Blog Post

Azure Data Explorer Blog
1 MIN READ

HowTo: Anomalychart in Azure Data Explorer Web Explorer

Tzvia's avatar
Tzvia
Icon for Microsoft rankMicrosoft
Feb 25, 2019

There are many interesting use cases for leveraging machine learning algorithms and derive interesting insights out of telemetry data. Azure Data Explorer, Anomaly Chart creates a time series data that utilizes anomaly detection function series_decompose_anomalies. The anomalies detected by the Kusto service, and are highlighted as red dots on the time series chart. 

Anomalychart is a line chart highlights anomalies using series_decompose_anomalies function.

 

 

Client Explorer

Trips
| where pickup_datetime between(datetime(2009-01-01) .. datetime(2018-07-01))
| make-series RideCount=count() on pickup_datetime from datetime(2009-01-01) to datetime(2018-07-01) step 7d     
| render anomalychart 

Web Explorer

//Let's use the built-in capabilities to detect anomalies 
Trips
| where pickup_datetime between(datetime(2009-01-01) .. datetime(2018-07-01))
| make-series RideCount=count() on pickup_datetime from datetime(2009-01-01) to datetime(2018-07-01) step 7d     
| extend anomalies = series_decompose_anomalies(RideCount, 1) 
| render anomalychart with(anomalycolumns=anomalies,title='Anomalies on NY Taxi rides')

Running the long version let you control the parameters

 

| render anomalychart use the defaults, specifically the default anomaly threshold is 1.5

 

so it would be similar to

 

| extend anomalies = series_decompose_anomalies(num, 1.5)
| render anomalychart with(anomalycolumns=anomalies, title='Web app. traffic of 5 days, Point Anomalies by Time Series Decmposition, Anomaly threshold = 2.0')

 

read more on Machine Learning and Time Series Analysis 

 

“Join the conversation on the Azure Data Explorer community”.

 

Updated Feb 26, 2019
Version 3.0
No CommentsBe the first to comment