web apps
394 TopicsBuild Long-Running AI Agents on Azure App Service with Microsoft Agent Framework
UPDATE 10/22/2025: An alternative implementation of this sample app has been added to this blog post. The alternate version uses a WebJob for background processing instead of an in-process hosted service. WebJobs are a great alternative for background processing in App Service, providing better separation of concerns, independent restarts, and dedicated logging. To learn more about WebJobs on App Service, see the Azure App Service WebJobs documentation. The AI landscape is evolving rapidly, and with the introduction of Microsoft Agent Framework, developers now have a powerful platform for building sophisticated AI agents that go far beyond simple chat completions. These agents can execute complex, multi-step workflows with persistent state, conversation threads, and structured execution—capabilities that are essential for production AI applications. Today, we're excited to share how Azure App Service provides an excellent platform for running Agent Framework workloads, especially those involving long-running operations. Let's explore why App Service is a great choice and walk through a practical example. 🔗 Quick link to sample app GitHub repo: https://github.com/Azure-Samples/app-service-agent-framework-travel-agent-dotnet 🔗 Quick link to WebJob sample app GitHub repo: https://github.com/Azure-Samples/app-service-agent-framework-travel-agent-dotnet-webjob The Challenge: Long-Running Agent Framework Flows Agent Framework enables AI agents to perform complex tasks that can take significant time to complete: Multi-turn reasoning: Iterative calls to large language models (LLMs) where each response informs the next prompt Tool integration: Function calling and external API interactions for real-time data Complex processing: Budget calculations, content optimization, multi-phase generation Persistent context: Maintaining conversation state across multiple interactions These workflows often take 30 seconds to several minutes to complete—far too long for synchronous HTTP request handling. Traditional web applications run into several constraints: ⏱️ Timeout Limitations: HTTP requests have timeout constraints (typically 30-230 seconds) ⚠️ Connection Issues: Clients may disconnect due to network interruptions or browser navigation 📈 Scalability Concerns: Long-running requests block worker threads and don't survive app restarts 🎯 Poor User Experience: Users see endless loading spinners with no progress feedback The Solution: Async Pattern with App Service Azure App Service provides a robust solution through the asynchronous request-reply pattern combined with background processing: API immediately returns (202 Accepted) with a task ID Background worker processes the Agent Framework workflow Client polls for status with real-time progress updates Durable state storage (Cosmos DB) maintains task status and results This pattern ensures: ✅ No HTTP timeouts—API responds in milliseconds ✅ Resilient to restarts—state survives deployments and scale events ✅ Progress tracking—users see real-time updates (10%, 45%, 100%) ✅ Better scalability—background workers process independently NOTE! This pattern can be implemented with either an in-process BackgroundService or as a separate WebJob process. Deployment Patterns: BackgroundService vs WebJob The following compares the two deployment options you have for this implementation. BackgroundService Pattern: ✅ Simpler deployment (single project) ✅ Shared process and memory ✅ Good for moderate workloads ⚠️ API and worker restart together WebJob Pattern (alternative): ✅ Separate processes (API + WebJob) ✅ Independent restart without API downtime ✅ Dedicated WebJob monitoring in portal ✅ Better for production operations ⚠️ Slightly more complex deployment (manual WebJob upload) Either of these options are a great way to help you get started with implementing long-running processes on App Service. To learn more about WebJobs on App Service, see the Azure App Service WebJobs documentation. Rapid Innovation Support The AI landscape is changing at an unprecedented pace. New models, frameworks, and capabilities are released constantly. Azure App Service's managed platform ensures your applications can adapt quickly without infrastructure rewrites: Framework Updates: Deploy new Agent Framework SDK versions like any application update Model Upgrades: Switch between GPT-4, GPT-4o, or future models with configuration changes Scaling Patterns: Start with combined API+worker, split into separate apps as needs grow New Capabilities: Integrate emerging AI services without changing hosting infrastructure App Service handles the platform complexity so you can focus on building great AI experiences. Sample Application: AI Travel Planner To demonstrate this pattern, we've built a Travel Planner application that uses Agent Framework to generate detailed, multi-day travel itineraries. The agent performs complex reasoning including: Researching destination attractions and activities Optimizing daily schedules based on location proximity Calculating detailed budget breakdowns Generating personalized travel tips and recommendations The entire application runs on a single P0v4 App Service with both the API and background worker combined—showcasing App Service's flexibility for hosting diverse workload patterns in one deployment. Key Architecture Components Azure App Service (P0v4 Premium) Hosts both REST API and background worker in a single app "Always On" feature keeps background worker running continuously Managed identity for secure, credential-less authentication Azure Service Bus Decouples API from long-running Agent Framework processing Reliable message delivery with automatic retries Dead letter queue for error handling Azure Cosmos DB Stores task status with real-time progress updates Automatic 24-hour TTL for cleanup Rich query capabilities for complex itinerary data Azure AI Foundry Hosts persistent agents with conversation threads Structured execution with Agent Framework runtime GPT-4o model for intelligent travel planning One of the powerful features of using Azure AI Foundry with Agent Framework is the ability to inspect agents and conversation threads directly in the Azure portal. This provides valuable visibility into what's happening during execution. Viewing Agents and Threads in Azure AI Foundry When you submit a travel plan request, the application creates an agent in Azure AI Foundry. You can navigate to your AI Foundry project in the Azure portal to see: Agents The application creates an agent for each request Important: Agents are **automatically deleted** after the itinerary is generated to keep your project clean Tip: You'll need to be quick! Navigate to Azure AI Foundry right after submitting a request to see the agent in action Once processing completes, the agent is removed as part of the cleanup process Conversation Threads Unlike agents, threads persist even after the agent completes You can view the complete conversation history at any time See the exact prompts sent to the model and the responses generated Useful for debugging, understanding agent behavior, and improving prompts The ephemeral nature of agents (created per request, deleted after completion) keeps your Azure AI Foundry project clean while the persistent threads give you full traceability of every interaction. Alternative Architecture: WebJob Pattern The alternate version of this app uses a WebJob for background processing instead of an in-process hosted service. However, just a single App Service is still required. WebJobs are a great alternative for background processing in App Service, providing better separation of concerns, independent restarts, and dedicated logging. To learn more about WebJobs on App Service, see the Azure App Service WebJobs documentation. Get Started Today The complete Travel Planner application is available as a reference implementation so you can quickly get started building your own apps with Agent Framework on App Service. Try one or both of these today! 🔗 GitHub Repository for background process version: https://github.com/Azure-Samples/app-service-agent-framework-travel-agent-dotnet 🔗 GitHub Repository for WebJob version: https://github.com/Azure-Samples/app-service-agent-framework-travel-agent-dotnet-webjob The repo includes: Complete .NET 9 source code with Agent Framework integration Infrastructure as Code (Bicep) for automated deployment Web UI with real-time progress tracking Comprehensive README with deployment instructions Deploy in minutes: git clone https://github.com/Azure-Samples/app-service-agent-framework-travel-agent-dotnet.git cd app-service-agent-framework-travel-agent-dotnet azd auth login azd up IMPORTANT! For the WebJob version, you will also need to manually deploy the WebJob. See the instructions in the README to learn how to do this. Key Takeaways ✅ Agent Framework enables sophisticated AI agents beyond simple chat completions ✅ Long-running workflows (30s-minutes) require async patterns to avoid timeouts ✅ App Service provides a simple, cost-effective platform for these workloads ✅ Async request-reply pattern with Service Bus + Cosmos DB ensures reliability ✅ Rapid innovation in AI is supported by App Service's adaptable platform Whether you're building travel planners, document processors, research assistants, or other AI-powered applications, Azure App Service gives you the flexibility and reliability you need—without the complexity of container orchestration or function programming models. What's Next? Build on This Foundation This Travel Planner is just the starting point—a foundation to help you understand the patterns and architecture. Agent Framework is designed to grow with your needs, making it easy to add sophisticated capabilities with minimal effort: 🛠️ Add Tool Calling Connect your agent to real-time APIs for weather, flight prices, hotel availability, and actual booking systems. Agent Framework's built-in tool calling makes this straightforward. 🤝 Implement Multi-Agent Systems Create specialized agents (flight expert, hotel specialist, activity planner) that collaborate to build comprehensive travel plans. Agent Framework handles the orchestration. 🧠 Enhance with RAG Add retrieval-augmented generation to give your agent deep knowledge of destinations, local customs, and insider tips from your own content library. 📊 Expand Functionality Real-time pricing and availability Interactive refinement based on user feedback Personalized recommendations from past trips Multi-language support for global users The beauty of Agent Framework is that these advanced features integrate seamlessly into the pattern we've built. Start with this sample, explore the Agent Framework documentation, and unlock powerful AI capabilities for your applications! Learn More Microsoft Agent Framework Documentation Azure App Service Documentation Async Request-Reply Pattern Azure App Service WebJobs documentation Have you built AI agents on App Service? We'd love to hear about your experience! Share your thoughts in the comments below. Questions about Agent Framework on App Service? Drop a comment and our team will help you get started.1.7KViews1like3CommentsAnnouncing the Public Preview of the New App Service Quota Self-Service Experience
Update 10/30/2025: The App Service Quota Self-Service experience is back online after a short period where we were incorporating your feedback and making needed updates. As this is public preview, availability and features are subject to change as we receive and incorporate feedback. What’s New? The updated experience introduces a dedicated App Service Quota blade in the Azure portal, offering a streamlined and intuitive interface to: View current usage and limits across the various SKUs Set custom quotas tailored to your App Service plan needs This new experience empowers developers and IT admins to proactively manage resources, avoid service disruptions, and optimize performance. Quick Reference - Start here! If your deployment requires quota for ten or more subscriptions, then file a support ticket with problem type Quota following the instructions at the bottom of this post. If any subscription included in your request requires zone redundancy (note that most Isolated v2 deployments require ZR), then file a support ticket with problem type Quota following the instructions at the bottom of this post. Otherwise, leverage the new self-service experience to increase your quota automatically. Self-service Quota Requests For non-zone-redundant needs, quota alone is sufficient to enable App Service deployment or scale-out. Follow the provided steps to place your request. 1. Navigate to the Quotas resource provider in the Azure portal 2. Select App Service (Pubic Preview) Navigating the primary interface: Each App Service VM size is represented as a separate SKU. If the intention is to be able to scale up or down within a specific offering (e.g., Premium v3), then equivalent number of VMs need to be requested for each applicable size of that offering (e.g., request 5 instances for both P1v3 and P3v3). As with other quotas, you can filter by region, subscription, provider, or usage. Note that your portal will now show "App Service (Public Preview)" for the Provider name. You can also group the results by usage, quota (App Service VM type), or location (region). Current usage is represented as App Service VMs. This allows you to quickly identify which SKUs are nearing their quota limits. Adjustments can be made inline: no need to visit another page. This is covered in detail in the next section. Total Regional VMs: There is a SKU in each region called Total Regional VMs. This SKU summarizes your usage and available quota across all individual SKUs in that region. There are three key points about using Total Regional VMs. You should never request Total Regional VMs quota directly - it will automatically increase in response to your request for individual SKU quota. If you are unable to deploy a given SKU, then you must request more quota for that SKU to unblock deployment. For your deployment to succeed, you must have sufficient quota in the individual SKU as well as Total Regional VMs. If either usage is at its respective limit, then you will be unable to deploy and must request more of that individual SKU's quota to proceed. In some regions, Total Regional VMs appears as "0 of 0" usage and limit and no individual SKU quotas are shown. This is an indication that you should not interact with the portal to resolve any quota-related issues in this region. Instead, you should try the deployment and observe any error messages that arise. If any error messages indicate more quota is needed, then this must be requested by filing a support ticket with problem type Quota following the instructions at the bottom of this post so that App Service can identify and fix any potential quota issues. In most cases, this will not be necessary, and your deployment will work without requesting quota wherever "0 of 0" is shown for Total Regional VMs and no individual SKU quotas are visible. See the example below: 3. Request quota adjustments Clicking the pen icon opens a flyout window to capture the quota request: The quota type (App Service SKU) is already populated, along with current usage. Note that your request is not incremental: you must specify the new limit that you wish to see reflected in the portal. For example, to request two additional instances of P1v2 VMs, you would file the request like this: Click submit to send the request for automatic processing. How quota approvals work: Immediately upon submitting a quota request, you will see a processing dialog like the one shown: If the quota request can be automatically fulfilled, then no support request is needed. You should receive this confirmation within a few minutes of submission: If the request cannot be automatically fulfilled, then you will be given the option to file a support request with the same information. In the example below, the requested new limit exceeds what can be automatically granted for the region: 4. If applicable, create support ticket When creating a support ticket, you will need to repopulate the Region and App Service plan details; the new limit has already been populated for you. If you forget the region or SKU that was requested, you can reference them in your notifications pane: If you choose to create a support ticket, then you will interact with the capacity management team for that region. This is a 24x7 service, so requests may be created at any time. Once you have filed the support request, you can track its status via the Help + support dashboard. Known issues The self-service quota request experience for App Service is in public preview. Here are some caveats worth mentioning while the team finalizes the release for general availability: Closing the quota request flyout window will stop meaningful notifications for that request. You can still view the outcome of your quota requests by checking actual quota, but if you want to rely on notifications for alerts, then we recommend leaving the quota request window open for the few minutes that it is processing. Some SKUs are not yet represented in the quota dashboard. These will be added later in the public preview. The Activity Log does not currently provide a meaningful summary of previous quota requests and their outcomes. This will also be addressed during the public preview. As noted in the walkthrough, the new experience does not enable zone-redundant deployments. Quota is an inherently regional construct, and zone-redundant enablement requires a separate step that can only be taken in response to a support ticket being filed. Quota API documentation is being drafted to enable bulk non-zone redundant quota requests without requiring you to file a support ticket. Filing a Support Ticket If your deployment requires zone redundancy or contains many subscriptions, then we recommend filing a support ticket with issue type "Technical" and problem type "Quota": We want your feedback! If you notice any aspect of the experience that does not work as expected, or you have feedback on how to make it better, please use the comments below to share your thoughts!3.9KViews3likes9CommentsUnlocking Application Modernisation with GitHub Copilot
AI-driven modernisation is unlocking new opportunities you may not have even considered yet. It's also allowing organisations to re-evaluate previously discarded modernisation attempts that were considered too hard, complex or simply didn't have the skills or time to do. During Microsoft Build 2025, we were introduced to the concept of Agentic AI modernisation and this post from Ikenna Okeke does a great job of summarising the topic - Reimagining App Modernisation for the Era of AI | Microsoft Community Hub. This blog post however, explores the modernisation opportunities that you may not even have thought of yet, the business benefits, how to start preparing your organisation, empowering your teams, and identifying where GitHub Copilot can help. I’ve spent the last 8 months working with customers exploring usage of GitHub Copilot, and want to share what my team members and I have discovered in terms of new opportunities to modernise, transform your applications, bringing some fun back into those migrations! Let’s delve into how GitHub Copilot is helping teams update old systems, move processes to the cloud, and achieve results faster than ever before. Background: The Modernisation Challenge (Then vs Now) Modernising legacy software has always been hard. In the past, teams faced steep challenges: brittle codebases full of technical debt, outdated languages (think decades-old COBOL or VB6), sparse documentation, and original developers long gone. Integrating old systems with modern cloud services often requiring specialised skills that were in short supply – for example, check out this fantastic post from Arvi LiVigni (@arilivigni ) which talks about migrating from COBOL “the number of developers who can read and write COBOL isn’t what it used to be,” making those systems much harder to update". Common pain points included compatibility issues, data migrations, high costs, security vulnerabilities, and the constant risk that any change could break critical business functions. It’s no wonder many modernisation projects stalled or were “put off” due to their complexity and risk. So, what’s different now (circa 2025) compared to two years ago? In a word: Intelligent AI assistance. Tools like GitHub Copilot have emerged as AI pair programmers that dramatically lower the barriers to modernisation. Arvi’s post talks about how only a couple of years ago, developers had to comb through documentation and Stack Overflow for clues when deciphering old code or upgrading frameworks. Today, GitHub Copilot can act like an expert co-developer inside your IDE, ready to explain mysterious code, suggest updates, and even rewrite legacy code in modern languages. This means less time fighting old code and more time implementing improvements. As Arvi says “nine times out of 10 it gives me the right answer… That speed – and not having to break out of my flow – is really what’s so impactful.” In short, AI coding assistants have evolved from novel experiments to indispensable tools, reimagining how we approach software updates and cloud adoption. I’d also add from my own experience – the models we were using 12 months ago have already been superseded by far superior models with ability to ingest larger context and tackle even further complexity. It's easier to experiment, and fail, bringing more robust outcomes – with such speed to create those proof of concepts, experimentation and failing faster, this has also unlocked the ability to test out multiple hypothesis’ and get you to the most confident outcome in a much shorter space of time. Modernisation is easier now because AI reduces the heavy lifting. Instead of reading the 10,000-line legacy program alone, a developer can ask Copilot to explain what the code does or even propose a refactored version. Rather than manually researching how to replace an outdated library, they can get instant recommendations for modern equivalents. These advancements mean that tasks which once took weeks or months can now be done in days or hours – with more confidence and less drudgery - more fun! The following sections will dive into specific opportunities unlocked by GitHub Copilot across the modernisation journey which you may not even have thought of. Modernisation Opportunities Unlocked by Copilot Modernising an application isn’t just about updating code – it involves bringing everyone and everything up to speed with cloud-era practices. Below are several scenarios and how GitHub Copilot adds value, with the specific benefits highlighted: 1. AI-Assisted Legacy Code Refactoring and Upgrades Instant Code Comprehension: GitHub Copilot can explain complex legacy code in plain English, helping developers quickly understand decades-old logic without scouring scarce documentation. For example, you can highlight a cryptic COBOL or C++ function and ask Copilot to describe what it does – an invaluable first step before making any changes. This saves hours and reduces errors when starting a modernisation effort. Automated Refactoring Suggestions: The AI suggests modern replacements for outdated patterns and APIs, and can even translate code between languages. For instance, Copilot can help convert a COBOL program into JavaScript or C# by recognising equivalent constructs. It also uses transformation tools (like OpenRewrite for Java/.NET) to systematically apply code updates – e.g. replacing all legacy HTTP calls with a modern library in one sweep. Developers remain in control, but GitHub Copilot handles the tedious bulk edits. Bulk Code Upgrades with AI: GitHub Copilot’s App Modernisation capabilities can analyse an entire codebase and generate a detailed upgrade plan, then execute many of the code changes automatically. It can upgrade framework versions (say from .NET Framework 4.x to .NET 6, or Java 8 to Java 17) by applying known fix patterns and even fixing compilation errors after the upgrade. Teams can finally tackle those hundreds of thousand-line enterprise applications – a task that could take multiple years with GitHub Copilot handling the repetitive changes. Technical Debt Reduction: By cleaning up old code and enforcing modern best practices, GitHub Copilot helps chip away at years of technical debt. The modernised codebase is more maintainable and stable, which lowers the long-term risk hanging over critical business systems. Notably, the tool can even scan for known security vulnerabilities during refactoring as it updates your code. In short, each legacy component refreshed with GitHub Copilot comes out safer and easier to work on, instead of remaining a brittle black box. 2. Accelerating Cloud Migration and Azure Modernisation Guided Azure Migration Planning: GitHub Copilot can assess a legacy application’s cloud readiness and recommend target Azure services for each component. For instance, it might suggest migrating an on-premises database to Azure SQL, moving file storage to Azure Blob Storage, and converting background jobs to Azure Functions. This provides a clear blueprint to confidently move an app from servers to Azure PaaS. One-Click Cloud Transformations: GitHub Copilot comes with predefined migration tasksthat automate the code changes required for cloud adoption. With one click, you can have the AI apply dozens of modifications across your codebase. For example: File storage: Replace local file read/writes with Azure Blob Storage SDK calls. Email/Comms: Swap out SMTP email code for Azure Communication Services or SendGrid. Identity: Migrate authentication from Windows AD to Azure AD (Entra ID) libraries. Configuration: Remove hard-coded configurations and use Azure App Configuration or Key Vault for secrets. GitHub Copilot performs these transformations consistently, following best practices (like using connection strings from Azure settings). After applying the changes, it even fixes any compile errors automatically, so you’re not left with broken builds. What used to require reading countless Azure migration guides is now handled in minutes. Automated Validation & Deployment: Modernisation doesn’t stop at code changes. GitHub Copilot can also generate unit tests to validate that the application still behaves correctly after the migration. It helps ensure that your modernised, cloud-ready app passes all its checks before going live. When you’re ready to deploy, GitHub Copilot can produce the necessary Infrastructure-as-Code templates (e.g. Azure Resource Manager Bicep files or Terraform configs) and even set up CI/CD pipeline scripts for you. In other words, the AI can configure the Azure environment and deployment process end-to-end. This dramatically reduces manual effort and error, getting your app to the cloud faster and with greater confidence. Integrations: GitHub Copilot also helps tackle larger migration scenarios that were previously considered too complex. For example, many enterprises want to retire expensive proprietary integration platforms like MuleSoft or Apigee and use Azure-native services instead, but rewriting hundreds of integration workflows was daunting. Now, GitHub Copilot can assist in translating those workflows: for instance, converting an Apigee API proxy into an Azure API Management policy, or a MuleSoft integration into an Azure Logic App. Multi-Cloud Migrations: if you plan to consolidate from other clouds into Azure, GitHub Copilot can suggest equivalent Azure services and SDK calls to replace AWS or GCP-specific code. These AI-assisted conversions significantly cut down the time needed to reimplement functionality on Azure. The business impact can be substantial. By lowering the effort of such migrations, GitHub Copilot makes it feasible to pursue opportunities that deliver big cost savings and simplification. 3. Boosting Developer Productivity and Quality Instant Unit Tests (TDD Made Easy): Writing tests for old code can be tedious, but GitHub Copilot can generate unit test cases on the fly. Developers can highlight an existing function and ask Copilot to create tests; it will produce meaningful test methods covering typical and edge scenarios. This makes it practical to apply test-driven development practices even to legacy systems – you can quickly build a safety net of tests before refactoring. By catching bugs early through these AI-generated tests, teams gain confidence to modernise code without breaking things. It essentially injects quality into the process from the start, which is crucial for successful modernisation. DevOps Automation: GitHub Copilot helps modernise your build and deployment process as well. It can draft CI/CD pipeline configurations, Dockerfiles, Kubernetes manifests, and other DevOps scripts by leveraging its knowledge of common patterns. For example, when setting up a GitHub Actions workflow to deploy your app, GitHub Copilot will autocomplete significant parts (like build steps, test runs, deployment jobs) based on the project structure. This not only saves time but also ensures best practices (proper caching, dependency installation, etc.) are followed by default. Microsoft even provides an extension where you can describe your Azure infrastructure needs in plain language and have GitHub Copilot generate the corresponding templates and pipeline YAML. By automating these pieces, teams can move to cloud-based, automated deployments much faster. Behaviour-Driven Development Support: Teams practicing BDD write human-readable scenarios (e.g. using Gherkin syntax) describing application behaviour. GitHub Copilot’s AI is adept at interpreting such descriptions and suggesting step definition code or test implementations to match. For instance, given a scenario “When a user with no items checks out, then an error message is shown,” GitHub Copilot can draft the code for that condition or the test steps required. This helps bridge the gap between non-technical specifications and actual code. It makes BDD more efficient and accessible, because even if team members aren’t strong coders, the AI can translate their intent into working code that developers can refine. Quality and Consistency: By using AI to handle boilerplate and repetitive tasks, developers can focus more on high-value improvements. GitHub Copilot’s suggestions are based on a vast corpus of code, which often means it surfaces well-structured, idiomatic patterns. Starting from these suggestions, developers are less likely to introduce errors or reinvent the wheel, which leads to more consistent code quality across the project. The AI also often reminds you of edge cases (for example, suggesting input validation or error handling code that might be missed), contributing to a more robust application. In practice, many teams find that adopting GitHub Copilot results in fewer bugs and quicker code reviews, as the code is cleaner on the first pass. It’s like having an extra set of eyes on every pull request, ensuring standards are met. Business Benefits of AI-Powered Modernisation Bringing together the technical advantages above, what’s the payoff for the business and stakeholders? Modernising with GitHub Copilot can yield multiple tangible and intangible benefits: Accelerated Time-to-Market: Modernisation projects that might have taken a year can potentially be completed in a few months, or an upgrade that took weeks can be done in days. This speed means you can deliver new features to customers sooner and respond faster to market changes. It also reduces downtime or disruption since migrations happen more swiftly. Cost Savings: By automating repetitive work and reducing the effort required from highly paid senior engineers, GitHub Copilot can trim development costs. Faster project completion also means lower overall project cost. Additionally, running modernised apps on cloud infrastructure (with updated code) often lowers operational costs due to more efficient resource usage and easier maintenance. There’s also an opportunity cost benefit: developers freed up by Copilot can work on other value-adding projects in parallel. Improved Quality & Reliability: GitHub Copilot’s contributions to testing, bug-fixing, and even security (like patching known vulnerabilities during upgrades) result in more robust applications. Modernised systems have fewer outages and security incidents than shaky legacy ones. Stakeholders will appreciate that with GitHub Copilot, modernisation doesn’t mean “trading one set of bugs for another” – instead, you can increase quality as you modernise (GitHub’s research noted higher code quality when using Copilot, as developers are less likely to introduce errors or skip tests). Business Agility: A modernised application (especially one refactored for cloud) is typically more scalable and adaptable. New integrations or features can be added much faster once the platform is up-to-date. GitHub Copilot helps clear the modernisation hurdle, after which the business can innovate on a solid, flexible foundation (for example, once a monolith is broken into microservices or moved to Azure PaaS, you can iterate on it much faster in the future). AI-assisted modernisation thus unlocks future opportunities (like easier expansion, integrations, AI features, etc.) that were impractical on the legacy stack. Employee Satisfaction and Innovation: Developer happiness is a subtle but important benefit. When tedious work is handled by AI, developers can spend more time on creative tasks – designing new features, improving user experience, exploring new technologies. This can foster a culture of innovation. Moreover, being seen as a company that leverages modern tools (like AI Copilot) helps attract and retain top tech talent. Teams that successfully modernise critical systems with Copilot will gain confidence to tackle other ambitious projects, creating a positive feedback loop of improvement. To sum up, GitHub Copilot acts as a force-multiplier for application modernisation. It enables organisations to do more with less: convert legacy “boat anchors” into modern, cloud-enabled assets rapidly, while improving quality and developer morale. This aligns IT goals with business goals – faster delivery, greater efficiency, and readiness for the future. Call to Action: Embrace the Future of Modernisation GitHub Copilot has proven to be a catalyst for transforming how we approach legacy systems and cloud adoption. If you’re excited about the possibilities, here are next steps and what to watch for: Start Experimenting: If you haven’t already, try GitHub Copilot on a sample of your code. Use Copilot or Copilot Chat to explain a piece of old code or generate a unit test. Seeing it in action on your own project can build confidence and spark ideas for where to apply it. Identify a Pilot Project: Look at your application portfolio for a candidate that’s ripe for modernisation – maybe a small legacy service that could be moved to Azure, or a module that needs a refactor. Use GitHub Copilot to assess and estimate the effort. Often, you’ll find tasks once deemed “too hard” might now be feasible. Early successes will help win support for larger initiatives. Stay Tuned for Our Upcoming Blog Series: This post is just the beginning. In forthcoming posts, we’ll dive deeper into: Setting Up Your Organisation for Copilot Adoption: Practical tips on preparing your enterprise environment – from licensing and security considerations to training programs. We’ll discuss best practices (like running internal awareness campaigns, defining success metrics, and creating Copilot champions in your teams) to ensure a smooth rollout. Empowering Your Colleagues: How to foster a culture that embraces AI assistance. This includes enabling continuous learning, sharing prompt techniques and knowledge bases, and addressing any scepticism. We’ll cover strategies to support developers in using Copilot effectively, so that everyone from new hires to veteran engineers can amplify their productivity. Identifying High-Impact Modernisation Areas: Guidance on spotting where GitHub Copilot can add the most value. We’ll look at different domains – code, cloud, tests, data – and how to evaluate opportunities (for example, using telemetry or feedback to find repetitive tasks suited for AI, or legacy components with high ROI if modernised). Engage and Share: As you start leveraging Copilot for modernisation, share your experiences and results. Success stories (even small wins like “GitHub Copilot helped reduce our code review times” or “we migrated a component to Azure in 1 sprint”) can build momentum within your organisation and the broader community. We invite you to discuss and ask questions in the comments or in our tech community forums. Take a look at the new App Modernisation Guidance—a comprehensive, step-by-step playbook designed to help organisations: Understand what to modernise and why Migrate and rebuild apps with AI-first design Continuously optimise with built-in governance and observability Modernisation is a journey, and AI is the new compass and Copilot to guide the way. By embracing tools like GitHub Copilot, you position your organisation to break through modernisation barriers that once seemed insurmountable. The result is not just updated software, but a more agile, cloud-ready business and a happier, more productive development team. Now is the time to take that step. Empower your team with Copilot, and unlock the full potential of your applications and your developers. Stay tuned for more insights in our next posts, and let’s modernise what’s possible together!1.3KViews4likes1CommentIndustry-Wide Certificate Changes Impacting Azure App Service Certificates
Executive Summary In early 2026, industry-wide changes mandated by browser applications and the CA/B Forum will affect both how TLS certificates are issued as well as their validity period. The CA/B Forum is a vendor body that establishes standards for securing websites and online communications through SSL/TLS certificates. Azure App Service is aligning with these standards for both App Service Managed Certificates (ASMC, free, DigiCert-issued) and App Service Certificates (ASC, paid, GoDaddy-issued). Most customers will experience no disruption. Action is required only if you pin certificates or use them for client authentication (mTLS). Who Should Read This? App Service administrators Security and compliance teams Anyone responsible for certificate management or application security Quick Reference: What’s Changing & What To Do Topic ASMC (Managed, free) ASC (GoDaddy, paid) Required Action New Cert Chain New chain (no action unless pinned) New chain (no action unless pinned) Remove certificate pinning Client Auth EKU Not supported (no action unless cert is used for mTLS) Not supported (no action unless cert is used for mTLS) Transition from mTLS Validity No change (already compliant) Two overlapping certs issued for the full year None (automated) If you do not pin certificates or use them for mTLS, no action is required. Timeline of Key Dates Date Change Action Required Mid-Jan 2026 and after ASMC migrates to new chain ASMC stops supporting client auth EKU Remove certificate pinning if used Transition to alternative authentication if the certificate is used for mTLS Mar 2026 and after ASC validity shortened ASC migrates to new chain ASC stops supporting client auth EKU Remove certificate pinning if used Transition to alternative authentication if the certificate is used for mTLS Actions Checklist For All Users Review your use of App Service certificates. If you do not pin these certificates and do not use them for mTLS, no action is required. If You Pin Certificates (ASMC or ASC) Remove all certificate or chain pinning before their respective key change dates to avoid service disruption. See Best Practices: Certificate Pinning. If You Use Certificates for Client Authentication (mTLS) Switch to an alternative authentication method before their respective key change dates to avoid service disruption, as client authentication EKU will no longer be supported for these certificates. See Sunsetting the client authentication EKU from DigiCert public TLS certificates. See Set Up TLS Mutual Authentication - Azure App Service Details & Rationale Why Are These Changes Happening? These updates are required by major browser programs (e.g., Chrome) and apply to all public CAs. They are designed to enhance security and compliance across the industry. Azure App Service is automating updates to minimize customer impact. What’s Changing? New Certificate Chain Certificates will be issued from a new chain to maintain browser trust. Impact: Remove any certificate pinning to avoid disruption. Removal of Client Authentication EKU Newly issued certificates will not support client authentication EKU. This change aligns with Google Chrome’s root program requirements to enhance security. Impact: If you use these certificates for mTLS, transition to an alternate authentication method. Shortening of Certificate Validity Certificate validity is now limited to a maximum of 200 days. Impact: ASMC is already compliant; ASC will automatically issue two overlapping certificates to cover one year. No billing impact. Frequently Asked Questions (FAQs) Will I lose coverage due to shorter validity? No. For App Service Certificate, App Service will issue two certificates to span the full year you purchased. Is this unique to DigiCert and GoDaddy? No. This is an industry-wide change. Do these changes impact certificates from other CAs? Yes. These changes are an industry-wide change. We recommend you reach out to your certificates’ CA for more information. Do I need to act today? If you do not pin or use these certs for mTLS, no action is required. Glossary ASMC: App Service Managed Certificate (free, DigiCert-issued) ASC: App Service Certificate (paid, GoDaddy-issued) EKU: Extended Key Usage mTLS: Mutual TLS (client certificate authentication) CA/B Forum: Certification Authority/Browser Forum Additional Resources Changes to the Managed TLS Feature Set Up TLS Mutual Authentication Azure App Service Best Practices – Certificate pinning DigiCert Root and Intermediate CA Certificate Updates 2023 Sunsetting the client authentication EKU from DigiCert public TLS certificates Feedback & Support If you have questions or need help, please visit our official support channels or the Microsoft Q&A, where our team and the community can assist you.536Views1like0CommentsContainer on App Service keeps getting stopped and terminated
I've got a .Net app running in a Docker container that I'm trying to run on a Linux App Service but as per the (sanitised) log output below from the Platform log stream, it's getting terminated only 4 seconds after it started. Where can I get information on why this is happening? Starting container: a0e3af0a_myapp-dev-as. Starting watchers and probes. Starting metrics collection. Container is running. Container start method finished after 1990 ms. Container is terminating. Grace period: 0 seconds. Stop and delete container. Retry count = 0 Timestamps removed as the forum doesn't seem to like log output?Solved52Views0likes2CommentsAnnouncing Public Preview of Managed Instance on Azure App Service
Today at Ignite 2025, we announced the Public Preview of a fantastic new capability which will enable customers to move applications to Azure App Service faster, and with minimal, if any, code changes! Azure App Service is a fully managed PaaS platform for hosting web applications, APIs, and mobile backends, enabling customers to deploy and scale applications securely without managing infrastructure. Azure App Service offers built-in compliance, identity and DevOps integration, making it ideal for cloud-native and modernization scenarios where agility, scalability, and operational efficiency are critical. Managed Instance on App Service builds on and extends these capabilities to solve many of the challenges customers have with migration and modernizing legacy and complex enterprise applications. Challenges with Migration and Modernization We have been listening intently to our customers and working on solutions to address their needs when migrating and modernizing applications, particularly .NET Framework applications, to Azure and specifically Azure App Service. Customers face clear challenges when migrating and modernizing applications Application Dependencies – Many apps rely on components that can’t easily migrate to App Service, such as libraries installed on the web worker, GAC entries, Windows Services, or OS-level features. Configuration Systems – Some apps heavily depend on reading/writing settings in the Windows Registry. File I/O – Legacy apps often require local disk access or network storage via mapped drives. Reduced Access & Tooling – Migration limits direct infrastructure access and familiar troubleshooting tools. Lengthy Migration & ROI Challenges – Complex code changes, testing, and issue resolution can make projects take months, delaying return on investment. How Managed Instance on Azure App Service addresses these challenges Managed Instance on Azure App Service addresses these challenges by providing a host of new functionality: - Configuration scripts – Provide a zip file containing all your dependencies with an accompanying PowerShell script to install and configure your dependencies. Store this in Azure Storage and securely access and retrieve using Managed Identity. - Registry adapters – Write to the App Service Plan instance’s windows registry, providing values using secrets stored and secured in Key Vault using Managed Identity. - Storage mounts – Map Azure Files, SMB File shares in your network and local temporary storage volumes using drive letter or drive letter and folder mappings, any credentials or storage connection strings are securely retrieved via Managed Identity from Key Vault secrets. - RDP to instances using Azure Bastion – for the first time ever, open a remote desktop session directly to your App Service Plan instances securely using Azure Bastion and use tools you’re familiar with such as IIS Manager, Event Viewer and Windows Feature MMC Snap-in tools. - Shortens time to migrate and modernize – Reduces the amount of cases where code changes might be needed in order to successfully migrate and modernize, shortening the time and cost to realize return on investment moving to the cloud. All of these features expand on top of the already rich set of capabilities within Azure App Service which enable rapid scale, network integration and security, combined with the new Premium v4 (Announcing General Availability of Premium v4 for Azure App Service | Microsoft Community Hub) series of pricing plans offering enhanced performance, scalability and cost efficiency. Key Scenarios: Technical and Business Perspectives 1. Lift-and-Improve Legacy Applications Technical: Migrate legacy .NET apps with hardcoded file paths, COM dependencies, or registry access—no major code rewrites required. Install custom components directly on the managed instance. Business: Accelerate cloud adoption, reduce migration friction, and preserve business continuity by avoiding costly re-platforming projects. Realize Azure App Service benefits (scaling, patching, high availability) with minimal disruption. 2. Re-platforming Hard-to-Modernize Apps Technical: Move applications with unavailable or hard-to-modify source code, or those tightly coupled to infrastructure (e.g., SMTP servers, MSMQ, legacy middleware). Managed Instance removes blockers by supporting custom installers and advanced networking. Business: Unlock value from legacy systems, extend their useful life, and enable phased modernization. Reduce risk and cost by avoiding “big bang” transformations. 3. Hybrid and Regulated Workloads Technical: Integrate securely with on-premises resources using VNETs and private endpoints. Enforce data residency and access controls with Bring Your Own Storage and Managed Identity. Business: Meet compliance and regulatory requirements for industries like finance, healthcare, and government. Streamline audits and reduce operational overhead for sensitive workloads. 4. Incremental Modernization Technical: Start with “lift-and-shift,” then incrementally adopt PaaS features—DevOps automation, dynamic scaling, centralized configuration—at your own pace. Business: Future-proof your application portfolio, drive ongoing innovation, and maximize ROI by continuously improving applications without major disruptions. Next Steps We’re delighted to be able to announce Managed Instance on Azure App Service and are eager to see it speed up and solve problems in your modernization journey. Moving your workloads to Managed Instance on Azure App Service open up new opportunities for you to add business value and securely integrate with other Azure services. Get started with Managed Instance on Azure App Service with our documentation and check out our Technical Deep Dive on Managed Instance on Azure App Service at Ignite 20252.6KViews3likes2CommentsImportant Changes to App Service Managed Certificates: Is Your Certificate Affected?
Overview As part of an upcoming industry-wide change, DigiCert, the Certificate Authority (CA) for Azure App Service Managed Certificates (ASMC), is required to migrate to a new validation platform to meet multi-perspective issuance corroboration (MPIC) requirements. While most certificates will not be impacted by this change, certain site configurations and setups may prevent certificate issuance or renewal starting July 28, 2025. Update December 8, 2025 We’ve published an update in November about how App Service Managed Certificates can now be supported on sites that block public access. This reverses the limitation introduced in July 2025, as mentioned in this blog. Note: This blog post reflects a point-in-time update and will not be revised. For the latest and most accurate details on App Service Managed Certificates, please refer to official documentation or subsequent updates. Learn more about the November 2025 update here: Follow-Up to ‘Important Changes to App Service Managed Certificates’: November 2025 Update. August 5, 2025 We’ve published a Microsoft Learn documentation titled App Service Managed Certificate (ASMC) changes – July 28, 2025 that contains more in-depth mitigation guidance and a growing FAQ section to support the changes outlined in this blog post. While the blog currently contains the most complete overview, the documentation will soon be updated to reflect all blog content. Going forward, any new information or clarifications will be added to the documentation page, so we recommend bookmarking it for the latest guidance. What Will the Change Look Like? For most customers: No disruption. Certificate issuance and renewals will continue as expected for eligible site configurations. For impacted scenarios: Certificate requests will fail (no certificate issued) starting July 28, 2025, if your site configuration is not supported. Existing certificates will remain valid until their expiration (up to six months after last renewal). Impacted Scenarios You will be affected by this change if any of the following apply to your site configurations: Your site is not publicly accessible: Public accessibility to your app is required. If your app is only accessible privately (e.g., requiring a client certificate for access, disabling public network access, using private endpoints or IP restrictions), you will not be able to create or renew a managed certificate. Other site configurations or setup methods not explicitly listed here that restrict public access, such as firewalls, authentication gateways, or any custom access policies, can also impact eligibility for managed certificate issuance or renewal. Action: Ensure your app is accessible from the public internet. However, if you need to limit access to your app, then you must acquire your own SSL certificate and add it to your site. Your site uses Azure Traffic Manager "nested" or "external" endpoints: Only “Azure Endpoints” on Traffic Manager will be supported for certificate creation and renewal. “Nested endpoints” and “External endpoints” will not be supported. Action: Transition to using "Azure Endpoints". However, if you cannot, then you must obtain a different SSL certificate for your domain and add it to your site. Your site relies on *.trafficmanager.net domain: Certificates for *.trafficmanager.net domains will not be supported for creation or renewal. Action: Add a custom domain to your app and point the custom domain to your *.trafficmanager.net domain. After that, secure the custom domain with a new SSL certificate. If none of the above applies, no further action is required. How to Identify Impacted Resources? To assist with the upcoming changes, you can use Azure Resource Graph (ARG) queries to help identify resources that may be affected under each scenario. Please note that these queries are provided as a starting point and may not capture every configuration. Review your environment for any unique setups or custom configurations. Scenario 1: Sites Not Publicly Accessible This ARG query retrieves a list of sites that either have the public network access property disabled or are configured to use client certificates. It then filters for sites that are using App Service Managed Certificates (ASMC) for their custom hostname SSL bindings. These certificates are the ones that could be affected by the upcoming changes. However, please note that this query does not provide complete coverage, as there may be additional configurations impacting public access to your app that are not included here. Ultimately, this query serves as a helpful guide for users, but a thorough review of your environment is recommended. You can copy this query, paste it into Azure Resource Graph Explorer, and then click "Run query" to view the results for your environment. // ARG Query: Identify App Service sites that commonly restrict public access and use ASMC for custom hostname SSL bindings resources | where type == "microsoft.web/sites" // Extract relevant properties for public access and client certificate settings | extend publicNetworkAccess = tolower(tostring(properties.publicNetworkAccess)), clientCertEnabled = tolower(tostring(properties.clientCertEnabled)) // Filter for sites that either have public network access disabled // or have client certificates enabled (both can restrict public access) | where publicNetworkAccess == "disabled" or clientCertEnabled != "false" // Expand the list of SSL bindings for each site | mv-expand hostNameSslState = properties.hostNameSslStates | extend hostName = tostring(hostNameSslState.name), thumbprint = tostring(hostNameSslState.thumbprint) // Only consider custom domains (exclude default *.azurewebsites.net) and sites with an SSL certificate bound | where tolower(hostName) !endswith "azurewebsites.net" and isnotempty(thumbprint) // Select key site properties for output | project siteName = name, siteId = id, siteResourceGroup = resourceGroup, thumbprint, publicNetworkAccess, clientCertEnabled // Join with certificates to find only those using App Service Managed Certificates (ASMC) // ASMCs are identified by the presence of the "canonicalName" property | join kind=inner ( resources | where type == "microsoft.web/certificates" | extend certThumbprint = tostring(properties.thumbprint), canonicalName = tostring(properties.canonicalName) // Only ASMC uses the "canonicalName" property | where isnotempty(canonicalName) | project certName = name, certId = id, certResourceGroup = tostring(properties.resourceGroup), certExpiration = properties.expirationDate, certThumbprint, canonicalName ) on $left.thumbprint == $right.certThumbprint // Final output: sites with restricted public access and using ASMC for custom hostname SSL bindings | project siteName, siteId, siteResourceGroup, publicNetworkAccess, clientCertEnabled, thumbprint, certName, certId, certResourceGroup, certExpiration, canonicalName Scenario 2: Traffic Manager Endpoint Types For this scenario, please manually review your Traffic Manager profile configurations to ensure only “Azure Endpoints” are in use. We recommend inspecting your Traffic Manager profiles directly in the Azure portal or using relevant APIs to confirm your setup and ensure compliance with the new requirements. Scenario 3: Certificates Issued to *.trafficmanager.net Domains This ARG query helps you identify App Service Managed Certificates (ASMC) that were issued to *.trafficmanager.net domains. In addition, it also checks whether any web apps are currently using those certificates for custom domain SSL bindings. You can copy this query, paste it into Azure Resource Graph Explorer, and then click "Run query" to view the results for your environment. // ARG Query: Identify App Service Managed Certificates (ASMC) issued to *.trafficmanager.net domains // Also checks if any web apps are currently using those certificates for custom domain SSL bindings resources | where type == "microsoft.web/certificates" // Extract the certificate thumbprint and canonicalName (ASMCs have a canonicalName property) | extend certThumbprint = tostring(properties.thumbprint), canonicalName = tostring(properties.canonicalName) // Only ASMC uses the "canonicalName" property // Filter for certificates issued to *.trafficmanager.net domains | where canonicalName endswith "trafficmanager.net" // Select key certificate properties for output | project certName = name, certId = id, certResourceGroup = tostring(properties.resourceGroup), certExpiration = properties.expirationDate, certThumbprint, canonicalName // Join with web apps to see if any are using these certificates for SSL bindings | join kind=leftouter ( resources | where type == "microsoft.web/sites" // Expand the list of SSL bindings for each site | mv-expand hostNameSslState = properties.hostNameSslStates | extend hostName = tostring(hostNameSslState.name), thumbprint = tostring(hostNameSslState.thumbprint) // Only consider bindings for *.trafficmanager.net custom domains with a certificate bound | where tolower(hostName) endswith "trafficmanager.net" and isnotempty(thumbprint) // Select key site properties for output | project siteName = name, siteId = id, siteResourceGroup = resourceGroup, thumbprint ) on $left.certThumbprint == $right.thumbprint // Final output: ASMCs for *.trafficmanager.net domains and any web apps using them | project certName, certId, certResourceGroup, certExpiration, canonicalName, siteName, siteId, siteResourceGroup Ongoing Updates We will continue to update this post with any new queries or important changes as they become available. Be sure to check back for the latest information. Note on Comments We hope this information helps you navigate the upcoming changes. To keep this post clear and focused, comments are closed. If you have questions, need help, or want to share tips or alternative detection methods, please visit our official support channels or the Microsoft Q&A, where our team and the community can assist you.24KViews1like1CommentFollow-Up to ‘Important Changes to App Service Managed Certificates’: November 2025 Update
This post provides an update to the Tech Community article ‘Important Changes to App Service Managed Certificates: Is Your Certificate Affected?’ and covers the latest changes introduced since July 2025. With the November 2025 update, ASMC now remains supported even if the site is not publicly accessible, provided all other requirements are met. Details on requirements, exceptions, and validation steps are included below. Background Context to July 2025 Changes As of July 2025, all ASMC certificate issuance and renewals use HTTP token validation. Previously, public access was required because DigiCert needed to access the endpoint https://<hostname>/.well-known/pki-validation/fileauth.txt to verify the token before issuing the certificate. App Service automatically places this token during certificate creation and renewal. If DigiCert cannot access this endpoint, domain ownership validation fails, and the certificate cannot be issued. November 2025 Update Starting November 2025, App Service now allows DigiCert's requests to the https://<hostname>/.well-known/pki-validation/fileauth.txt endpoint, even if the site blocks public access. If there’s a request to create an App Service Managed Certificate (ASMC), App Service places the domain validation token at the validation endpoint. When DigiCert tries to reach the validation endpoint, App Service front ends present the token, and the request terminates at the front end layer. DigiCert's request does not reach the workers running the application. This behavior is now the default for ASMC issuance for initial certificate creation and renewals. Customers do not need to specifically allow DigiCert's IP addresses. Exceptions and Unsupported Scenarios This update addresses most scenarios that restrict public access, including App Service Authentication, disabling public access, IP restrictions, private endpoints, and client certificates. However, a public DNS record is still required. For example, sites using a private endpoint with a custom domain on a private DNS cannot validate domain ownership and obtain a certificate. Even with all validations now relying on HTTP token validation and DigiCert requests being allowed through, certain configurations are still not supported for ASMC: Sites configured as "Nested" or "External" endpoints behind Traffic Manager. Only "Azure" endpoints are supported. Certificates requested for domains ending in *.trafficmanager.net are not supported. Testing Customers can easily test whether their site’s configuration or set-up supports ASMC by attempting to create one for their site. If the initial request succeeds, renewals should also work, provided all requirements are met and the site is not listed in an unsupported scenario.5.8KViews1like0CommentsReimagining AI Ops with Azure SRE Agent: New Automation, Integration, and Extensibility features
Azure SRE Agent offers intelligent and context aware automation for IT operations. Enhanced by customer feedback from our preview, the SRE Agent has evolved into an extensible platform to automate and manage tasks across Azure and other environments. Built on an Agentic DevOps approach - drawing from proven practices in internal Azure operations - the Azure SRE Agent has already saved over 20,000 engineering hours across Microsoft product teams operations, delivering strong ROI for teams seeking sustainable AIOps. An Operations Agent that adapts to your playbooks Azure SRE Agent is an AI powered operations automation platform that empowers SREs, DevOps, IT operations, and support teams to automate tasks such as incident response, customer support, and developer operations from a single, extensible agent. Its value proposition and capabilities have evolved beyond diagnosis and mitigation of Azure issues, to automating operational workflows and seamless integration with the standards and processes used in your organization. SRE Agent is designed to automate operational work and reduce toil, enabling developers and operators to focus on high-value tasks. By streamlining repetitive and complex processes, SRE Agent accelerates innovation and improves reliability across cloud and hybrid environments. In this article, we will look at what’s new and what has changed since the last update. What’s New: Automation, Integration, and Extensibility Azure SRE Agent just got a major upgrade. From no-code automation to seamless integrations and expanded data connectivity, here’s what’s new in this release: No-code Sub-Agent Builder: Rapidly create custom automations without writing code. Flexible, event-driven triggers: Instantly respond to incidents and operational changes. Expanded data connectivity: Unify diagnostics and troubleshooting across more data sources. Custom actions: Integrate with your existing tools and orchestrate end-to-end workflows via MCP. Prebuilt operational scenarios: Accelerate deployment and improve reliability out of the box. Unlike generic agent platforms, Azure SRE Agent comes with deep integrations, prebuilt tools, and frameworks specifically for IT, DevOps, and SRE workflows. This means you can automate complex operational tasks faster and more reliably, tailored to your organization’s needs. Sub-Agent Builder: Custom Automation, No Code Required Empower teams to automate repetitive operational tasks without coding expertise, dramatically reducing manual workload and development cycles. This feature helps address the need for targeted automation, letting teams solve specific operational pain points without relying on one-size-fits-all solutions. Modular Sub-Agents: Easily create custom sub-agents tailored to your team’s needs. Each sub-agent can have its own instructions, triggers, and toolsets, letting you automate everything from outage response to customer email triage. Prebuilt System Tools: Eliminate the inefficiency of creating basic automation from scratch, and choose from a rich library of hundreds of built-in tools for Azure operations, code analysis, deployment management, diagnostics, and more. Custom Logic: Align automation to your unique business processes by defining your automation logic and prompts, teaching the agent to act exactly as your workflow requires. Flexible Triggers: Automate on Your Terms Invoke the agent to respond automatically to mission-critical events, not wait for manual commands. This feature helps speed up incident response and eliminate missed opportunities for efficiency. Multi-Source Triggers: Go beyond chat-based interactions, and trigger the agent to automatically respond to Incident Management and Ticketing systems like PagerDuty and ServiceNow, Observability Alerting systems like Azure Monitor Alerts, or even on a cron-based schedule for proactive monitoring and best-practices checks. Additional trigger sources such as GitHub issues, Azure DevOps pipelines, email, etc. will be added over time. This means automation can start exactly when and where you need it. Event-Driven Operations: Integrate with your CI/CD, monitoring, or support systems to launch automations in response to real-world events - like deployments, incidents, or customer requests. Vital for reducing downtime, it ensures that business-critical actions happen automatically and promptly. Expanded Data Connectivity: Unified Observability and Troubleshooting Integrate data, enabling comprehensive diagnostics and troubleshooting and faster, more informed decision-making by eliminating silos and speeding up issue resolution. Multiple Data Sources: The agent can now read data from Azure Monitor, Log Analytics, and Application Insights based on its Azure role-based access control (RBAC). Additional observability data sources such as Dynatrace, New Relic, Datadog, and more can be added via the Remote Model Context Protocol (MCP) servers for these tools. This gives you a unified view for diagnostics and automation. Knowledge Integration: Rather than manually detailing every instruction in your prompt, you can upload your Troubleshooting Guide (TSG) or Runbook directly, allowing the agent to automatically create an execution plan from the file. You may also connect the agent to resources like SharePoint, Jira, or documentation repositories through Remote MCP servers, enabling it to retrieve needed files on its own. This approach utilizes your organization’s existing knowledge base, streamlining onboarding and enhancing consistency in managing incidents. Azure SRE Agent is also building multi-agent collaboration by integrating with PagerDuty and Neubird, enabling advanced, cross-platform incident management and reliability across diverse environments. Custom Actions: Automate Anything, Anywhere Extend automation beyond Azure and integrate with any tool or workflow, solving the problem of limited automation scope and enabling end-to-end process orchestration. Out-of-the-Box Actions: Instantly automate common tasks like running azcli, kubectl, creating GitHub issues, or updating Azure resources, reducing setup time and operational overhead. Communication Notifications: The SRE Agent now features built-in connectors for Outlook, enabling automated email notifications, and for Microsoft Teams, allowing it to post messages directly to Teams channels for streamlined communication. Bring Your Own Actions: Drop in your own Remote MCP servers to extend the agent’s capabilities to any custom tool or workflow. Future-proof your agentic DevOps by automating proprietary or emerging processes with confidence. Prebuilt Operations Scenarios Address common operational challenges out of the box, saving teams time and effort while improving reliability and customer satisfaction. Incident Response: Minimize business impact and reduce operational risk by automating detection, diagnosis, and mitigation of your workload stack. The agent has built-in runbooks for common issues related to many Azure resource types including Azure Kubernetes Service (AKS), Azure Container Apps (ACA), Azure App Service, Azure Logic Apps, Azure Database for PostgreSQL, Azure CosmosDB, Azure VMs, etc. Support for additional resource types is being added continually, please see product documentation for the latest information. Root Cause Analysis & IaC Drift Detection: Instantly pinpoint incident causes with AI-driven root cause analysis including automated source code scanning via GitHub and Azure DevOps integration. Proactively detect and resolve infrastructure drift by comparing live cloud environments against source-controlled IaC, ensuring configuration consistency and compliance. Handle Complex Investigations: Enable the deep investigation mode that uses a hypothesis-driven method to analyze possible root causes. It collects logs and metrics, tests hypotheses with iterative checks, and documents findings. The process delivers a clear summary and actionable steps to help teams accurately resolve critical issues. Incident Analysis: The integrated dashboard offers a comprehensive overview of all incidents managed by the SRE Agent. It presents essential metrics, including the number of incidents reviewed, assisted, and mitigated by the agent, as well as those awaiting human intervention. Users can leverage aggregated visualizations and AI-generated root cause analyses to gain insights into incident processing, identify trends, enhance response strategies, and detect areas for improvement in incident management. Inbuilt Agent Memory: The new SRE Agent Memory System transforms incident response by institutionalizing the expertise of top SREs - capturing, indexing, and reusing critical knowledge from past incidents, investigations, and user guidance. Benefit from faster, more accurate troubleshooting, as the agent learns from both successes and mistakes, surfacing relevant insights, runbooks, and mitigation strategies exactly when needed. This system leverages advanced retrieval techniques and a domain-aware schema to ensure every on-call engagement is smarter than the last, reducing mean time to resolution (MTTR) and minimizing repeated toil. Automatically gain a continuously improving agent that remembers what works, avoids past pitfalls, and delivers actionable guidance tailored to the environment. GitHub Copilot and Azure DevOps Integration: Automatically triage, respond to, and resolve issues raised in GitHub or Azure DevOps. Integration with modern development platforms such as GitHub Copilot coding agent increases efficiency and ensures that issues are resolved faster, reducing bottlenecks in the development lifecycle. Ready to get started? Azure SRE Agent home page Product overview Pricing Page Pricing Calculator Pricing Blog Demo recordings Deployment samples What’s Next? Give us feedback: Your feedback is critical - You can Thumbs Up / Thumbs Down each interaction or thread, or go to the “Give Feedback” button in the agent to give us in-product feedback - or you can create issues or just share your thoughts in our GitHub repo at https://github.com/microsoft/sre-agent. We’re just getting started. In the coming months, expect even more prebuilt integrations, expanded data sources, and new automation scenarios. We anticipate continuous growth and improvement throughout our agentic AI platforms and services to effectively address customer needs and preferences. Let us know what Ops toil you want to automate next!2.4KViews0likes0Comments