Strategies for Optimizing High-Volume Token Usage with Azure OpenAI
Addressing the challenges of building AI solutions with high-volume token usage, explore strategic recommendations for overcoming token limits, optimizing model deployments, and practical techniques for maximizing token usage with Azure OpenAI.
Key Challenges
Reaching maximum token limits in Azure OpenAI
The available models for Azure OpenAI Service, including GPT-3.5 Turbo and GPT-4, have hard maximum token limits per request. These ensure the models operate efficiently and produce relevant, cohesive responses. While token limits increase with newer models, token limits still require ISVs and Digital Natives to explore alternative approaches to overcome them for their project needs.
Taking advantage of appropriate LLM techniques for use cases
Different models have different capabilities and limitations. GPT-3.5 provides the most cost-effective deployment and is significantly cheaper to run. However, this comes at the expense of limited tokens. GPT-4 offers a far more extensive data set with the ability to solve more complex queries with greater accuracy. ISVs and Digital Natives must consider appropriate techniques to utilize LLMs for their business needs to maximize their token usage.
Optimizing multiple service and model deployments in Azure OpenAI
Achieving scalability while avoiding underutilization or overloading of model deployments is a significant hurdle. Using a shared Azure OpenAI Service instance among multiple tenants can lead to a Noisy Neighbour problem. This can result in service degradation for certain users of an application. Single deployments pose a challenge as a user base grows requiring ISVs and Digital Natives to consider how to provide efficient mechanisms for multiple deployments and cost allocations to customers.
Recommendations
As ISVs and Digital Natives creating reliable AI solutions with high-volume token usage, you should:
Take a step-by-step approach to discovering the potential use cases for specific models in Azure OpenAI. Identify where one or more can be deployed to achieve a cost-effective solution. Recognize that using multiple models in conjunction for different use cases can optimize token usage and overall performance.
Experiment with strategies for creating embeddings for providing related context to your AI prompts. This can, in most cases, reduce the overall number of tokens without compromising response quality. Combine with prompt engineering techniques to craft precise and targeted prompts, minimizing unnecessary token usage while achieving a desired output.
Maximize overall token availability by deploying multiple instances across multiple regions, employing load balancing techniques for even distribution of requests and global reach. Implement appropriate monitoring tools to observe token usage to support further improvement and enhancement to your AI solution.
Optimizing AI solutions with high-volume token usage
ISVs and Digital Natives are increasingly leveraging the power of the Azure OpenAI Service in new and existing multitenant, software-as-a-service (SaaS) architectures to push the boundaries of their solutions to meet their customers’ changing expectations. In a 2023 report published by Stanford Institute for Human-Centered Artificial Intelligence (HAI), companies adopting AI solutions has increased to 50-60%. This highlights an increase in demand for AI from consumers of solutions provided by ISVs and Digital Natives.
However, engineering teams transitioning from well-established development processes to this fast-paced innovative technology face new challenges. Not only are they tasked with integrating with the APIs, but they need to consider the adoption and management of services and models to provide a reliable AI service across their user base.
This leads ISVs and Digital Natives to ask, “How do we establish best practices in our AI solutions for handling high volumes of tokens?”
This article explores the key focus areas of high-volume token usage with Azure OpenAI. It highlights where ISVs and Digital Natives can make improvements to deliver reliable multitenant SaaS AI solutions.
Understanding tokens and limits in Azure OpenAI Service
Showcasing how tokenization works for processing and generation in large language models (LLMs)
Using the Byte-Pair Encoding (BPE) tokenization method, the most frequently occurring pairs of characters merge into a single token. The models learn to understand the statistical relationships between these tokens and excel at producing the next token in a sequence of tokens.
The architecture of each model determines a maximum number of tokens that can be processed in a single request. For example, GPT-3.5 Turbo has a token limit of 4,096. This means that it can manage 4,096 tokens in one go, including both the prompt and the completion.
Comparing Azure OpenAI Service models by token and token rate limits
Model
Token Limit
Tokens Per Minute
gpt-35-turbo
4,096
240-300K
gpt-35-turbo-16k
16,384
240-300K
gpt-4
8,192
20-40K
gpt-4-32k
32,768
60-80K
gpt-4-turbo
132,096 (128K in, 4K out)
80-150K
text-embedding-ada-002
8,191
240-350K
Azure OpenAI Service applies additional rate limits on top of these model specific limitations for each model deployment per region. Tokens-per-minute (TPM) is a configurable limit set per model per region within the API that provides a best prediction of your expected token usage over time. The requests-per-minute (RPM) rate limit is also set proportionally to the TPM based on 6 RPM per 1000 TPM. These additional quota limits help to manage the compute resources required by the models for processing customer requests. The more tokens a model must process, the more compute is required to process them.
It is important to consider the specific model token limits as well as the additional Azure OpenAI quota limits when architecting AI solutions.
Choosing the right model for specific use cases
Before choosing a specific model, define business objectives to help you understand how each can help you achieve your goals and define use cases.
The GPT family models are best used for natural language processing tasks such as chatbots, Q&A, language translation, text generation, and summarization. These models can generate high-quality content that is coherent and contextually relevant.
Text embedding models, on the other hand, perform better for tasks such as document search, sentiment analysis, content filtering, and classification. These models can represent text as a vector, a numerical representation which can be used to measure the similarity between different texts.
Conduct workshops with your engineering teams to collaboratively map out potential use cases to the various models. Identify specific uses where GPT models will support your requirements for natural language tasks, while exploring where you can optimize your cost-effectiveness using text embedding models for semantic analysis.
Avoid a one-size-fits-all approach when considering your models. Recognize that each model excels in distinct areas. Tailor your choices based on the specific requirements of your use cases to achieve significant cost-efficiency in your token usage. Consider that you may use multiple models in conjunction for your use cases to optimize your token usage further.
Taking advantage of embeddings to provide semantic context in prompts to GPT models
Embeddings are the numerical representation of any text you provide to a model such as text-embedding-ada-002 that capture the contextual relationships and meaning behind it.
Embeddings serve as a powerful tool in enriching a prompt to GPT models with semantic understanding from your existing data. By locating related text using embeddings, GPT models are provided with condensed, semantic context which results in fewer tokens used. This is crucial when considering high-volume token scenarios, contributing to cost savings without compromising the quality of responses.
When generating embeddings, it is important to note that token limits apply for the amount of content that is processed in single transaction. Unlike GPT models, a prompt is not required for these requests. However, appropriate strategies need to be made to segment the text into chunks. This is required so the semantic relationship in the text is captured effectively.
Consider splitting text by the most appropriate method for your use cases, such as by paragraph, section, key phrases, or applying clustering algorithms to group text into similar segments. Experiment, iterate, and refine your strategies for embeddings to optimize performance.
Utilizing prompt engineering to minimize unnecessary token usage
Prompt engineering involves crafting input queries or instructions in a way that extracts the most relevant information from the model while minimizing the number of tokens used. It is a strategic approach to achieve precise and resource-efficient interactions with Azure OpenAI.
Appropriately applying prompt engineering is a crucial aspect of maximizing the efficiency and reliability of LLM solutions. It is important to choose succinct and targeted prompts for use cases that convey the desired output. Employ the understanding of the GPT model’s tokenization to truncate and segment the instruction in prompts to reduce the overall prompt size without sacrificing the quality of the response. Avoiding unnecessary verbosity ensures token usage is minimal.
Test multiple prompts and context retrieval techniques for scenarios to validate the accuracy and reliability of the generated content. Utilize tools such as Prompt Flow in the Azure AI Studio to streamline the development of AI applications and evaluate the performance of your prompts.
Scaling out to increase Azure OpenAI service availability
With Azure OpenAI becoming a critical component of AI workloads, strategies for ensuring reliability and availability of this functionality are vital. With the limitations set by the service for model deployments per region, maximizing token usage can be achieved through multiple deployments across regions.
Applying load balancing techniques in front of each Azure OpenAI Service instance provides even distribution of requests across regions ensuring high availability for customers. Load balancing provides additional support for resiliency, enabling a seamless failover to another region if the rate limits for one region are met.
Example architecture using load balanced, multi-region deployments of Azure OpenAI Service
For scenarios where global reach is a requirement, approaching multi-region deployments of the same Azure OpenAI infrastructure can provide a better user experience for customers. Requests from client applications can be routed to an appropriate, nearest region while taking advantage of the load balancing and failover to another region to maximize token usage.
Although it is possible to deploy multiple of the same model in a single instance, the limitations in the TPM/RPM of model deployments per region limit the usages of per-tenant deployments of models.
Adopt best practices in DevOps including infrastructure-as-code when deploying and managing a complex, multi-region Azure AI infrastructure. This approach will simplify the deployment process, minimize human-error, and ensure consistency across all regions.
Consider all limitations when architecting a high-volume token usage scenario including TPM and RPM per model deployment in each region.
Taking your Azure OpenAI solutions further with provisioned throughput units
Provisioned throughput units (PTUs) ensure predictable performance for your Azure OpenAI solutions by reserving processing capacity for prompts and generation completions. Unlike TPMs, which are based on a pay-as-you-go model, PTUs are purchased as a monthly commitment. By reserving capacity, this allows you to specify the required throughput offering stable maximum latency and throughput for your workloads. High throughput workloads may see improved cost savings vs using token-based consumption in Azure OpenAI.
Carefully assess your AI solution's throughput requirements to prevent overprovisioning. Quota for PTUs is determined by a deployment type, model, and region triplet which is not interchangeable.For example, if you have 300 PTUs provisioned for GPT 3.5 Turbo, those PTUs can only be used for GPT 3.5 Turbo deployments within a specific Azure subscription. Once deployed, the throughput is available whether you use it or not. Avoid overprovisioning PTUs to prevent unnecessary costs and underutilization of resources.
Regularly monitor your deployments and adjust PTUs as needed. Be aware that while quota represents the amount of total throughput you can deploy, it does not guarantee underlying capacity availability. You may encounter out of capacity errors that you need to be vigilant in responding to in order to ensure reliability of your AI solution.
Conclusion
Creating reliable AI solutions with high-volume token usage with Azure OpenAI requires a strategic and multifaceted approach. ISVs and Digital Natives must navigate the constraints of model token limits, choosing appropriate models for their use cases, exploring multiple prompts and context request combinations, and optimize their model deployments to maximize their token usage.
As the demand for AI solutions continues to grow, ISVs and Digital Natives are challenged to establish best practices for production. With a collaborative, systematic approach, they can push the boundaries of possibilities with Azure OpenAI to deliver reliable AI solutions that meet their evolving customer expectations.
"}},"componentScriptGroups({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/community/NavbarDropdownToggle\"]})":[{"__ref":"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/common/QueryHandler\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCoverImage\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCoverImage-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeTitle\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTimeToRead\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageSubject\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageSubject-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserLink\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserLink-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserRank\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserRank-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTime\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTime-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageBody\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageBody-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCustomFields\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCustomFields-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageRevision\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageRevision-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageReplyButton\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageReplyButton-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageAuthorBio\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/ranks/UserRankLabel\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserRegistrationDate\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserRegistrationDate-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeDescription\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"components/tags/TagView/TagViewChip\"]})":[{"__ref":"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1745505310105"}],"cachedText({\"lastModified\":\"1745505310105\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeIcon\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1745505310105"}]},"CachedAsset:pages-1745487429248":{"__typename":"CachedAsset","id":"pages-1745487429248","value":[{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"BlogViewAllPostsPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId/all-posts/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"CasePortalPage","type":"CASE_PORTAL","urlPath":"/caseportal","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"CreateGroupHubPage","type":"GROUP_HUB","urlPath":"/groups/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"CaseViewPage","type":"CASE_DETAILS","urlPath":"/case/:caseId/:caseNumber","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"InboxPage","type":"COMMUNITY","urlPath":"/inbox","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"HelpFAQPage","type":"COMMUNITY","urlPath":"/help","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"IdeaMessagePage","type":"IDEA_POST","urlPath":"/idea/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"IdeaViewAllIdeasPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/all-ideas/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"LoginPage","type":"USER","urlPath":"/signin","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"BlogPostPage","type":"BLOG","urlPath":"/category/:categoryId/blogs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"UserBlogPermissions.Page","type":"COMMUNITY","urlPath":"/c/user-blog-permissions/page","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ThemeEditorPage","type":"COMMUNITY","urlPath":"/designer/themes","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"TkbViewAllArticlesPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId/all-articles/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730142000000,"localOverride":null,"page":{"id":"AllEvents","type":"CUSTOM","urlPath":"/Events","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"OccasionEditPage","type":"EVENT","urlPath":"/event/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"OAuthAuthorizationAllowPage","type":"USER","urlPath":"/auth/authorize/allow","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"PageEditorPage","type":"COMMUNITY","urlPath":"/designer/pages","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"PostPage","type":"COMMUNITY","urlPath":"/category/:categoryId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ForumBoardPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"TkbBoardPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"EventPostPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"UserBadgesPage","type":"COMMUNITY","urlPath":"/users/:login/:userId/badges","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"GroupHubMembershipAction","type":"GROUP_HUB","urlPath":"/membership/join/:nodeId/:membershipType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"MaintenancePage","type":"COMMUNITY","urlPath":"/maintenance","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"IdeaReplyPage","type":"IDEA_REPLY","urlPath":"/idea/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"UserSettingsPage","type":"USER","urlPath":"/mysettings/:userSettingsTab","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"GroupHubsPage","type":"GROUP_HUB","urlPath":"/groups","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ForumPostPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"OccasionRsvpActionPage","type":"OCCASION","urlPath":"/event/:boardId/:messageSubject/:messageId/rsvp/:responseType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"VerifyUserEmailPage","type":"USER","urlPath":"/verifyemail/:userId/:verifyEmailToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"AllOccasionsPage","type":"OCCASION","urlPath":"/category/:categoryId/events/:boardId/all-events/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"EventBoardPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"TkbReplyPage","type":"TKB_REPLY","urlPath":"/kb/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"IdeaBoardPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"CommunityGuideLinesPage","type":"COMMUNITY","urlPath":"/communityguidelines","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"CaseCreatePage","type":"SALESFORCE_CASE_CREATION","urlPath":"/caseportal/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"TkbEditPage","type":"TKB","urlPath":"/kb/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ForgotPasswordPage","type":"USER","urlPath":"/forgotpassword","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"IdeaEditPage","type":"IDEA","urlPath":"/idea/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"TagPage","type":"COMMUNITY","urlPath":"/tag/:tagName","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"BlogBoardPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"OccasionMessagePage","type":"OCCASION_TOPIC","urlPath":"/event/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ManageContentPage","type":"COMMUNITY","urlPath":"/managecontent","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ClosedMembershipNodeNonMembersPage","type":"GROUP_HUB","urlPath":"/closedgroup/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"CommunityPage","type":"COMMUNITY","urlPath":"/","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ForumMessagePage","type":"FORUM_TOPIC","urlPath":"/discussions/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"IdeaPostPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730142000000,"localOverride":null,"page":{"id":"CommunityHub.Page","type":"CUSTOM","urlPath":"/Directory","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"BlogMessagePage","type":"BLOG_ARTICLE","urlPath":"/blog/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"RegistrationPage","type":"USER","urlPath":"/register","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"EditGroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ForumEditPage","type":"FORUM","urlPath":"/discussions/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ResetPasswordPage","type":"USER","urlPath":"/resetpassword/:userId/:resetPasswordToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730142000000,"localOverride":null,"page":{"id":"AllBlogs.Page","type":"CUSTOM","urlPath":"/blogs","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"TkbMessagePage","type":"TKB_ARTICLE","urlPath":"/kb/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"BlogEditPage","type":"BLOG","urlPath":"/blog/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ManageUsersPage","type":"USER","urlPath":"/users/manage/:tab?/:manageUsersTab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ForumReplyPage","type":"FORUM_REPLY","urlPath":"/discussions/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"PrivacyPolicyPage","type":"COMMUNITY","urlPath":"/privacypolicy","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"NotificationPage","type":"COMMUNITY","urlPath":"/notifications","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"UserPage","type":"USER","urlPath":"/users/:login/:userId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"OccasionReplyPage","type":"OCCASION_REPLY","urlPath":"/event/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ManageMembersPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/manage/:tab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"SearchResultsPage","type":"COMMUNITY","urlPath":"/search","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"BlogReplyPage","type":"BLOG_REPLY","urlPath":"/blog/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"GroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"TermsOfServicePage","type":"COMMUNITY","urlPath":"/termsofservice","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"CategoryPage","type":"CATEGORY","urlPath":"/category/:categoryId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"ForumViewAllTopicsPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/all-topics/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"TkbPostPage","type":"TKB","urlPath":"/category/:categoryId/kbs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745487429248,"localOverride":null,"page":{"id":"GroupHubPostPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"}],"localOverride":false},"CachedAsset:text:en_US-components/context/AppContext/AppContextProvider-0":{"__typename":"CachedAsset","id":"text:en_US-components/context/AppContext/AppContextProvider-0","value":{"noCommunity":"Cannot find community","noUser":"Cannot find current user","noNode":"Cannot find node with id {nodeId}","noMessage":"Cannot find message with id {messageId}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-0":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-0","value":{"title":"Loading..."},"localOverride":false},"User:user:-1":{"__typename":"User","id":"user:-1","uid":-1,"login":"Deleted","email":"","avatar":null,"rank":null,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":"ANONYMOUS","registrationTime":null,"confirmEmailStatus":false,"registrationAccessLevel":"VIEW","ssoRegistrationFields":[]},"ssoId":null,"profileSettings":{"__typename":"ProfileSettings","dateDisplayStyle":{"__typename":"InheritableStringSettingWithPossibleValues","key":"layout.friendly_dates_enabled","value":"false","localValue":"true","possibleValues":["true","false"]},"dateDisplayFormat":{"__typename":"InheritableStringSetting","key":"layout.format_pattern_date","value":"MMM dd yyyy","localValue":"MM-dd-yyyy"},"language":{"__typename":"InheritableStringSettingWithPossibleValues","key":"profile.language","value":"en-US","localValue":"en","possibleValues":["en-US"]}},"deleted":false},"Theme:customTheme1":{"__typename":"Theme","id":"customTheme1"},"Category:category:FastTrack":{"__typename":"Category","id":"category:FastTrack","entityType":"CATEGORY","displayId":"FastTrack","nodeType":"category","depth":3,"title":"Microsoft FastTrack","shortTitle":"Microsoft FastTrack","parent":{"__ref":"Category:category:products-services"}},"Category:category:top":{"__typename":"Category","id":"category:top","displayId":"top","nodeType":"category","depth":0,"title":"Top","entityType":"CATEGORY","shortTitle":"Top"},"Category:category:communities":{"__typename":"Category","id":"category:communities","displayId":"communities","nodeType":"category","depth":1,"parent":{"__ref":"Category:category:top"},"title":"Communities","entityType":"CATEGORY","shortTitle":"Communities"},"Category:category:products-services":{"__typename":"Category","id":"category:products-services","displayId":"products-services","nodeType":"category","depth":2,"parent":{"__ref":"Category:category:communities"},"title":"Products","entityType":"CATEGORY","shortTitle":"Products"},"Blog:board:FastTrackforAzureBlog":{"__typename":"Blog","id":"board:FastTrackforAzureBlog","entityType":"BLOG","displayId":"FastTrackforAzureBlog","nodeType":"board","depth":4,"conversationStyle":"BLOG","title":"FastTrack for Azure","description":"","avatar":null,"profileSettings":{"__typename":"ProfileSettings","language":null},"parent":{"__ref":"Category:category:FastTrack"},"ancestors":{"__typename":"CoreNodeConnection","edges":[{"__typename":"CoreNodeEdge","node":{"__ref":"Community:community:gxcuf89792"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:communities"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:products-services"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:FastTrack"}}]},"userContext":{"__typename":"NodeUserContext","canAddAttachments":false,"canUpdateNode":false,"canPostMessages":false,"isSubscribed":false},"boardPolicies":{"__typename":"BoardPolicies","canPublishArticleOnCreate":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","args":[]}}},"shortTitle":"FastTrack for Azure","repliesProperties":{"__typename":"RepliesProperties","sortOrder":"REVERSE_PUBLISH_TIME","repliesFormat":"threaded"},"tagProperties":{"__typename":"TagNodeProperties","tagsEnabled":{"__typename":"PolicyResult","failureReason":null}},"requireTags":true,"tagType":"PRESET_ONLY"},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc","height":512,"width":512,"mimeType":"image/png"},"Rank:rank:4":{"__typename":"Rank","id":"rank:4","position":6,"name":"Microsoft","color":"333333","icon":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}"},"rankStyle":"OUTLINE"},"User:user:2097623":{"__typename":"User","id":"user:2097623","uid":2097623,"login":"james_croft","deleted":false,"avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS0yMDk3NjIzLTUxODcwNWlBMDhDM0FBNjEzQkI5MzZD"},"rank":{"__ref":"Rank:rank:4"},"email":"","messagesCount":8,"biography":null,"topicsCount":6,"kudosReceivedCount":19,"kudosGivenCount":17,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2023-10-23T03:35:46.180-07:00","confirmEmailStatus":null},"followersCount":null,"solutionsCount":0},"BlogTopicMessage:message:4007751":{"__typename":"BlogTopicMessage","uid":4007751,"subject":"Strategies for Optimizing High-Volume Token Usage with Azure OpenAI","id":"message:4007751","revisionNum":13,"repliesCount":0,"author":{"__ref":"User:user:2097623"},"depth":0,"hasGivenKudo":false,"board":{"__ref":"Blog:board:FastTrackforAzureBlog"},"conversation":{"__ref":"Conversation:conversation:4007751"},"messagePolicies":{"__typename":"MessagePolicies","canPublishArticleOnEdit":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","args":[]}},"canModerateSpamMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","args":[]}}},"contentWorkflow":{"__typename":"ContentWorkflow","state":"PUBLISH","scheduledPublishTime":null,"scheduledTimezone":null,"userContext":{"__typename":"MessageWorkflowContext","canSubmitForReview":null,"canEdit":false,"canRecall":null,"canSubmitForPublication":null,"canReturnToAuthor":null,"canPublish":null,"canReturnToReview":null,"canSchedule":false},"shortScheduledTimezone":null},"readOnly":false,"editFrozen":false,"moderationData":{"__ref":"ModerationData:moderation_data:4007751"},"teaser":"
Addressing the challenges of building AI solutions with high-volume token usage, explore strategic recommendations for overcoming token limits, optimizing model deployments, and practical techniques for maximizing token usage with Azure OpenAI.
","body":"
\n
\n
Strategies for Optimizing High-Volume Token Usage with Azure OpenAI
\n
\n
Addressing the challenges of building AI solutions with high-volume token usage, explore strategic recommendations for overcoming token limits, optimizing model deployments, and practical techniques for maximizing token usage with Azure OpenAI.
\n
\n
Key Challenges
\n
\n
Reaching maximum token limits in Azure OpenAI
\n
The available models for Azure OpenAI Service, including GPT-3.5 Turbo and GPT-4, have hard maximum token limits per request. These ensure the models operate efficiently and produce relevant, cohesive responses. While token limits increase with newer models, token limits still require ISVs and Digital Natives to explore alternative approaches to overcome them for their project needs.
\n
\n
Taking advantage of appropriate LLM techniques for use cases
\n
Different models have different capabilities and limitations. GPT-3.5 provides the most cost-effective deployment and is significantly cheaper to run. However, this comes at the expense of limited tokens. GPT-4 offers a far more extensive data set with the ability to solve more complex queries with greater accuracy. ISVs and Digital Natives must consider appropriate techniques to utilize LLMs for their business needs to maximize their token usage.
\n
\n
Optimizing multiple service and model deployments in Azure OpenAI
\n
Achieving scalability while avoiding underutilization or overloading of model deployments is a significant hurdle. Using a shared Azure OpenAI Service instance among multiple tenants can lead to a Noisy Neighbour problem. This can result in service degradation for certain users of an application. Single deployments pose a challenge as a user base grows requiring ISVs and Digital Natives to consider how to provide efficient mechanisms for multiple deployments and cost allocations to customers.
\n
\n
Recommendations
\n
As ISVs and Digital Natives creating reliable AI solutions with high-volume token usage, you should:
\n
\n
\n
Take a step-by-step approach to discovering the potential use cases for specific models in Azure OpenAI. Identify where one or more can be deployed to achieve a cost-effective solution. Recognize that using multiple models in conjunction for different use cases can optimize token usage and overall performance.
\n
Experiment with strategies for creating embeddings for providing related context to your AI prompts. This can, in most cases, reduce the overall number of tokens without compromising response quality. Combine with prompt engineering techniques to craft precise and targeted prompts, minimizing unnecessary token usage while achieving a desired output.
\n
Maximize overall token availability by deploying multiple instances across multiple regions, employing load balancing techniques for even distribution of requests and global reach. Implement appropriate monitoring tools to observe token usage to support further improvement and enhancement to your AI solution.
\n
\n
\n
Optimizing AI solutions with high-volume token usage
\n
ISVs and Digital Natives are increasingly leveraging the power of the Azure OpenAI Service in new and existing multitenant, software-as-a-service (SaaS) architectures to push the boundaries of their solutions to meet their customers’ changing expectations. In a 2023 report published by Stanford Institute for Human-Centered Artificial Intelligence (HAI), companies adopting AI solutions has increased to 50-60%. This highlights an increase in demand for AI from consumers of solutions provided by ISVs and Digital Natives.
\n
\n
However, engineering teams transitioning from well-established development processes to this fast-paced innovative technology face new challenges. Not only are they tasked with integrating with the APIs, but they need to consider the adoption and management of services and models to provide a reliable AI service across their user base.
\n
\n
This leads ISVs and Digital Natives to ask, “How do we establish best practices in our AI solutions for handling high volumes of tokens?”
\n
\n
This article explores the key focus areas of high-volume token usage with Azure OpenAI. It highlights where ISVs and Digital Natives can make improvements to deliver reliable multitenant SaaS AI solutions.
\n
\n
Understanding tokens and limits in Azure OpenAI Service
Showcasing how tokenization works for processing and generation in large language models (LLMs)
\n
\n
Using the Byte-Pair Encoding (BPE) tokenization method, the most frequently occurring pairs of characters merge into a single token. The models learn to understand the statistical relationships between these tokens and excel at producing the next token in a sequence of tokens.
\n
\n
The architecture of each model determines a maximum number of tokens that can be processed in a single request. For example, GPT-3.5 Turbo has a token limit of 4,096. This means that it can manage 4,096 tokens in one go, including both the prompt and the completion.
\n
\n
Comparing Azure OpenAI Service models by token and token rate limits
\n\n
\n
\n
Model
\n
\n
\n
Token Limit
\n
\n
\n
Tokens Per Minute
\n
\n
\n
\n
\n
gpt-35-turbo
\n
\n
\n
4,096
\n
\n
\n
240-300K
\n
\n
\n
\n
\n
gpt-35-turbo-16k
\n
\n
\n
16,384
\n
\n
\n
240-300K
\n
\n
\n
\n
\n
gpt-4
\n
\n
\n
8,192
\n
\n
\n
20-40K
\n
\n
\n
\n
\n
gpt-4-32k
\n
\n
\n
32,768
\n
\n
\n
60-80K
\n
\n
\n
\n
\n
gpt-4-turbo
\n
\n
\n
132,096 (128K in, 4K out)
\n
\n
\n
80-150K
\n
\n
\n
\n
\n
text-embedding-ada-002
\n
\n
\n
8,191
\n
\n
\n
240-350K
\n
\n
\n\n
\n
\n
Azure OpenAI Service applies additional rate limits on top of these model specific limitations for each model deployment per region. Tokens-per-minute (TPM) is a configurable limit set per model per region within the API that provides a best prediction of your expected token usage over time. The requests-per-minute (RPM) rate limit is also set proportionally to the TPM based on 6 RPM per 1000 TPM. These additional quota limits help to manage the compute resources required by the models for processing customer requests. The more tokens a model must process, the more compute is required to process them.
\n
\n
It is important to consider the specific model token limits as well as the additional Azure OpenAI quota limits when architecting AI solutions.
\n
\n
Choosing the right model for specific use cases
\n
Before choosing a specific model, define business objectives to help you understand how each can help you achieve your goals and define use cases.
\n
\n
The GPT family models are best used for natural language processing tasks such as chatbots, Q&A, language translation, text generation, and summarization. These models can generate high-quality content that is coherent and contextually relevant.
\n
\n
Text embedding models, on the other hand, perform better for tasks such as document search, sentiment analysis, content filtering, and classification. These models can represent text as a vector, a numerical representation which can be used to measure the similarity between different texts.
\n
\n
Conduct workshops with your engineering teams to collaboratively map out potential use cases to the various models. Identify specific uses where GPT models will support your requirements for natural language tasks, while exploring where you can optimize your cost-effectiveness using text embedding models for semantic analysis.
\n
\n
Avoid a one-size-fits-all approach when considering your models. Recognize that each model excels in distinct areas. Tailor your choices based on the specific requirements of your use cases to achieve significant cost-efficiency in your token usage. Consider that you may use multiple models in conjunction for your use cases to optimize your token usage further.
\n
\n
Taking advantage of embeddings to provide semantic context in prompts to GPT models
\n
Embeddings are the numerical representation of any text you provide to a model such as text-embedding-ada-002 that capture the contextual relationships and meaning behind it.
\n
\n
Embeddings serve as a powerful tool in enriching a prompt to GPT models with semantic understanding from your existing data. By locating related text using embeddings, GPT models are provided with condensed, semantic context which results in fewer tokens used. This is crucial when considering high-volume token scenarios, contributing to cost savings without compromising the quality of responses.
\n
\n
When generating embeddings, it is important to note that token limits apply for the amount of content that is processed in single transaction. Unlike GPT models, a prompt is not required for these requests. However, appropriate strategies need to be made to segment the text into chunks. This is required so the semantic relationship in the text is captured effectively.
\n
\n
Consider splitting text by the most appropriate method for your use cases, such as by paragraph, section, key phrases, or applying clustering algorithms to group text into similar segments. Experiment, iterate, and refine your strategies for embeddings to optimize performance.
\n
\n
Utilizing prompt engineering to minimize unnecessary token usage
\n
Prompt engineering involves crafting input queries or instructions in a way that extracts the most relevant information from the model while minimizing the number of tokens used. It is a strategic approach to achieve precise and resource-efficient interactions with Azure OpenAI.
\n
\n
Appropriately applying prompt engineering is a crucial aspect of maximizing the efficiency and reliability of LLM solutions. It is important to choose succinct and targeted prompts for use cases that convey the desired output. Employ the understanding of the GPT model’s tokenization to truncate and segment the instruction in prompts to reduce the overall prompt size without sacrificing the quality of the response. Avoiding unnecessary verbosity ensures token usage is minimal.
\n
\n
Test multiple prompts and context retrieval techniques for scenarios to validate the accuracy and reliability of the generated content. Utilize tools such as Prompt Flow in the Azure AI Studio to streamline the development of AI applications and evaluate the performance of your prompts.
\n
\n
Scaling out to increase Azure OpenAI service availability
\n
With Azure OpenAI becoming a critical component of AI workloads, strategies for ensuring reliability and availability of this functionality are vital. With the limitations set by the service for model deployments per region, maximizing token usage can be achieved through multiple deployments across regions.
\n
\n
Applying load balancing techniques in front of each Azure OpenAI Service instance provides even distribution of requests across regions ensuring high availability for customers. Load balancing provides additional support for resiliency, enabling a seamless failover to another region if the rate limits for one region are met.
\n
\n
Example architecture using load balanced, multi-region deployments of Azure OpenAI Service
\n
For scenarios where global reach is a requirement, approaching multi-region deployments of the same Azure OpenAI infrastructure can provide a better user experience for customers. Requests from client applications can be routed to an appropriate, nearest region while taking advantage of the load balancing and failover to another region to maximize token usage.
\n
\n
Although it is possible to deploy multiple of the same model in a single instance, the limitations in the TPM/RPM of model deployments per region limit the usages of per-tenant deployments of models.
Adopt best practices in DevOps including infrastructure-as-code when deploying and managing a complex, multi-region Azure AI infrastructure. This approach will simplify the deployment process, minimize human-error, and ensure consistency across all regions.
\n
\n
Consider all limitations when architecting a high-volume token usage scenario including TPM and RPM per model deployment in each region.
\n
\n
Taking your Azure OpenAI solutions further with provisioned throughput units
\n
Provisioned throughput units (PTUs) ensure predictable performance for your Azure OpenAI solutions by reserving processing capacity for prompts and generation completions. Unlike TPMs, which are based on a pay-as-you-go model, PTUs are purchased as a monthly commitment. By reserving capacity, this allows you to specify the required throughput offering stable maximum latency and throughput for your workloads. High throughput workloads may see improved cost savings vs using token-based consumption in Azure OpenAI.
\n
\n
Carefully assess your AI solution's throughput requirements to prevent overprovisioning. Quota for PTUs is determined by a deployment type, model, and region triplet which is not interchangeable.For example, if you have 300 PTUs provisioned for GPT 3.5 Turbo, those PTUs can only be used for GPT 3.5 Turbo deployments within a specific Azure subscription. Once deployed, the throughput is available whether you use it or not. Avoid overprovisioning PTUs to prevent unnecessary costs and underutilization of resources.
\n
\n
Regularly monitor your deployments and adjust PTUs as needed. Be aware that while quota represents the amount of total throughput you can deploy, it does not guarantee underlying capacity availability. You may encounter out of capacity errors that you need to be vigilant in responding to in order to ensure reliability of your AI solution.
\n
\n
Conclusion
\n
Creating reliable AI solutions with high-volume token usage with Azure OpenAI requires a strategic and multifaceted approach. ISVs and Digital Natives must navigate the constraints of model token limits, choosing appropriate models for their use cases, exploring multiple prompts and context request combinations, and optimize their model deployments to maximize their token usage.
\n
\n
As the demand for AI solutions continues to grow, ISVs and Digital Natives are challenged to establish best practices for production. With a collaborative, systematic approach, they can push the boundaries of possibilities with Azure OpenAI to deliver reliable AI solutions that meet their evolving customer expectations.
Strategies for Optimizing High-Volume Token Usage with Azure OpenAI
\n
\n
Addressing the challenges of building AI solutions with high-volume token usage, explore strategic recommendations for overcoming token limits, optimizing model deployments, and practical techniques for maximizing token usage with Azure OpenAI.
\n
\n
Key Challenges
\n
\n
Reaching maximum token limits in Azure OpenAI
\n
The available models for Azure OpenAI Service, including GPT-3.5 Turbo and GPT-4, have hard maximum token limits per request. These ensure the models operate efficiently and produce relevant, cohesive responses. While token limits increase with newer models, token limits still require ISVs and Digital Natives to explore alternative approaches to overcome them for their project needs.
\n
\n
Taking advantage of appropriate LLM techniques for use cases
\n
Different models have different capabilities and limitations. GPT-3.5 provides the most cost-effective deployment and is significantly cheaper to run. However, this comes at the expense of limited tokens. GPT-4 offers a far more extensive data set with the ability to solve more complex queries with greater accuracy. ISVs and Digital Natives must consider appropriate techniques to utilize LLMs for their business needs to maximize their token usage.
\n
\n
Optimizing multiple service and model deployments in Azure OpenAI
\n
Achieving scalability while avoiding underutilization or overloading of model deployments is a significant hurdle. Using a shared Azure OpenAI Service instance among multiple tenants can lead to a Noisy Neighbour problem. This can result in service degradation for certain users of an application. Single deployments pose a challenge as a user base grows requiring ISVs and Digital Natives to consider how to provide efficient mechanisms for multiple deployments and cost allocations to customers.
\n
\n
Recommendations
\n
As ISVs and Digital Natives creating reliable AI solutions with high-volume token usage, you should:
\n
\n
\n
Take a step-by-step approach to discovering the potential use cases for specific models in Azure OpenAI. Identify where one or more can be deployed to achieve a cost-effective solution. Recognize that using multiple models in conjunction for different use cases can optimize token usage and overall performance.
\n
Experiment with strategies for creating embeddings for providing related context to your AI prompts. This can, in most cases, reduce the overall number of tokens without compromising response quality. Combine with prompt engineering techniques to craft precise and targeted prompts, minimizing unnecessary token usage while achieving a desired output.
\n
Maximize overall token availability by deploying multiple instances across multiple regions, employing load balancing techniques for even distribution of requests and global reach. Implement appropriate monitoring tools to observe token usage to support further improvement and enhancement to your AI solution.
\n
\n
\n
Optimizing AI solutions with high-volume token usage
\n
ISVs and Digital Natives are increasingly leveraging the power of the Azure OpenAI Service in new and existing multitenant, software-as-a-service (SaaS) architectures to push the boundaries of their solutions to meet their customers’ changing expectations. In a 2023 report published by Stanford Institute for Human-Centered Artificial Intelligence (HAI), companies adopting AI solutions has increased to 50-60%. This highlights an increase in demand for AI from consumers of solutions provided by ISVs and Digital Natives.
\n
\n
However, engineering teams transitioning from well-established development processes to this fast-paced innovative technology face new challenges. Not only are they tasked with integrating with the APIs, but they need to consider the adoption and management of services and models to provide a reliable AI service across their user base.
\n
\n
This leads ISVs and Digital Natives to ask, “How do we establish best practices in our AI solutions for handling high volumes of tokens?”
\n
\n
This article explores the key focus areas of high-volume token usage with Azure OpenAI. It highlights where ISVs and Digital Natives can make improvements to deliver reliable multitenant SaaS AI solutions.
\n
\n
Understanding tokens and limits in Azure OpenAI Service
Showcasing how tokenization works for processing and generation in large language models (LLMs)
\n
\n
Using the Byte-Pair Encoding (BPE) tokenization method, the most frequently occurring pairs of characters merge into a single token. The models learn to understand the statistical relationships between these tokens and excel at producing the next token in a sequence of tokens.
\n
\n
The architecture of each model determines a maximum number of tokens that can be processed in a single request. For example, GPT-3.5 Turbo has a token limit of 4,096. This means that it can manage 4,096 tokens in one go, including both the prompt and the completion.
\n
\n
Comparing Azure OpenAI Service models by token and token rate limits
\n\n
\n
\n
Model
\n
\n
\n
Token Limit
\n
\n
\n
Tokens Per Minute
\n
\n
\n
\n
\n
gpt-35-turbo
\n
\n
\n
4,096
\n
\n
\n
240-300K
\n
\n
\n
\n
\n
gpt-35-turbo-16k
\n
\n
\n
16,384
\n
\n
\n
240-300K
\n
\n
\n
\n
\n
gpt-4
\n
\n
\n
8,192
\n
\n
\n
20-40K
\n
\n
\n
\n
\n
gpt-4-32k
\n
\n
\n
32,768
\n
\n
\n
60-80K
\n
\n
\n
\n
\n
gpt-4-turbo
\n
\n
\n
132,096 (128K in, 4K out)
\n
\n
\n
80-150K
\n
\n
\n
\n
\n
text-embedding-ada-002
\n
\n
\n
8,191
\n
\n
\n
240-350K
\n
\n
\n\n
\n
\n
Azure OpenAI Service applies additional rate limits on top of these model specific limitations for each model deployment per region. Tokens-per-minute (TPM) is a configurable limit set per model per region within the API that provides a best prediction of your expected token usage over time. The requests-per-minute (RPM) rate limit is also set proportionally to the TPM based on 6 RPM per 1000 TPM. These additional quota limits help to manage the compute resources required by the models for processing customer requests. The more tokens a model must process, the more compute is required to process them.
\n
\n
It is important to consider the specific model token limits as well as the additional Azure OpenAI quota limits when architecting AI solutions.
\n
\n
Choosing the right model for specific use cases
\n
Before choosing a specific model, define business objectives to help you understand how each can help you achieve your goals and define use cases.
\n
\n
The GPT family models are best used for natural language processing tasks such as chatbots, Q&A, language translation, text generation, and summarization. These models can generate high-quality content that is coherent and contextually relevant.
\n
\n
Text embedding models, on the other hand, perform better for tasks such as document search, sentiment analysis, content filtering, and classification. These models can represent text as a vector, a numerical representation which can be used to measure the similarity between different texts.
\n
\n
Conduct workshops with your engineering teams to collaboratively map out potential use cases to the various models. Identify specific uses where GPT models will support your requirements for natural language tasks, while exploring where you can optimize your cost-effectiveness using text embedding models for semantic analysis.
\n
\n
Avoid a one-size-fits-all approach when considering your models. Recognize that each model excels in distinct areas. Tailor your choices based on the specific requirements of your use cases to achieve significant cost-efficiency in your token usage. Consider that you may use multiple models in conjunction for your use cases to optimize your token usage further.
\n
\n
Taking advantage of embeddings to provide semantic context in prompts to GPT models
\n
Embeddings are the numerical representation of any text you provide to a model such as text-embedding-ada-002 that capture the contextual relationships and meaning behind it.
\n
\n
Embeddings serve as a powerful tool in enriching a prompt to GPT models with semantic understanding from your existing data. By locating related text using embeddings, GPT models are provided with condensed, semantic context which results in fewer tokens used. This is crucial when considering high-volume token scenarios, contributing to cost savings without compromising the quality of responses.
\n
\n
When generating embeddings, it is important to note that token limits apply for the amount of content that is processed in single transaction. Unlike GPT models, a prompt is not required for these requests. However, appropriate strategies need to be made to segment the text into chunks. This is required so the semantic relationship in the text is captured effectively.
\n
\n
Consider splitting text by the most appropriate method for your use cases, such as by paragraph, section, key phrases, or applying clustering algorithms to group text into similar segments. Experiment, iterate, and refine your strategies for embeddings to optimize performance.
\n
\n
Utilizing prompt engineering to minimize unnecessary token usage
\n
Prompt engineering involves crafting input queries or instructions in a way that extracts the most relevant information from the model while minimizing the number of tokens used. It is a strategic approach to achieve precise and resource-efficient interactions with Azure OpenAI.
\n
\n
Appropriately applying prompt engineering is a crucial aspect of maximizing the efficiency and reliability of LLM solutions. It is important to choose succinct and targeted prompts for use cases that convey the desired output. Employ the understanding of the GPT model’s tokenization to truncate and segment the instruction in prompts to reduce the overall prompt size without sacrificing the quality of the response. Avoiding unnecessary verbosity ensures token usage is minimal.
\n
\n
Test multiple prompts and context retrieval techniques for scenarios to validate the accuracy and reliability of the generated content. Utilize tools such as Prompt Flow in the Azure AI Studio to streamline the development of AI applications and evaluate the performance of your prompts.
\n
\n
Scaling out to increase Azure OpenAI service availability
\n
With Azure OpenAI becoming a critical component of AI workloads, strategies for ensuring reliability and availability of this functionality are vital. With the limitations set by the service for model deployments per region, maximizing token usage can be achieved through multiple deployments across regions.
\n
\n
Applying load balancing techniques in front of each Azure OpenAI Service instance provides even distribution of requests across regions ensuring high availability for customers. Load balancing provides additional support for resiliency, enabling a seamless failover to another region if the rate limits for one region are met.
\n
\n
Example architecture using load balanced, multi-region deployments of Azure OpenAI Service
\n
For scenarios where global reach is a requirement, approaching multi-region deployments of the same Azure OpenAI infrastructure can provide a better user experience for customers. Requests from client applications can be routed to an appropriate, nearest region while taking advantage of the load balancing and failover to another region to maximize token usage.
\n
\n
Although it is possible to deploy multiple of the same model in a single instance, the limitations in the TPM/RPM of model deployments per region limit the usages of per-tenant deployments of models.
Adopt best practices in DevOps including infrastructure-as-code when deploying and managing a complex, multi-region Azure AI infrastructure. This approach will simplify the deployment process, minimize human-error, and ensure consistency across all regions.
\n
\n
Consider all limitations when architecting a high-volume token usage scenario including TPM and RPM per model deployment in each region.
\n
\n
Taking your Azure OpenAI solutions further with provisioned throughput units
\n
Provisioned throughput units (PTUs) ensure predictable performance for your Azure OpenAI solutions by reserving processing capacity for prompts and generation completions. Unlike TPMs, which are based on a pay-as-you-go model, PTUs are purchased as a monthly commitment. By reserving capacity, this allows you to specify the required throughput offering stable maximum latency and throughput for your workloads. High throughput workloads may see improved cost savings vs using token-based consumption in Azure OpenAI.
\n
\n
Carefully assess your AI solution's throughput requirements to prevent overprovisioning. Quota for PTUs is determined by a deployment type, model, and region triplet which is not interchangeable.For example, if you have 300 PTUs provisioned for GPT 3.5 Turbo, those PTUs can only be used for GPT 3.5 Turbo deployments within a specific Azure subscription. Once deployed, the throughput is available whether you use it or not. Avoid overprovisioning PTUs to prevent unnecessary costs and underutilization of resources.
\n
\n
Regularly monitor your deployments and adjust PTUs as needed. Be aware that while quota represents the amount of total throughput you can deploy, it does not guarantee underlying capacity availability. You may encounter out of capacity errors that you need to be vigilant in responding to in order to ensure reliability of your AI solution.
\n
\n
Conclusion
\n
Creating reliable AI solutions with high-volume token usage with Azure OpenAI requires a strategic and multifaceted approach. ISVs and Digital Natives must navigate the constraints of model token limits, choosing appropriate models for their use cases, exploring multiple prompts and context request combinations, and optimize their model deployments to maximize their token usage.
\n
\n
As the demand for AI solutions continues to grow, ISVs and Digital Natives are challenged to establish best practices for production. With a collaborative, systematic approach, they can push the boundaries of possibilities with Azure OpenAI to deliver reliable AI solutions that meet their evolving customer expectations.
Addressing the challenges of building AI solutions with high-volume token usage, explore strategic recommendations for overcoming token limits, optimizing model deployments, and practical techniques for maximizing token usage with Azure OpenAI.
","introduction":"","coverImage":null,"coverImageProperties":{"__typename":"CoverImageProperties","style":"STANDARD","titlePosition":"BOTTOM","altText":""},"currentRevision":{"__ref":"Revision:revision:4007751_13"},"latestVersion":{"__typename":"FriendlyVersion","major":"7","minor":"0"},"metrics":{"__typename":"MessageMetrics","views":35627},"visibilityScope":"PUBLIC","canonicalUrl":null,"seoTitle":"Strategies for Optimizing High-Volume Token Usage with Azure OpenAI","seoDescription":"Address the challenges of building AI solutions with high-volume token usage in Azure OpenAI with these strategic recommendations.","placeholder":false,"originalMessageForPlaceholder":null,"contributors":{"__typename":"UserConnection","edges":[]},"nonCoAuthorContributors":{"__typename":"UserConnection","edges":[]},"coAuthors":{"__typename":"UserConnection","edges":[]},"blogMessagePolicies":{"__typename":"BlogMessagePolicies","canDoAuthoringActionsOnBlog":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","key":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","args":[]}}},"archivalData":null,"replies":{"__typename":"MessageConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"customFields":[],"revisions({\"constraints\":{\"isPublished\":{\"eq\":true}},\"first\":1})":{"__typename":"RevisionConnection","totalCount":13}},"Conversation:conversation:4007751":{"__typename":"Conversation","id":"conversation:4007751","solved":false,"topic":{"__ref":"BlogTopicMessage:message:4007751"},"lastPostingActivityTime":"2024-03-08T06:14:04.930-08:00","lastPostTime":"2023-12-14T00:11:53.306-08:00","unreadReplyCount":0,"isSubscribed":false},"ModerationData:moderation_data:4007751":{"__typename":"ModerationData","id":"moderation_data:4007751","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDA3NzUxLTUzNDM5Mmk2NTU1OUFENzlFOTg4QkUy?revision=13\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDA3NzUxLTUzNDM5Mmk2NTU1OUFENzlFOTg4QkUy?revision=13","title":"Strategies for Optimizing High Volume Token Usage with Azure OpenAI.jpeg","associationType":"BODY","width":1024,"height":1024,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDA3NzUxLTUzNDM2MGk4RDg3OTM2QkMzMjFCMjMy?revision=13\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDA3NzUxLTUzNDM2MGk4RDg3OTM2QkMzMjFCMjMy?revision=13","title":"Frame 1.png","associationType":"BODY","width":1307,"height":1440,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDA3NzUxLTUzNDM2M2k5RUQzOTFGNkY0MUEyQ0Uw?revision=13\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDA3NzUxLTUzNDM2M2k5RUQzOTFGNkY0MUEyQ0Uw?revision=13","title":"Azure OpenAI Load Balancing.png","associationType":"BODY","width":1200,"height":1200,"altText":null},"Revision:revision:4007751_13":{"__typename":"Revision","id":"revision:4007751_13","lastEditTime":"2024-03-08T06:14:04.930-08:00"},"CachedAsset:theme:customTheme1-1744326567485":{"__typename":"CachedAsset","id":"theme:customTheme1-1744326567485","value":{"id":"customTheme1","animation":{"fast":"150ms","normal":"250ms","slow":"500ms","slowest":"750ms","function":"cubic-bezier(0.07, 0.91, 0.51, 1)","__typename":"AnimationThemeSettings"},"avatar":{"borderRadius":"50%","collections":["default"],"__typename":"AvatarThemeSettings"},"basics":{"browserIcon":{"imageAssetName":"favicon-1730836283320.png","imageLastModified":"1730836286415","__typename":"ThemeAsset"},"customerLogo":{"imageAssetName":"favicon-1730836271365.png","imageLastModified":"1730836274203","__typename":"ThemeAsset"},"maximumWidthOfPageContent":"1300px","oneColumnNarrowWidth":"800px","gridGutterWidthMd":"30px","gridGutterWidthXs":"10px","pageWidthStyle":"WIDTH_OF_BROWSER","__typename":"BasicsThemeSettings"},"buttons":{"borderRadiusSm":"3px","borderRadius":"3px","borderRadiusLg":"5px","paddingY":"5px","paddingYLg":"7px","paddingYHero":"var(--lia-bs-btn-padding-y-lg)","paddingX":"12px","paddingXLg":"16px","paddingXHero":"60px","fontStyle":"NORMAL","fontWeight":"700","textTransform":"NONE","disabledOpacity":0.5,"primaryTextColor":"var(--lia-bs-white)","primaryTextHoverColor":"var(--lia-bs-white)","primaryTextActiveColor":"var(--lia-bs-white)","primaryBgColor":"var(--lia-bs-primary)","primaryBgHoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.85))","primaryBgActiveColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.7))","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","primaryBorderActive":"1px solid transparent","primaryBorderFocus":"1px solid var(--lia-bs-white)","primaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","secondaryTextColor":"var(--lia-bs-gray-900)","secondaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","secondaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","secondaryBgColor":"var(--lia-bs-gray-200)","secondaryBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","secondaryBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","secondaryBorder":"1px solid transparent","secondaryBorderHover":"1px solid transparent","secondaryBorderActive":"1px solid transparent","secondaryBorderFocus":"1px solid transparent","secondaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","tertiaryTextColor":"var(--lia-bs-gray-900)","tertiaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","tertiaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","tertiaryBgColor":"transparent","tertiaryBgHoverColor":"transparent","tertiaryBgActiveColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.04)","tertiaryBorder":"1px solid transparent","tertiaryBorderHover":"1px solid hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","tertiaryBorderActive":"1px solid transparent","tertiaryBorderFocus":"1px solid transparent","tertiaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","destructiveTextColor":"var(--lia-bs-danger)","destructiveTextHoverColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.95))","destructiveTextActiveColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.9))","destructiveBgColor":"var(--lia-bs-gray-200)","destructiveBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","destructiveBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","destructiveBorder":"1px solid transparent","destructiveBorderHover":"1px solid transparent","destructiveBorderActive":"1px solid transparent","destructiveBorderFocus":"1px solid transparent","destructiveBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","__typename":"ButtonsThemeSettings"},"border":{"color":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","mainContent":"NONE","sideContent":"LIGHT","radiusSm":"3px","radius":"5px","radiusLg":"9px","radius50":"100vw","__typename":"BorderThemeSettings"},"boxShadow":{"xs":"0 0 0 1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.08), 0 3px 0 -1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.16)","sm":"0 2px 4px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.12)","md":"0 5px 15px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","lg":"0 10px 30px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","__typename":"BoxShadowThemeSettings"},"cards":{"bgColor":"var(--lia-panel-bg-color)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":"var(--lia-box-shadow-xs)","__typename":"CardsThemeSettings"},"chip":{"maxWidth":"300px","height":"30px","__typename":"ChipThemeSettings"},"coreTypes":{"defaultMessageLinkColor":"var(--lia-bs-link-color)","defaultMessageLinkDecoration":"none","defaultMessageLinkFontStyle":"NORMAL","defaultMessageLinkFontWeight":"400","defaultMessageFontStyle":"NORMAL","defaultMessageFontWeight":"400","forumColor":"#4099E2","forumFontFamily":"var(--lia-bs-font-family-base)","forumFontWeight":"var(--lia-default-message-font-weight)","forumLineHeight":"var(--lia-bs-line-height-base)","forumFontStyle":"var(--lia-default-message-font-style)","forumMessageLinkColor":"var(--lia-default-message-link-color)","forumMessageLinkDecoration":"var(--lia-default-message-link-decoration)","forumMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","forumMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","forumSolvedColor":"#148563","blogColor":"#1CBAA0","blogFontFamily":"var(--lia-bs-font-family-base)","blogFontWeight":"var(--lia-default-message-font-weight)","blogLineHeight":"1.75","blogFontStyle":"var(--lia-default-message-font-style)","blogMessageLinkColor":"var(--lia-default-message-link-color)","blogMessageLinkDecoration":"var(--lia-default-message-link-decoration)","blogMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","blogMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","tkbColor":"#4C6B90","tkbFontFamily":"var(--lia-bs-font-family-base)","tkbFontWeight":"var(--lia-default-message-font-weight)","tkbLineHeight":"1.75","tkbFontStyle":"var(--lia-default-message-font-style)","tkbMessageLinkColor":"var(--lia-default-message-link-color)","tkbMessageLinkDecoration":"var(--lia-default-message-link-decoration)","tkbMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","tkbMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaColor":"#4099E2","qandaFontFamily":"var(--lia-bs-font-family-base)","qandaFontWeight":"var(--lia-default-message-font-weight)","qandaLineHeight":"var(--lia-bs-line-height-base)","qandaFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkColor":"var(--lia-default-message-link-color)","qandaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","qandaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaSolvedColor":"#3FA023","ideaColor":"#FF8000","ideaFontFamily":"var(--lia-bs-font-family-base)","ideaFontWeight":"var(--lia-default-message-font-weight)","ideaLineHeight":"var(--lia-bs-line-height-base)","ideaFontStyle":"var(--lia-default-message-font-style)","ideaMessageLinkColor":"var(--lia-default-message-link-color)","ideaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","ideaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","ideaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","contestColor":"#FCC845","contestFontFamily":"var(--lia-bs-font-family-base)","contestFontWeight":"var(--lia-default-message-font-weight)","contestLineHeight":"var(--lia-bs-line-height-base)","contestFontStyle":"var(--lia-default-message-link-font-style)","contestMessageLinkColor":"var(--lia-default-message-link-color)","contestMessageLinkDecoration":"var(--lia-default-message-link-decoration)","contestMessageLinkFontStyle":"ITALIC","contestMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","occasionColor":"#D13A1F","occasionFontFamily":"var(--lia-bs-font-family-base)","occasionFontWeight":"var(--lia-default-message-font-weight)","occasionLineHeight":"var(--lia-bs-line-height-base)","occasionFontStyle":"var(--lia-default-message-font-style)","occasionMessageLinkColor":"var(--lia-default-message-link-color)","occasionMessageLinkDecoration":"var(--lia-default-message-link-decoration)","occasionMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","occasionMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","grouphubColor":"#333333","categoryColor":"#949494","communityColor":"#FFFFFF","productColor":"#949494","__typename":"CoreTypesThemeSettings"},"colors":{"black":"#000000","white":"#FFFFFF","gray100":"#F7F7F7","gray200":"#F7F7F7","gray300":"#E8E8E8","gray400":"#D9D9D9","gray500":"#CCCCCC","gray600":"#717171","gray700":"#707070","gray800":"#545454","gray900":"#333333","dark":"#545454","light":"#F7F7F7","primary":"#0069D4","secondary":"#333333","bodyText":"#1E1E1E","bodyBg":"#FFFFFF","info":"#409AE2","success":"#41C5AE","warning":"#FCC844","danger":"#BC341B","alertSystem":"#FF6600","textMuted":"#707070","highlight":"#FFFCAD","outline":"var(--lia-bs-primary)","custom":["#D3F5A4","#243A5E"],"__typename":"ColorsThemeSettings"},"divider":{"size":"3px","marginLeft":"4px","marginRight":"4px","borderRadius":"50%","bgColor":"var(--lia-bs-gray-600)","bgColorActive":"var(--lia-bs-gray-600)","__typename":"DividerThemeSettings"},"dropdown":{"fontSize":"var(--lia-bs-font-size-sm)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius-sm)","dividerBg":"var(--lia-bs-gray-300)","itemPaddingY":"5px","itemPaddingX":"20px","headerColor":"var(--lia-bs-gray-700)","__typename":"DropdownThemeSettings"},"email":{"link":{"color":"#0069D4","hoverColor":"#0061c2","decoration":"none","hoverDecoration":"underline","__typename":"EmailLinkSettings"},"border":{"color":"#e4e4e4","__typename":"EmailBorderSettings"},"buttons":{"borderRadiusLg":"5px","paddingXLg":"16px","paddingYLg":"7px","fontWeight":"700","primaryTextColor":"#ffffff","primaryTextHoverColor":"#ffffff","primaryBgColor":"#0069D4","primaryBgHoverColor":"#005cb8","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","__typename":"EmailButtonsSettings"},"panel":{"borderRadius":"5px","borderColor":"#e4e4e4","__typename":"EmailPanelSettings"},"__typename":"EmailThemeSettings"},"emoji":{"skinToneDefault":"#ffcd43","skinToneLight":"#fae3c5","skinToneMediumLight":"#e2cfa5","skinToneMedium":"#daa478","skinToneMediumDark":"#a78058","skinToneDark":"#5e4d43","__typename":"EmojiThemeSettings"},"heading":{"color":"var(--lia-bs-body-color)","fontFamily":"Segoe UI","fontStyle":"NORMAL","fontWeight":"400","h1FontSize":"34px","h2FontSize":"32px","h3FontSize":"28px","h4FontSize":"24px","h5FontSize":"20px","h6FontSize":"16px","lineHeight":"1.3","subHeaderFontSize":"11px","subHeaderFontWeight":"500","h1LetterSpacing":"normal","h2LetterSpacing":"normal","h3LetterSpacing":"normal","h4LetterSpacing":"normal","h5LetterSpacing":"normal","h6LetterSpacing":"normal","subHeaderLetterSpacing":"2px","h1FontWeight":"var(--lia-bs-headings-font-weight)","h2FontWeight":"var(--lia-bs-headings-font-weight)","h3FontWeight":"var(--lia-bs-headings-font-weight)","h4FontWeight":"var(--lia-bs-headings-font-weight)","h5FontWeight":"var(--lia-bs-headings-font-weight)","h6FontWeight":"var(--lia-bs-headings-font-weight)","__typename":"HeadingThemeSettings"},"icons":{"size10":"10px","size12":"12px","size14":"14px","size16":"16px","size20":"20px","size24":"24px","size30":"30px","size40":"40px","size50":"50px","size60":"60px","size80":"80px","size120":"120px","size160":"160px","__typename":"IconsThemeSettings"},"imagePreview":{"bgColor":"var(--lia-bs-gray-900)","titleColor":"var(--lia-bs-white)","controlColor":"var(--lia-bs-white)","controlBgColor":"var(--lia-bs-gray-800)","__typename":"ImagePreviewThemeSettings"},"input":{"borderColor":"var(--lia-bs-gray-600)","disabledColor":"var(--lia-bs-gray-600)","focusBorderColor":"var(--lia-bs-primary)","labelMarginBottom":"10px","btnFontSize":"var(--lia-bs-font-size-sm)","focusBoxShadow":"0 0 0 3px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","checkLabelMarginBottom":"2px","checkboxBorderRadius":"3px","borderRadiusSm":"var(--lia-bs-border-radius-sm)","borderRadius":"var(--lia-bs-border-radius)","borderRadiusLg":"var(--lia-bs-border-radius-lg)","formTextMarginTop":"4px","textAreaBorderRadius":"var(--lia-bs-border-radius)","activeFillColor":"var(--lia-bs-primary)","__typename":"InputThemeSettings"},"loading":{"dotDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.2)","dotLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.5)","barDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.06)","barLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.4)","__typename":"LoadingThemeSettings"},"link":{"color":"var(--lia-bs-primary)","hoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) - 10%))","decoration":"none","hoverDecoration":"underline","__typename":"LinkThemeSettings"},"listGroup":{"itemPaddingY":"15px","itemPaddingX":"15px","borderColor":"var(--lia-bs-gray-300)","__typename":"ListGroupThemeSettings"},"modal":{"contentTextColor":"var(--lia-bs-body-color)","contentBg":"var(--lia-bs-white)","backgroundBg":"var(--lia-bs-black)","smSize":"440px","mdSize":"760px","lgSize":"1080px","backdropOpacity":0.3,"contentBoxShadowXs":"var(--lia-bs-box-shadow-sm)","contentBoxShadow":"var(--lia-bs-box-shadow)","headerFontWeight":"700","__typename":"ModalThemeSettings"},"navbar":{"position":"FIXED","background":{"attachment":null,"clip":null,"color":"var(--lia-bs-white)","imageAssetName":"","imageLastModified":"0","origin":null,"position":"CENTER_CENTER","repeat":"NO_REPEAT","size":"COVER","__typename":"BackgroundProps"},"backgroundOpacity":0.8,"paddingTop":"15px","paddingBottom":"15px","borderBottom":"1px solid var(--lia-bs-border-color)","boxShadow":"var(--lia-bs-box-shadow-sm)","brandMarginRight":"30px","brandMarginRightSm":"10px","brandLogoHeight":"30px","linkGap":"10px","linkJustifyContent":"flex-start","linkPaddingY":"5px","linkPaddingX":"10px","linkDropdownPaddingY":"9px","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkColor":"var(--lia-bs-body-color)","linkHoverColor":"var(--lia-bs-primary)","linkFontSize":"var(--lia-bs-font-size-sm)","linkFontStyle":"NORMAL","linkFontWeight":"400","linkTextTransform":"NONE","linkLetterSpacing":"normal","linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkBgColor":"transparent","linkBgHoverColor":"transparent","linkBorder":"none","linkBorderHover":"none","linkBoxShadow":"none","linkBoxShadowHover":"none","linkTextBorderBottom":"none","linkTextBorderBottomHover":"none","dropdownPaddingTop":"10px","dropdownPaddingBottom":"15px","dropdownPaddingX":"10px","dropdownMenuOffset":"2px","dropdownDividerMarginTop":"10px","dropdownDividerMarginBottom":"10px","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","controllerIconColor":"var(--lia-bs-body-color)","controllerIconHoverColor":"var(--lia-bs-body-color)","controllerTextColor":"var(--lia-nav-controller-icon-color)","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","controllerHighlightColor":"hsla(30, 100%, 50%)","controllerHighlightTextColor":"var(--lia-yiq-light)","controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerColor":"var(--lia-nav-controller-icon-color)","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","hamburgerBgColor":"transparent","hamburgerBgHoverColor":"transparent","hamburgerBorder":"none","hamburgerBorderHover":"none","collapseMenuMarginLeft":"20px","collapseMenuDividerBg":"var(--lia-nav-link-color)","collapseMenuDividerOpacity":0.16,"__typename":"NavbarThemeSettings"},"pager":{"textColor":"var(--lia-bs-link-color)","textFontWeight":"var(--lia-font-weight-md)","textFontSize":"var(--lia-bs-font-size-sm)","__typename":"PagerThemeSettings"},"panel":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-bs-border-radius)","borderColor":"var(--lia-bs-border-color)","boxShadow":"none","__typename":"PanelThemeSettings"},"popover":{"arrowHeight":"8px","arrowWidth":"16px","maxWidth":"300px","minWidth":"100px","headerBg":"var(--lia-bs-white)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius)","boxShadow":"0 0.5rem 1rem hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.15)","__typename":"PopoverThemeSettings"},"prism":{"color":"#000000","bgColor":"#f5f2f0","fontFamily":"var(--font-family-monospace)","fontSize":"var(--lia-bs-font-size-base)","fontWeightBold":"var(--lia-bs-font-weight-bold)","fontStyleItalic":"italic","tabSize":2,"highlightColor":"#b3d4fc","commentColor":"#62707e","punctuationColor":"#6f6f6f","namespaceOpacity":"0.7","propColor":"#990055","selectorColor":"#517a00","operatorColor":"#906736","operatorBgColor":"hsla(0, 0%, 100%, 0.5)","keywordColor":"#0076a9","functionColor":"#d3284b","variableColor":"#c14700","__typename":"PrismThemeSettings"},"rte":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":" var(--lia-panel-box-shadow)","customColor1":"#bfedd2","customColor2":"#fbeeb8","customColor3":"#f8cac6","customColor4":"#eccafa","customColor5":"#c2e0f4","customColor6":"#2dc26b","customColor7":"#f1c40f","customColor8":"#e03e2d","customColor9":"#b96ad9","customColor10":"#3598db","customColor11":"#169179","customColor12":"#e67e23","customColor13":"#ba372a","customColor14":"#843fa1","customColor15":"#236fa1","customColor16":"#ecf0f1","customColor17":"#ced4d9","customColor18":"#95a5a6","customColor19":"#7e8c8d","customColor20":"#34495e","customColor21":"#000000","customColor22":"#ffffff","defaultMessageHeaderMarginTop":"40px","defaultMessageHeaderMarginBottom":"20px","defaultMessageItemMarginTop":"0","defaultMessageItemMarginBottom":"10px","diffAddedColor":"hsla(170, 53%, 51%, 0.4)","diffChangedColor":"hsla(43, 97%, 63%, 0.4)","diffNoneColor":"hsla(0, 0%, 80%, 0.4)","diffRemovedColor":"hsla(9, 74%, 47%, 0.4)","specialMessageHeaderMarginTop":"40px","specialMessageHeaderMarginBottom":"20px","specialMessageItemMarginTop":"0","specialMessageItemMarginBottom":"10px","__typename":"RteThemeSettings"},"tags":{"bgColor":"var(--lia-bs-gray-200)","bgHoverColor":"var(--lia-bs-gray-400)","borderRadius":"var(--lia-bs-border-radius-sm)","color":"var(--lia-bs-body-color)","hoverColor":"var(--lia-bs-body-color)","fontWeight":"var(--lia-font-weight-md)","fontSize":"var(--lia-font-size-xxs)","textTransform":"UPPERCASE","letterSpacing":"0.5px","__typename":"TagsThemeSettings"},"toasts":{"borderRadius":"var(--lia-bs-border-radius)","paddingX":"12px","__typename":"ToastsThemeSettings"},"typography":{"fontFamilyBase":"Segoe UI","fontStyleBase":"NORMAL","fontWeightBase":"400","fontWeightLight":"300","fontWeightNormal":"400","fontWeightMd":"500","fontWeightBold":"700","letterSpacingSm":"normal","letterSpacingXs":"normal","lineHeightBase":"1.5","fontSizeBase":"16px","fontSizeXxs":"11px","fontSizeXs":"12px","fontSizeSm":"14px","fontSizeLg":"20px","fontSizeXl":"24px","smallFontSize":"14px","customFonts":[{"source":"SERVER","name":"Segoe UI","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"},{"style":"NORMAL","weight":"300","__typename":"FontStyleData"},{"style":"NORMAL","weight":"600","__typename":"FontStyleData"},{"style":"NORMAL","weight":"700","__typename":"FontStyleData"},{"style":"ITALIC","weight":"400","__typename":"FontStyleData"}],"assetNames":["SegoeUI-normal-400.woff2","SegoeUI-normal-300.woff2","SegoeUI-normal-600.woff2","SegoeUI-normal-700.woff2","SegoeUI-italic-400.woff2"],"__typename":"CustomFont"},{"source":"SERVER","name":"MWF Fluent Icons","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"}],"assetNames":["MWFFluentIcons-normal-400.woff2"],"__typename":"CustomFont"}],"__typename":"TypographyThemeSettings"},"unstyledListItem":{"marginBottomSm":"5px","marginBottomMd":"10px","marginBottomLg":"15px","marginBottomXl":"20px","marginBottomXxl":"25px","__typename":"UnstyledListItemThemeSettings"},"yiq":{"light":"#ffffff","dark":"#000000","__typename":"YiqThemeSettings"},"colorLightness":{"primaryDark":0.36,"primaryLight":0.74,"primaryLighter":0.89,"primaryLightest":0.95,"infoDark":0.39,"infoLight":0.72,"infoLighter":0.85,"infoLightest":0.93,"successDark":0.24,"successLight":0.62,"successLighter":0.8,"successLightest":0.91,"warningDark":0.39,"warningLight":0.68,"warningLighter":0.84,"warningLightest":0.93,"dangerDark":0.41,"dangerLight":0.72,"dangerLighter":0.89,"dangerLightest":0.95,"__typename":"ColorLightnessThemeSettings"},"localOverride":false,"__typename":"Theme"},"localOverride":false},"CachedAsset:text:en_US-components/common/EmailVerification-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/common/EmailVerification-1745505310105","value":{"email.verification.title":"Email Verification Required","email.verification.message.update.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. To change your email, visit My Settings.","email.verification.message.resend.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. Resend email."},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-1745505310105","value":{"title":"Loading..."},"localOverride":false},"CachedAsset:quilt:o365.prod:pages/blogs/BlogMessagePage:board:FastTrackforAzureBlog-1745502713103":{"__typename":"CachedAsset","id":"quilt:o365.prod:pages/blogs/BlogMessagePage:board:FastTrackforAzureBlog-1745502713103","value":{"id":"BlogMessagePage","container":{"id":"Common","headerProps":{"backgroundImageProps":null,"backgroundColor":null,"addComponents":null,"removeComponents":["community.widget.bannerWidget"],"componentOrder":null,"__typename":"QuiltContainerSectionProps"},"headerComponentProps":{"community.widget.breadcrumbWidget":{"disableLastCrumbForDesktop":false}},"footerProps":null,"footerComponentProps":null,"items":[{"id":"blog-article","layout":"ONE_COLUMN","bgColor":null,"showTitle":null,"showDescription":null,"textPosition":null,"textColor":null,"sectionEditLevel":"LOCKED","bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"OneColumnQuiltSection","columnMap":{"main":[{"id":"blogs.widget.blogArticleWidget","className":"lia-blog-container","props":null,"__typename":"QuiltComponent"}],"__typename":"OneSectionColumns"}},{"id":"section-1729184836777","layout":"MAIN_SIDE","bgColor":"transparent","showTitle":false,"showDescription":false,"textPosition":"CENTER","textColor":"var(--lia-bs-body-color)","sectionEditLevel":null,"bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"MainSideQuiltSection","columnMap":{"main":[],"side":[],"__typename":"MainSideSectionColumns"}}],"__typename":"QuiltContainer"},"__typename":"Quilt","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-pages/blogs/BlogMessagePage-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-pages/blogs/BlogMessagePage-1745505310105","value":{"title":"{contextMessageSubject} | {communityTitle}","errorMissing":"This blog post cannot be found","name":"Blog Message Page","section.blog-article.title":"Blog Post","archivedMessageTitle":"This Content Has Been Archived","section.section-1729184836777.title":"","section.section-1729184836777.description":"","section.CncIde.title":"Blog Post","section.tifEmD.description":"","section.tifEmD.title":""},"localOverride":false},"CachedAsset:quiltWrapper:o365.prod:Common:1745505311091":{"__typename":"CachedAsset","id":"quiltWrapper:o365.prod:Common:1745505311091","value":{"id":"Common","header":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"community.widget.navbarWidget","props":{"showUserName":true,"showRegisterLink":true,"useIconLanguagePicker":true,"useLabelLanguagePicker":true,"className":"QuiltComponent_lia-component-edit-mode__0nCcm","links":{"sideLinks":[],"mainLinks":[{"children":[],"linkType":"INTERNAL","id":"gxcuf89792","params":{},"routeName":"CommunityPage"},{"children":[],"linkType":"EXTERNAL","id":"external-link","url":"/Directory","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft365","params":{"categoryId":"microsoft365"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows","params":{"categoryId":"Windows"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"Common-microsoft365-copilot-link","params":{"categoryId":"Microsoft365Copilot"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-teams","params":{"categoryId":"MicrosoftTeams"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-securityand-compliance","params":{"categoryId":"microsoft-security"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"azure","params":{"categoryId":"Azure"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"Common-content_management-link","params":{"categoryId":"Content_Management"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"exchange","params":{"categoryId":"Exchange"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows-server","params":{"categoryId":"Windows-Server"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"outlook","params":{"categoryId":"Outlook"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-endpoint-manager","params":{"categoryId":"microsoftintune"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-2","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities","url":"/","target":"BLANK"},{"children":[{"linkType":"INTERNAL","id":"a-i","params":{"categoryId":"AI"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"education-sector","params":{"categoryId":"EducationSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"partner-community","params":{"categoryId":"PartnerCommunity"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"i-t-ops-talk","params":{"categoryId":"ITOpsTalk"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"healthcare-and-life-sciences","params":{"categoryId":"HealthcareAndLifeSciences"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-mechanics","params":{"categoryId":"MicrosoftMechanics"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"public-sector","params":{"categoryId":"PublicSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-m-b","params":{"categoryId":"MicrosoftforNonprofits"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"io-t","params":{"categoryId":"IoT"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"startupsat-microsoft","params":{"categoryId":"StartupsatMicrosoft"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"driving-adoption","params":{"categoryId":"DrivingAdoption"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-1","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities-1","url":"/","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external","url":"/Blogs","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external-1","url":"/Events","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft-learn-1","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-learn-blog","params":{"boardId":"MicrosoftLearnBlog","categoryId":"MicrosoftLearn"},"routeName":"BlogBoardPage"},{"linkType":"EXTERNAL","id":"external-10","url":"https://learningroomdirectory.microsoft.com/","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-3","url":"https://docs.microsoft.com/learn/dynamics365/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-4","url":"https://docs.microsoft.com/learn/m365/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-5","url":"https://docs.microsoft.com/learn/topics/sci/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-6","url":"https://docs.microsoft.com/learn/powerplatform/?wt.mc_id=techcom_header-webpage-powerplatform","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-7","url":"https://docs.microsoft.com/learn/github/?wt.mc_id=techcom_header-webpage-github","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-8","url":"https://docs.microsoft.com/learn/teams/?wt.mc_id=techcom_header-webpage-teams","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-9","url":"https://docs.microsoft.com/learn/dotnet/?wt.mc_id=techcom_header-webpage-dotnet","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-2","url":"https://docs.microsoft.com/learn/azure/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"}],"linkType":"INTERNAL","id":"microsoft-learn","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"children":[],"linkType":"INTERNAL","id":"community-info-center","params":{"categoryId":"Community-Info-Center"},"routeName":"CategoryPage"}]},"style":{"boxShadow":"var(--lia-bs-box-shadow-sm)","controllerHighlightColor":"hsla(30, 100%, 50%)","linkFontWeight":"400","dropdownDividerMarginBottom":"10px","hamburgerBorderHover":"none","linkBoxShadowHover":"none","linkFontSize":"14px","backgroundOpacity":0.8,"controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerBgColor":"transparent","hamburgerColor":"var(--lia-nav-controller-icon-color)","linkTextBorderBottom":"none","brandLogoHeight":"30px","linkBgHoverColor":"transparent","linkLetterSpacing":"normal","collapseMenuDividerOpacity":0.16,"dropdownPaddingBottom":"15px","paddingBottom":"15px","dropdownMenuOffset":"2px","hamburgerBgHoverColor":"transparent","borderBottom":"1px solid var(--lia-bs-border-color)","hamburgerBorder":"none","dropdownPaddingX":"10px","brandMarginRightSm":"10px","linkBoxShadow":"none","collapseMenuDividerBg":"var(--lia-nav-link-color)","linkColor":"var(--lia-bs-body-color)","linkJustifyContent":"flex-start","dropdownPaddingTop":"10px","controllerHighlightTextColor":"var(--lia-yiq-dark)","controllerTextColor":"var(--lia-nav-controller-icon-color)","background":{"imageAssetName":"","color":"var(--lia-bs-white)","size":"COVER","repeat":"NO_REPEAT","position":"CENTER_CENTER","imageLastModified":""},"linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkHoverColor":"var(--lia-bs-body-color)","position":"FIXED","linkBorder":"none","linkTextBorderBottomHover":"2px solid var(--lia-bs-body-color)","brandMarginRight":"30px","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","linkBorderHover":"none","collapseMenuMarginLeft":"20px","linkFontStyle":"NORMAL","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","linkPaddingX":"10px","linkPaddingY":"5px","paddingTop":"15px","linkTextTransform":"NONE","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","linkBgColor":"transparent","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkDropdownPaddingY":"9px","controllerIconColor":"var(--lia-bs-body-color)","dropdownDividerMarginTop":"10px","linkGap":"10px","controllerIconHoverColor":"var(--lia-bs-body-color)"},"showSearchIcon":false,"languagePickerStyle":"iconAndLabel"},"__typename":"QuiltComponent"},{"id":"community.widget.breadcrumbWidget","props":{"backgroundColor":"transparent","linkHighlightColor":"var(--lia-bs-primary)","visualEffects":{"showBottomBorder":true},"linkTextColor":"var(--lia-bs-gray-700)"},"__typename":"QuiltComponent"},{"id":"custom.widget.community_banner","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"usePageWidth":false,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"},{"id":"custom.widget.HeroBanner","props":{"widgetVisibility":"signedInOrAnonymous","usePageWidth":false,"useTitle":true,"cMax_items":3,"useBackground":false,"title":"","lazyLoad":false,"widgetChooser":"custom.widget.HeroBanner"},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"footer":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"custom.widget.MicrosoftFooter","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"__typename":"QuiltWrapper","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/ActionFeedback-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/common/ActionFeedback-1745505310105","value":{"joinedGroupHub.title":"Welcome","joinedGroupHub.message":"You are now a member of this group and are subscribed to updates.","groupHubInviteNotFound.title":"Invitation Not Found","groupHubInviteNotFound.message":"Sorry, we could not find your invitation to the group. The owner may have canceled the invite.","groupHubNotFound.title":"Group Not Found","groupHubNotFound.message":"The grouphub you tried to join does not exist. It may have been deleted.","existingGroupHubMember.title":"Already Joined","existingGroupHubMember.message":"You are already a member of this group.","accountLocked.title":"Account Locked","accountLocked.message":"Your account has been locked due to multiple failed attempts. Try again in {lockoutTime} minutes.","editedGroupHub.title":"Changes Saved","editedGroupHub.message":"Your group has been updated.","leftGroupHub.title":"Goodbye","leftGroupHub.message":"You are no longer a member of this group and will not receive future updates.","deletedGroupHub.title":"Deleted","deletedGroupHub.message":"The group has been deleted.","groupHubCreated.title":"Group Created","groupHubCreated.message":"{groupHubName} is ready to use","accountClosed.title":"Account Closed","accountClosed.message":"The account has been closed and you will now be redirected to the homepage","resetTokenExpired.title":"Reset Password Link has Expired","resetTokenExpired.message":"Try resetting your password again","invalidUrl.title":"Invalid URL","invalidUrl.message":"The URL you're using is not recognized. Verify your URL and try again.","accountClosedForUser.title":"Account Closed","accountClosedForUser.message":"{userName}'s account is closed","inviteTokenInvalid.title":"Invitation Invalid","inviteTokenInvalid.message":"Your invitation to the community has been canceled or expired.","inviteTokenError.title":"Invitation Verification Failed","inviteTokenError.message":"The url you are utilizing is not recognized. Verify your URL and try again","pageNotFound.title":"Access Denied","pageNotFound.message":"You do not have access to this area of the community or it doesn't exist","eventAttending.title":"Responded as Attending","eventAttending.message":"You'll be notified when there's new activity and reminded as the event approaches","eventInterested.title":"Responded as Interested","eventInterested.message":"You'll be notified when there's new activity and reminded as the event approaches","eventNotFound.title":"Event Not Found","eventNotFound.message":"The event you tried to respond to does not exist.","redirectToRelatedPage.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.message":"The content you are trying to access is archived","redirectToRelatedPage.message":"The content you are trying to access is archived","relatedUrl.archivalLink.flyoutMessage":"The content you are trying to access is archived View Archived Content"},"localOverride":false},"CachedAsset:component:custom.widget.community_banner-en-1744400828020":{"__typename":"CachedAsset","id":"component:custom.widget.community_banner-en-1744400828020","value":{"component":{"id":"custom.widget.community_banner","template":{"id":"community_banner","markupLanguage":"HANDLEBARS","style":".community-banner {\n a.top-bar.btn {\n top: 0px;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0px;\n background: #0068b8;\n color: white;\n padding: 10px 0px;\n display: block;\n box-shadow: none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0px !important;\n font-size: 14px;\n }\n}\n","texts":null,"defaults":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.community_banner","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_community_banner_community-banner_1x9u2_1 {\n a.custom_widget_community_banner_top-bar_1x9u2_2.custom_widget_community_banner_btn_1x9u2_2 {\n top: 0;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0;\n background: #0068b8;\n color: white;\n padding: 0.625rem 0;\n display: block;\n box-shadow: none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0 !important;\n font-size: 0.875rem;\n }\n}\n","tokens":{"community-banner":"custom_widget_community_banner_community-banner_1x9u2_1","top-bar":"custom_widget_community_banner_top-bar_1x9u2_2","btn":"custom_widget_community_banner_btn_1x9u2_2"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.HeroBanner-en-1744400828020":{"__typename":"CachedAsset","id":"component:custom.widget.HeroBanner-en-1744400828020","value":{"component":{"id":"custom.widget.HeroBanner","template":{"id":"HeroBanner","markupLanguage":"REACT","style":null,"texts":{"searchPlaceholderText":"Search this community","followActionText":"Follow","unfollowActionText":"Following","searchOnHoverText":"Please enter your search term(s) and then press return key to complete a search.","blogs.sidebar.pagetitle":"Latest Blogs | Microsoft Tech Community","followThisNode":"Follow this node","unfollowThisNode":"Unfollow this node"},"defaults":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.HeroBanner","form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"__typename":"Component","localOverride":false},"globalCss":null,"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"}},"localOverride":false},"CachedAsset:component:custom.widget.MicrosoftFooter-en-1744400828020":{"__typename":"CachedAsset","id":"component:custom.widget.MicrosoftFooter-en-1744400828020","value":{"component":{"id":"custom.widget.MicrosoftFooter","template":{"id":"MicrosoftFooter","markupLanguage":"HANDLEBARS","style":".context-uhf {\n min-width: 280px;\n font-size: 15px;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.c-uhff-link {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.c-uhff {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.c-uhff-nav {\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n .c-heading-4 {\n color: #616161;\n word-break: break-word;\n font-size: 15px;\n line-height: 20px;\n padding: 36px 0 4px;\n font-weight: 600;\n }\n .c-uhff-nav-row {\n .c-uhff-nav-group {\n display: block;\n float: left;\n min-height: 1px;\n vertical-align: text-top;\n padding: 0 12px;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.c-list.f-bare {\n font-size: 11px;\n line-height: 16px;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 8px 0;\n margin: 0;\n }\n }\n }\n }\n}\n.c-uhff-base {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 30px 5% 16px;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.c-uhff-ccpa {\n font-size: 11px;\n line-height: 16px;\n float: left;\n margin: 3px 0;\n }\n a.c-uhff-ccpa:hover {\n text-decoration: underline;\n }\n ul.c-list {\n font-size: 11px;\n line-height: 16px;\n float: right;\n margin: 3px 0;\n color: #616161;\n li {\n padding: 0 24px 4px 0;\n display: inline-block;\n }\n }\n .c-list.f-bare {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 30px 24px 16px;\n }\n}\n\n.social-share {\n position: fixed;\n top: 60%;\n transform: translateY(-50%);\n left: 0;\n z-index: 1000;\n}\n\n.sharing-options {\n list-style: none;\n padding: 0;\n margin: 0;\n display: block;\n flex-direction: column;\n background-color: white;\n width: 43px;\n border-radius: 0px 7px 7px 0px;\n}\n.linkedin-icon {\n border-top-right-radius: 7px;\n}\n.linkedin-icon:hover {\n border-radius: 0;\n}\n.social-share-rss-image {\n border-bottom-right-radius: 7px;\n}\n.social-share-rss-image:hover {\n border-radius: 0;\n}\n\n.social-link-footer {\n position: relative;\n display: block;\n margin: -2px 0;\n transition: all 0.2s ease;\n}\n.social-link-footer:hover .linkedin-icon {\n border-radius: 0;\n}\n.social-link-footer:hover .social-share-rss-image {\n border-radius: 0;\n}\n\n.social-link-footer img {\n width: 40px;\n height: auto;\n transition: filter 0.3s ease;\n}\n\n.social-share-list {\n width: 40px;\n}\n.social-share-rss-image {\n width: 40px;\n}\n\n.share-icon {\n border: 2px solid transparent;\n display: inline-block;\n position: relative;\n}\n\n.share-icon:hover {\n opacity: 1;\n border: 2px solid white;\n box-sizing: border-box;\n}\n\n.share-icon:hover .label {\n opacity: 1;\n visibility: visible;\n border: 2px solid white;\n box-sizing: border-box;\n border-left: none;\n}\n\n.label {\n position: absolute;\n left: 100%;\n white-space: nowrap;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n color: white;\n border-radius: 0 10 0 10px;\n top: 50%;\n transform: translateY(-50%);\n height: 40px;\n border-radius: 0 6px 6px 0;\n display: flex;\n align-items: center;\n justify-content: center;\n padding: 20px 5px 20px 8px;\n margin-left: -1px;\n}\n.linkedin {\n background-color: #0474b4;\n}\n.facebook {\n background-color: #3c5c9c;\n}\n.twitter {\n background-color: white;\n color: black;\n}\n.reddit {\n background-color: #fc4404;\n}\n.mail {\n background-color: #848484;\n}\n.bluesky {\n background-color: white;\n color: black;\n}\n.rss {\n background-color: #ec7b1c;\n}\n#RSS {\n width: 40px;\n height: 40px;\n}\n\n@media (max-width: 991px) {\n .social-share {\n display: none;\n }\n}\n","texts":{"New tab":"What's New","New 1":"Surface Laptop Studio 2","New 2":"Surface Laptop Go 3","New 3":"Surface Pro 9","New 4":"Surface Laptop 5","New 5":"Surface Studio 2+","New 6":"Copilot in Windows","New 7":"Microsoft 365","New 8":"Windows 11 apps","Store tab":"Microsoft Store","Store 1":"Account Profile","Store 2":"Download Center","Store 3":"Microsoft Store Support","Store 4":"Returns","Store 5":"Order tracking","Store 6":"Certified Refurbished","Store 7":"Microsoft Store Promise","Store 8":"Flexible Payments","Education tab":"Education","Edu 1":"Microsoft in education","Edu 2":"Devices for education","Edu 3":"Microsoft Teams for Education","Edu 4":"Microsoft 365 Education","Edu 5":"How to buy for your school","Edu 6":"Educator Training and development","Edu 7":"Deals for students and parents","Edu 8":"Azure for students","Business tab":"Business","Bus 1":"Microsoft Cloud","Bus 2":"Microsoft Security","Bus 3":"Dynamics 365","Bus 4":"Microsoft 365","Bus 5":"Microsoft Power Platform","Bus 6":"Microsoft Teams","Bus 7":"Microsoft Industry","Bus 8":"Small Business","Developer tab":"Developer & IT","Dev 1":"Azure","Dev 2":"Developer Center","Dev 3":"Documentation","Dev 4":"Microsoft Learn","Dev 5":"Microsoft Tech Community","Dev 6":"Azure Marketplace","Dev 7":"AppSource","Dev 8":"Visual Studio","Company tab":"Company","Com 1":"Careers","Com 2":"About Microsoft","Com 3":"Company News","Com 4":"Privacy at Microsoft","Com 5":"Investors","Com 6":"Diversity and inclusion","Com 7":"Accessiblity","Com 8":"Sustainibility"},"defaults":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.MicrosoftFooter","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_MicrosoftFooter_context-uhf_105bp_1 {\n min-width: 17.5rem;\n font-size: 0.9375rem;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-link_105bp_12 {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff_105bp_12 {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.custom_widget_MicrosoftFooter_c-uhff-nav_105bp_35 {\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n .custom_widget_MicrosoftFooter_c-heading-4_105bp_49 {\n color: #616161;\n word-break: break-word;\n font-size: 0.9375rem;\n line-height: 1.25rem;\n padding: 2.25rem 0 0.25rem;\n font-weight: 600;\n }\n .custom_widget_MicrosoftFooter_c-uhff-nav-row_105bp_57 {\n .custom_widget_MicrosoftFooter_c-uhff-nav-group_105bp_58 {\n display: block;\n float: left;\n min-height: 0.0625rem;\n vertical-align: text-top;\n padding: 0 0.75rem;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.custom_widget_MicrosoftFooter_c-list_105bp_78.custom_widget_MicrosoftFooter_f-bare_105bp_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 0.5rem 0;\n margin: 0;\n }\n }\n }\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff-base_105bp_94 {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 1.875rem 5% 1rem;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: left;\n margin: 0.1875rem 0;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107:hover {\n text-decoration: underline;\n }\n ul.custom_widget_MicrosoftFooter_c-list_105bp_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: right;\n margin: 0.1875rem 0;\n color: #616161;\n li {\n padding: 0 1.5rem 0.25rem 0;\n display: inline-block;\n }\n }\n .custom_widget_MicrosoftFooter_c-list_105bp_78.custom_widget_MicrosoftFooter_f-bare_105bp_78 {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 1.875rem 1.5rem 1rem;\n }\n}\n.custom_widget_MicrosoftFooter_social-share_105bp_138 {\n position: fixed;\n top: 60%;\n transform: translateY(-50%);\n left: 0;\n z-index: 1000;\n}\n.custom_widget_MicrosoftFooter_sharing-options_105bp_146 {\n list-style: none;\n padding: 0;\n margin: 0;\n display: block;\n flex-direction: column;\n background-color: white;\n width: 2.6875rem;\n border-radius: 0 0.4375rem 0.4375rem 0;\n}\n.custom_widget_MicrosoftFooter_linkedin-icon_105bp_156 {\n border-top-right-radius: 7px;\n}\n.custom_widget_MicrosoftFooter_linkedin-icon_105bp_156:hover {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n border-bottom-right-radius: 7px;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162:hover {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169 {\n position: relative;\n display: block;\n margin: -0.125rem 0;\n transition: all 0.2s ease;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169:hover .custom_widget_MicrosoftFooter_linkedin-icon_105bp_156 {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169:hover .custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169 img {\n width: 2.5rem;\n height: auto;\n transition: filter 0.3s ease;\n}\n.custom_widget_MicrosoftFooter_social-share-list_105bp_188 {\n width: 2.5rem;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n width: 2.5rem;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195 {\n border: 2px solid transparent;\n display: inline-block;\n position: relative;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195:hover {\n opacity: 1;\n border: 2px solid white;\n box-sizing: border-box;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195:hover .custom_widget_MicrosoftFooter_label_105bp_207 {\n opacity: 1;\n visibility: visible;\n border: 2px solid white;\n box-sizing: border-box;\n border-left: none;\n}\n.custom_widget_MicrosoftFooter_label_105bp_207 {\n position: absolute;\n left: 100%;\n white-space: nowrap;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n color: white;\n border-radius: 0 10 0 0.625rem;\n top: 50%;\n transform: translateY(-50%);\n height: 2.5rem;\n border-radius: 0 0.375rem 0.375rem 0;\n display: flex;\n align-items: center;\n justify-content: center;\n padding: 1.25rem 0.3125rem 1.25rem 0.5rem;\n margin-left: -0.0625rem;\n}\n.custom_widget_MicrosoftFooter_linkedin_105bp_156 {\n background-color: #0474b4;\n}\n.custom_widget_MicrosoftFooter_facebook_105bp_237 {\n background-color: #3c5c9c;\n}\n.custom_widget_MicrosoftFooter_twitter_105bp_240 {\n background-color: white;\n color: black;\n}\n.custom_widget_MicrosoftFooter_reddit_105bp_244 {\n background-color: #fc4404;\n}\n.custom_widget_MicrosoftFooter_mail_105bp_247 {\n background-color: #848484;\n}\n.custom_widget_MicrosoftFooter_bluesky_105bp_250 {\n background-color: white;\n color: black;\n}\n.custom_widget_MicrosoftFooter_rss_105bp_254 {\n background-color: #ec7b1c;\n}\n#custom_widget_MicrosoftFooter_RSS_105bp_1 {\n width: 2.5rem;\n height: 2.5rem;\n}\n@media (max-width: 991px) {\n .custom_widget_MicrosoftFooter_social-share_105bp_138 {\n display: none;\n }\n}\n","tokens":{"context-uhf":"custom_widget_MicrosoftFooter_context-uhf_105bp_1","c-uhff-link":"custom_widget_MicrosoftFooter_c-uhff-link_105bp_12","c-uhff":"custom_widget_MicrosoftFooter_c-uhff_105bp_12","c-uhff-nav":"custom_widget_MicrosoftFooter_c-uhff-nav_105bp_35","c-heading-4":"custom_widget_MicrosoftFooter_c-heading-4_105bp_49","c-uhff-nav-row":"custom_widget_MicrosoftFooter_c-uhff-nav-row_105bp_57","c-uhff-nav-group":"custom_widget_MicrosoftFooter_c-uhff-nav-group_105bp_58","c-list":"custom_widget_MicrosoftFooter_c-list_105bp_78","f-bare":"custom_widget_MicrosoftFooter_f-bare_105bp_78","c-uhff-base":"custom_widget_MicrosoftFooter_c-uhff-base_105bp_94","c-uhff-ccpa":"custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107","social-share":"custom_widget_MicrosoftFooter_social-share_105bp_138","sharing-options":"custom_widget_MicrosoftFooter_sharing-options_105bp_146","linkedin-icon":"custom_widget_MicrosoftFooter_linkedin-icon_105bp_156","social-share-rss-image":"custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162","social-link-footer":"custom_widget_MicrosoftFooter_social-link-footer_105bp_169","social-share-list":"custom_widget_MicrosoftFooter_social-share-list_105bp_188","share-icon":"custom_widget_MicrosoftFooter_share-icon_105bp_195","label":"custom_widget_MicrosoftFooter_label_105bp_207","linkedin":"custom_widget_MicrosoftFooter_linkedin_105bp_156","facebook":"custom_widget_MicrosoftFooter_facebook_105bp_237","twitter":"custom_widget_MicrosoftFooter_twitter_105bp_240","reddit":"custom_widget_MicrosoftFooter_reddit_105bp_244","mail":"custom_widget_MicrosoftFooter_mail_105bp_247","bluesky":"custom_widget_MicrosoftFooter_bluesky_105bp_250","rss":"custom_widget_MicrosoftFooter_rss_105bp_254","RSS":"custom_widget_MicrosoftFooter_RSS_105bp_1"}},"form":null},"localOverride":false},"CachedAsset:text:en_US-components/community/Breadcrumb-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/community/Breadcrumb-1745505310105","value":{"navLabel":"Breadcrumbs","dropdown":"Additional parent page navigation"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBanner-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBanner-1745505310105","value":{"messageMarkedAsSpam":"This post has been marked as spam","messageMarkedAsSpam@board:TKB":"This article has been marked as spam","messageMarkedAsSpam@board:BLOG":"This post has been marked as spam","messageMarkedAsSpam@board:FORUM":"This discussion has been marked as spam","messageMarkedAsSpam@board:OCCASION":"This event has been marked as spam","messageMarkedAsSpam@board:IDEA":"This idea has been marked as spam","manageSpam":"Manage Spam","messageMarkedAsAbuse":"This post has been marked as abuse","messageMarkedAsAbuse@board:TKB":"This article has been marked as abuse","messageMarkedAsAbuse@board:BLOG":"This post has been marked as abuse","messageMarkedAsAbuse@board:FORUM":"This discussion has been marked as abuse","messageMarkedAsAbuse@board:OCCASION":"This event has been marked as abuse","messageMarkedAsAbuse@board:IDEA":"This idea has been marked as abuse","preModCommentAuthorText":"This comment will be published as soon as it is approved","preModCommentModeratorText":"This comment is awaiting moderation","messageMarkedAsOther":"This post has been rejected due to other reasons","messageMarkedAsOther@board:TKB":"This article has been rejected due to other reasons","messageMarkedAsOther@board:BLOG":"This post has been rejected due to other reasons","messageMarkedAsOther@board:FORUM":"This discussion has been rejected due to other reasons","messageMarkedAsOther@board:OCCASION":"This event has been rejected due to other reasons","messageMarkedAsOther@board:IDEA":"This idea has been rejected due to other reasons","messageArchived":"This post was archived on {date}","relatedUrl":"View Related Content","relatedContentText":"Showing related content","archivedContentLink":"View Archived Content"},"localOverride":false},"Category:category:Exchange":{"__typename":"Category","id":"category:Exchange","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Outlook":{"__typename":"Category","id":"category:Outlook","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Community-Info-Center":{"__typename":"Category","id":"category:Community-Info-Center","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:EducationSector":{"__typename":"Category","id":"category:EducationSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:DrivingAdoption":{"__typename":"Category","id":"category:DrivingAdoption","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Azure":{"__typename":"Category","id":"category:Azure","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows-Server":{"__typename":"Category","id":"category:Windows-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftTeams":{"__typename":"Category","id":"category:MicrosoftTeams","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PublicSector":{"__typename":"Category","id":"category:PublicSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft365":{"__typename":"Category","id":"category:microsoft365","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:IoT":{"__typename":"Category","id":"category:IoT","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:HealthcareAndLifeSciences":{"__typename":"Category","id":"category:HealthcareAndLifeSciences","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:ITOpsTalk":{"__typename":"Category","id":"category:ITOpsTalk","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftLearn":{"__typename":"Category","id":"category:MicrosoftLearn","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Blog:board:MicrosoftLearnBlog":{"__typename":"Blog","id":"board:MicrosoftLearnBlog","blogPolicies":{"__typename":"BlogPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}},"boardPolicies":{"__typename":"BoardPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:AI":{"__typename":"Category","id":"category:AI","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftMechanics":{"__typename":"Category","id":"category:MicrosoftMechanics","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftforNonprofits":{"__typename":"Category","id":"category:MicrosoftforNonprofits","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:StartupsatMicrosoft":{"__typename":"Category","id":"category:StartupsatMicrosoft","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PartnerCommunity":{"__typename":"Category","id":"category:PartnerCommunity","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Microsoft365Copilot":{"__typename":"Category","id":"category:Microsoft365Copilot","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows":{"__typename":"Category","id":"category:Windows","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Content_Management":{"__typename":"Category","id":"category:Content_Management","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-security":{"__typename":"Category","id":"category:microsoft-security","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoftintune":{"__typename":"Category","id":"category:microsoftintune","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"QueryVariables:TopicReplyList:message:4007751:13":{"__typename":"QueryVariables","id":"TopicReplyList:message:4007751:13","value":{"id":"message:4007751","first":10,"sorts":{"postTime":{"direction":"DESC"}},"repliesFirst":3,"repliesFirstDepthThree":1,"repliesSorts":{"postTime":{"direction":"DESC"}},"useAvatar":true,"useAuthorLogin":true,"useAuthorRank":true,"useBody":true,"useKudosCount":true,"useTimeToRead":false,"useMedia":false,"useReadOnlyIcon":false,"useRepliesCount":true,"useSearchSnippet":false,"useAcceptedSolutionButton":false,"useSolvedBadge":false,"useAttachments":false,"attachmentsFirst":5,"useTags":true,"useNodeAncestors":false,"useUserHoverCard":false,"useNodeHoverCard":false,"useModerationStatus":true,"usePreviewSubjectModal":false,"useMessageStatus":true}},"ROOT_MUTATION":{"__typename":"Mutation"},"CachedAsset:text:en_US-components/community/Navbar-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/community/Navbar-1745505310105","value":{"community":"Community Home","inbox":"Inbox","manageContent":"Manage Content","tos":"Terms of Service","forgotPassword":"Forgot Password","themeEditor":"Theme Editor","edit":"Edit Navigation Bar","skipContent":"Skip to content","gxcuf89792":"Tech Community","external-1":"Events","s-m-b":"Nonprofit Community","windows-server":"Windows Server","education-sector":"Education Sector","driving-adoption":"Driving Adoption","Common-content_management-link":"Content Management","microsoft-learn":"Microsoft Learn","s-q-l-server":"Content Management","partner-community":"Microsoft Partner Community","microsoft365":"Microsoft 365","external-9":".NET","external-8":"Teams","external-7":"Github","products-services":"Products","external-6":"Power Platform","communities-1":"Topics","external-5":"Microsoft Security","planner":"Outlook","external-4":"Microsoft 365","external-3":"Dynamics 365","azure":"Azure","healthcare-and-life-sciences":"Healthcare and Life Sciences","external-2":"Azure","microsoft-mechanics":"Microsoft Mechanics","microsoft-learn-1":"Community","external-10":"Learning Room Directory","microsoft-learn-blog":"Blog","windows":"Windows","i-t-ops-talk":"ITOps Talk","external-link-1":"View All","microsoft-securityand-compliance":"Microsoft Security","public-sector":"Public Sector","community-info-center":"Lounge","external-link-2":"View All","microsoft-teams":"Microsoft Teams","external":"Blogs","microsoft-endpoint-manager":"Microsoft Intune","startupsat-microsoft":"Startups at Microsoft","exchange":"Exchange","a-i":"AI and Machine Learning","io-t":"Internet of Things (IoT)","Common-microsoft365-copilot-link":"Microsoft 365 Copilot","outlook":"Microsoft 365 Copilot","external-link":"Community Hubs","communities":"Products"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarHamburgerDropdown-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarHamburgerDropdown-1745505310105","value":{"hamburgerLabel":"Side Menu"},"localOverride":false},"CachedAsset:text:en_US-components/community/BrandLogo-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/community/BrandLogo-1745505310105","value":{"logoAlt":"Khoros","themeLogoAlt":"Brand Logo"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarTextLinks-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarTextLinks-1745505310105","value":{"more":"More"},"localOverride":false},"CachedAsset:text:en_US-components/authentication/AuthenticationLink-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/authentication/AuthenticationLink-1745505310105","value":{"title.login":"Sign In","title.registration":"Register","title.forgotPassword":"Forgot Password","title.multiAuthLogin":"Sign In"},"localOverride":false},"CachedAsset:text:en_US-components/nodes/NodeLink-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/nodes/NodeLink-1745505310105","value":{"place":"Place {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageView/MessageViewStandard-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageView/MessageViewStandard-1745505310105","value":{"anonymous":"Anonymous","author":"{messageAuthorLogin}","authorBy":"{messageAuthorLogin}","board":"{messageBoardTitle}","replyToUser":" to {parentAuthor}","showMoreReplies":"Show More","replyText":"Reply","repliesText":"Replies","markedAsSolved":"Marked as Solved","movedMessagePlaceholder.BLOG":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.TKB":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.FORUM":"{count, plural, =0 {This reply has been} other {These replies have been} }","movedMessagePlaceholder.IDEA":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.OCCASION":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholderUrlText":"moved.","messageStatus":"Status: ","statusChanged":"Status changed: {previousStatus} to {currentStatus}","statusAdded":"Status added: {status}","statusRemoved":"Status removed: {status}","labelExpand":"expand replies","labelCollapse":"collapse replies","unhelpfulReason.reason1":"Content is outdated","unhelpfulReason.reason2":"Article is missing information","unhelpfulReason.reason3":"Content is for a different Product","unhelpfulReason.reason4":"Doesn't match what I was searching for"},"localOverride":false},"CachedAsset:text:en_US-components/messages/ThreadedReplyList-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/ThreadedReplyList-1745505310105","value":{"title":"{count, plural, one{# Reply} other{# Replies}}","title@board:BLOG":"{count, plural, one{# Comment} other{# Comments}}","title@board:TKB":"{count, plural, one{# Comment} other{# Comments}}","title@board:IDEA":"{count, plural, one{# Comment} other{# Comments}}","title@board:OCCASION":"{count, plural, one{# Comment} other{# Comments}}","noRepliesTitle":"No Replies","noRepliesTitle@board:BLOG":"No Comments","noRepliesTitle@board:TKB":"No Comments","noRepliesTitle@board:IDEA":"No Comments","noRepliesTitle@board:OCCASION":"No Comments","noRepliesDescription":"Be the first to reply","noRepliesDescription@board:BLOG":"Be the first to comment","noRepliesDescription@board:TKB":"Be the first to comment","noRepliesDescription@board:IDEA":"Be the first to comment","noRepliesDescription@board:OCCASION":"Be the first to comment","messageReadOnlyAlert:BLOG":"Comments have been turned off for this post","messageReadOnlyAlert:TKB":"Comments have been turned off for this article","messageReadOnlyAlert:IDEA":"Comments have been turned off for this idea","messageReadOnlyAlert:FORUM":"Replies have been turned off for this discussion","messageReadOnlyAlert:OCCASION":"Comments have been turned off for this event"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyCallToAction-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyCallToAction-1745505310105","value":{"leaveReply":"Leave a reply...","leaveReply@board:BLOG@message:root":"Leave a comment...","leaveReply@board:TKB@message:root":"Leave a comment...","leaveReply@board:IDEA@message:root":"Leave a comment...","leaveReply@board:OCCASION@message:root":"Leave a comment...","repliesTurnedOff.FORUM":"Replies are turned off for this topic","repliesTurnedOff.BLOG":"Comments are turned off for this topic","repliesTurnedOff.TKB":"Comments are turned off for this topic","repliesTurnedOff.IDEA":"Comments are turned off for this topic","repliesTurnedOff.OCCASION":"Comments are turned off for this topic","infoText":"Stop poking me!"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarDropdownToggle-1745505310105","value":{"ariaLabelClosed":"Press the down arrow to open the menu"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/QueryHandler-1745505310105","value":{"title":"Query Handler"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCoverImage-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCoverImage-1745505310105","value":{"coverImageTitle":"Cover Image"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeTitle-1745505310105","value":{"nodeTitle":"{nodeTitle, select, community {Community} other {{nodeTitle}}} "},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTimeToRead-1745505310105","value":{"minReadText":"{min} MIN READ"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageSubject-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageSubject-1745505310105","value":{"noSubject":"(no subject)"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserLink-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserLink-1745505310105","value":{"authorName":"View Profile: {author}","anonymous":"Anonymous"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserRank-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserRank-1745505310105","value":{"rankName":"{rankName}","userRank":"Author rank {rankName}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTime-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTime-1745505310105","value":{"postTime":"Published: {time}","lastPublishTime":"Last Update: {time}","conversation.lastPostingActivityTime":"Last posting activity time: {time}","conversation.lastPostTime":"Last post time: {time}","moderationData.rejectTime":"Rejected time: {time}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBody-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBody-1745505310105","value":{"showMessageBody":"Show More","mentionsErrorTitle":"{mentionsType, select, board {Board} user {User} message {Message} other {}} No Longer Available","mentionsErrorMessage":"The {mentionsType} you are trying to view has been removed from the community.","videoProcessing":"Video is being processed. Please try again in a few minutes.","bannerTitle":"Video provider requires cookies to play the video. Accept to continue or {url} it directly on the provider's site.","buttonTitle":"Accept","urlText":"watch"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCustomFields-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCustomFields-1745505310105","value":{"CustomField.default.label":"Value of {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageRevision-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageRevision-1745505310105","value":{"lastUpdatedDatePublished":"{publishCount, plural, one{Published} other{Updated}} {date}","lastUpdatedDateDraft":"Created {date}","version":"Version {major}.{minor}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyButton-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyButton-1745505310105","value":{"repliesCount":"{count}","title":"Reply","title@board:BLOG@message:root":"Comment","title@board:TKB@message:root":"Comment","title@board:IDEA@message:root":"Comment","title@board:OCCASION@message:root":"Comment"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageAuthorBio-1745505310105","value":{"sendMessage":"Send Message","actionMessage":"Follow this blog board to get notified when there's new activity","coAuthor":"CO-PUBLISHER","contributor":"CONTRIBUTOR","userProfile":"View Profile","iconlink":"Go to {name} {type}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserAvatar-1745505310105","value":{"altText":"{login}'s avatar","altTextGeneric":"User's avatar"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/ranks/UserRankLabel-1745505310105","value":{"altTitle":"Icon for {rankName} rank"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserRegistrationDate-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserRegistrationDate-1745505310105","value":{"noPrefix":"{date}","withPrefix":"Joined {date}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeAvatar-1745505310105","value":{"altTitle":"Node avatar for {nodeTitle}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeDescription-1745505310105","value":{"description":"{description}"},"localOverride":false},"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-components/tags/TagView/TagViewChip-1745505310105","value":{"tagLabelName":"Tag name {tagName}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1745505310105":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeIcon-1745505310105","value":{"contentType":"Content Type {style, select, FORUM {Forum} BLOG {Blog} TKB {Knowledge Base} IDEA {Ideas} OCCASION {Events} other {}} icon"},"localOverride":false}}}},"page":"/blogs/BlogMessagePage/BlogMessagePage","query":{"boardId":"fasttrackforazureblog","messageSubject":"strategies-for-optimizing-high-volume-token-usage-with-azure-openai","messageId":"4007751"},"buildId":"HEhyUrv5OXNBIbfCLaOrw","runtimeConfig":{"buildInformationVisible":false,"logLevelApp":"info","logLevelMetrics":"info","openTelemetryClientEnabled":false,"openTelemetryConfigName":"o365","openTelemetryServiceVersion":"25.1.0","openTelemetryUniverse":"prod","openTelemetryCollector":"http://localhost:4318","openTelemetryRouteChangeAllowedTime":"5000","apolloDevToolsEnabled":false,"inboxMuteWipFeatureEnabled":false},"isFallback":false,"isExperimentalCompile":false,"dynamicIds":["./components/community/Navbar/NavbarWidget.tsx","./components/community/Breadcrumb/BreadcrumbWidget.tsx","./components/customComponent/CustomComponent/CustomComponent.tsx","./components/blogs/BlogArticleWidget/BlogArticleWidget.tsx","./components/external/components/ExternalComponent.tsx","./components/messages/MessageView/MessageViewStandard/MessageViewStandard.tsx","./components/messages/ThreadedReplyList/ThreadedReplyList.tsx","../shared/client/components/common/List/UnwrappedList/UnwrappedList.tsx","./components/tags/TagView/TagView.tsx","./components/tags/TagView/TagViewChip/TagViewChip.tsx"],"appGip":true,"scriptLoader":[{"id":"analytics","src":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/pagescripts/1730819800000/analytics.js?page.id=BlogMessagePage&entity.id=board%3Afasttrackforazureblog&entity.id=message%3A4007751","strategy":"afterInteractive"}]}