolutional neural network
. In this blog we will give a NET# definition string for the
AlexNet
model. The model is a direct conversion of the Caffe implementation. It's worth noting that an R implementation of AlexNet is barely available at the time this blog is written. The NET# definition string file is separated into 10 zip files and hosted on
GitHub
.
The first couple of layers of the NET# definition for AlexNet look something like this:
After downloading the 10 zip files, use the following code to extract them and create the actual
rxNeuralNet
model. Note that the entire NET# definition string is about 930 MB in size.
The trick here is to use any data as long as it conforms to the input shape and then train the model for 0 iterations to create the model. To enable GPU acceleration, please refer to an earlier blog .
Besides the differences mentioned in the Caffe AlexNet implementation, another difference is that
rxNeuralNet
and NET# don't support
dropout
yet. Due to restricted use of the ImageNet Data, the model is not tested for performance or accuracy.
Updated Mar 23, 2019
Version 2.0SQL-Server-Team
Microsoft
Joined March 23, 2019
SQL Server Blog
Follow this blog board to get notified when there's new activity