onnx
15 TopicsGetting Started - Generative AI with Phi-3-mini: Running Phi-3-mini in Intel AI PC
In 2024, with the empowerment of AI, we will enter the era of AI PC. On May 20, Microsoft also released the concept of Copilot + PC, which means that PC can run SLM/LLM more efficiently with the support of NPU. We can use models from different Phi-3 family combined with the new AI PC to build a simple personalized Copilot application for individuals. This content will combine Intel's AI PC, use Intel's OpenVINO, NPU Acceleration Library, and Microsoft's DirectML to create a local Copilot.32KViews2likes2CommentsBuilding Retrieval Augmented Generation on VSCode & AI Toolkit
LLMs usually have limited knowledge about specific domains. Retrieval Augmented Generation (RAG) helps LLMs be more accurate and give relevant output to specific domains and datasets. We will see how we can do this for local models using AI Toolkit,Getting Started with the AI Dev Gallery
March Update: The Gallery is now available on the Microsoft Store! The AI Dev Gallery is a new open-source project designed to inspire and support developers in integrating on-device AI functionality into their Windows apps. It offers an intuitive UX for exploring and testing interactive AI samples powered by local models. Key features include: Quickly explore and download models from well-known sources on GitHub and HuggingFace. Test different models with interactive samples over 25 different scenarios, including text, image, audio, and video use cases. See all relevant code and library references for every sample. Switch between models that run on CPU and GPU depending on your device capabilities. Quickly get started with your own projects by exporting any sample to a fresh Visual Studio project that references the same model cache, preventing duplicate downloads. Part of the motivation behind the Gallery was exposing developers to the host of benefits that come with on-device AI. Some of these benefits include improved data security and privacy, increased control and parameterization, and no dependence on an internet connection or third-party cloud provider. Requirements Device Requirements Minimum OS Version: Windows 10, version 1809 (10.0; Build 17763) Architecture: x64, ARM64 Memory: At least 16 GB is recommended Disk Space: At least 20GB free space is recommended GPU: 8GB of VRAM is recommended for running samples on the GPU Using the Gallery The AI Dev Gallery has can be navigated in two ways: The Samples View The Models View Navigating Samples In this view, samples are broken up into categories (Text, Code, Image, etc.) and then into more specific samples, like in the Translate Text pictured below: On clicking a sample, you will be prompted to choose a model to download if you haven’t run this sample before: Next to the model you can see the size of the model, whether it will run on CPU or GPU, and the associated license. Pick the model that makes the most sense for your machine. You can also download new models and change the model for a sample later from the sample view. Just click the model drop down at the top of the sample: The last thing you can do from the Sample pane is view the sample code and export the project to Visual Studio. Both buttons are found in the top right corner of the sample, and the code view will look like this: Navigating Models If you would rather navigate by models instead of samples, the Gallery also provides the model view: The model view contains a similar navigation menu on the right to navigate between models based on category. Clicking on a model will allow you to see a description of the model, the versions of it that are available to download, and the samples that use the model. Clicking on a sample will take back over to the samples view where you can see the model in action. Deleting and Managing Models If you need to clear up space or see download details for the models you are using, you can head over the Settings page to manage your downloads: From here, you can easily see every model you have downloaded and how much space on your drive they are taking up. You can clear your entire cache for a fresh start or delete individual models that you are no longer using. Any deleted model can be redownload through either the models or samples view. Next Steps for the Gallery The AI Dev Gallery is still a work in progress, and we plan on adding more samples, models, APIs, and features, and we are evaluating adding support for NPUs to take the experience even further If you have feedback, noticed a bug, or any ideas for features or samples, head over to the issue board and submit an issue. We also have a discussion board for any other topics relevant to the Gallery. The Gallery is an open-source project, and we would love contribution, feedback, and ideation! Happy modeling!6.2KViews5likes3CommentsIntroducing Azure AI Travel Agents: A Flagship MCP-Powered Sample for AI Travel Solutions
We are excited to introduce AI Travel Agents, a sample application with enterprise functionality that demonstrates how developers can coordinate multiple AI agents (written in multiple languages) to explore travel planning scenarios. It's built with LlamaIndex.TS for agent orchestration, Model Context Protocol (MCP) for structured tool interactions, and Azure Container Apps for scalable deployment. TL;DR: Experience the power of MCP and Azure Container Apps with The AI Travel Agents! Try out live demo locally on your computer for free to see real-time agent collaboration in action. Share your feedback on our community forum. We’re already planning enhancements, like new MCP-integrated agents, enabling secure communication between the AI agents and MCP servers and more. NOTE: This example uses mock data and is intended for demonstration purposes rather than production use. The Challenge: Scaling Personalized Travel Planning Travel agencies grapple with complex tasks: analyzing diverse customer needs, recommending destinations, and crafting itineraries, all while integrating real-time data like trending spots or logistics. Traditional systems falter with latency, scalability, and coordination, leading to delays and frustrated clients. The AI Travel Agents tackles these issues with a technical trifecta: LlamaIndex.TS orchestrates six AI agents for efficient task handling. MCP equips agents with travel-specific data and tools. Azure Container Apps ensures scalable, serverless deployment. This architecture delivers operational efficiency and personalized service at scale, transforming chaos into opportunity. LlamaIndex.TS: Orchestrating AI Agents The heart of The AI Travel Agents is LlamaIndex.TS, a powerful agentic framework that orchestrates multiple AI agents to handle travel planning tasks. Built on a Node.js backend, LlamaIndex.TS manages agent interactions in a seamless and intelligent manner: Task Delegation: The Triage Agent analyzes queries and routes them to specialized agents, like the Itinerary Planning Agent, ensuring efficient workflows. Agent Coordination: LlamaIndex.TS maintains context across interactions, enabling coherent responses for complex queries, such as multi-city trip plans. LLM Integration: Connects to Azure OpenAI, GitHub Models or any local LLM using Foundy Local for advanced AI capabilities. LlamaIndex.TS’s modular design supports extensibility, allowing new agents to be added with ease. LlamaIndex.TS is the conductor, ensuring agents work in sync to deliver accurate, timely results. Its lightweight orchestration minimizes latency, making it ideal for real-time applications. MCP: Fueling Agents with Data and Tools The Model Context Protocol (MCP) empowers AI agents by providing travel-specific data and tools, enhancing their functionality. MCP acts as a data and tool hub: Real-Time Data: Supplies up-to-date travel information, such as trending destinations or seasonal events, via the Web Search Agent using Bing Search. Tool Access: Connects agents to external tools, like the .NET-based customer queries analyzer for sentiment analysis, the Python-based itinerary planning for trip schedules or destination recommendation tools written in Java. For example, when the Destination Recommendation Agent needs current travel trends, MCP delivers via the Web Search Agent. This modularity allows new tools to be integrated seamlessly, future-proofing the platform. MCP’s role is to enrich agent capabilities, leaving orchestration to LlamaIndex.TS. Azure Container Apps: Scalability and Resilience Azure Container Apps powers The AI Travel Agents sample application with a serverless, scalable platform for deploying microservices. It ensures the application handles varying workloads with ease: Dynamic Scaling: Automatically adjusts container instances based on demand, managing booking surges without downtime. Polyglot Microservices: Supports .NET (Customer Query), Python (Itinerary Planning), Java (Destination Recommandation) and Node.js services in isolated containers. Observability: Integrates tracing, metrics, and logging enabling real-time monitoring. Serverless Efficiency: Abstracts infrastructure, reducing costs and accelerating deployment. Azure Container Apps' global infrastructure delivers low-latency performance, critical for travel agencies serving clients worldwide. The AI Agents: A Quick Look While MCP and Azure Container Apps are the stars, they support a team of multiple AI agents that drive the application’s functionality. Built and orchestrated with Llamaindex.TS via MCP, these agents collaborate to handle travel planning tasks: Triage Agent: Directs queries to the right agent, leveraging MCP for task delegation. Customer Query Agent: Analyzes customer needs (emotions, intents), using .NET tools. Destination Recommendation Agent: Suggests tailored destinations, using Java. Itinerary Planning Agent: Crafts efficient itineraries, powered by Python. Web Search Agent: Fetches real-time data via Bing Search. These agents rely on MCP’s real-time communication and Azure Container Apps’ scalability to deliver responsive, accurate results. It's worth noting though this sample application uses mock data for demonstration purpose. In real worl scenario, the application would communicate with an MCP server that is plugged in a real production travel API. Key Features and Benefits The AI Travel Agents offers features that showcase the power of MCP and Azure Container Apps: Real-Time Chat: A responsive Angular UI streams agent responses via MCP’s SSE, ensuring fluid interactions. Modular Tools: MCP enables tools like analyze_customer_query to integrate seamlessly, supporting future additions. Scalable Performance: Azure Container Apps ensures the UI, backend and the MCP servers handle high traffic effortlessly. Transparent Debugging: An accordion UI displays agent reasoning providing backend insights. Benefits: Efficiency: LlamaIndex.TS streamlines operations. Personalization: MCP’s data drives tailored recommendations. Scalability: Azure ensures reliability at scale. Thank You to Our Contributors! The AI Travel Agents wouldn’t exist without the incredible work of our contributors. Their expertise in MCP development, Azure deployment, and AI orchestration brought this project to life. A special shoutout to: Pamela Fox – Leading the developement of the Python MCP server. Aaron Powell and Justin Yoo – Leading the developement of the .NET MCP server. Rory Preddy – Leading the developement of the Java MCP server. Lee Stott and Kinfey Lo – Leading the developement of the Local AI Foundry Anthony Chu and Vyom Nagrani – Leading Azure Container Apps roadmap Matt Soucoup and Julien Dubois – Leading the ACA DevRel strategy Wassim Chegham – Architected MCP and backend orchestration. And many more! See the GitHub repository for all contributors. Thank you for your dedication to pushing the boundaries of AI and cloud technology! Try It Out Experience the power of MCP and Azure Container Apps with The AI Travel Agents! Try out live demo locally on your computer for free to see real-time agent collaboration in action. Conclusion Developers can explore today the open-source project on GitHub, with setup and deployment instructions. Share your feedback on our community forum. We’re already planning enhancements, like new MCP-integrated agents, enabling secure communication between the AI agents and MCP servers and more. This is still a work in progress and we also welcome all kind of contributions. Please fork and star the repo to stay tuned for updates! ◾️We would love your feedback and continue the discussion in the Azure AI Foundry Discord aka.ms/foundry/discord On behalf of Microsoft DevRel Team.Build AI Agents with MCP Tool Use in Minutes with AI Toolkit for VSCode
We’re excited to announce Agent Builder, the newest evolution of what was formerly known as Prompt Builder, now reimagined and supercharged for intelligent app development. This powerful tool in AI Toolkit enables you to create, iterate, and optimize agents—from prompt engineering to tool integration—all in one seamless workflow. Whether you're designing simple chat interactions or complex task-performing agents with tool access, Agent Builder simplifies the journey from idea to integration. Why Agent Builder? Agent Builder is designed to empower developers and prompt engineers to: 🚀 Generate starter prompts with natural language 🔁 Iterate and refine prompts based on model responses 🧩 Break down tasks with prompt chaining and structured outputs 🧪 Test integrations with real-time runs and tool use such as MCP servers 💻 Generate production-ready code for rapid app development And a lot of features are coming soon, stay tuned for: 📝 Use variables in prompts �� Run agent with test cases to test your agent easily 📊 Evaluate the accuracy and performance of your agent with built-in or your custom metrics ☁️ Deploy your agent to cloud Build Smart Agents with Tool Use (MCP Servers) Agents can now connect to external tools through MCP (Model Control Protocol) servers, enabling them to perform real-world actions like querying a database, accessing APIs, or executing custom logic. Connect to an Existing MCP Server To use an existing MCP server in Agent Builder: In the Tools section, select + MCP Server. Choose a connection type: Command (stdio) – run a local command that implements the MCP protocol HTTP (server-sent events) – connect to a remote server implementing the MCP protocol If the MCP server supports multiple tools, select the specific tool you want to use. Enter your prompts and click Run to test the agent's interaction with the tool. This integration allows your agents to fetch live data or trigger custom backend services as part of the conversation flow. Build and Scaffold a New MCP Server Want to create your own tool? Agent Builder helps you scaffold a new MCP server project: In the Tools section, select + MCP Server. Choose MCP server project. Select your preferred programming language: Python or TypeScript. Pick a folder to create your server project. Name your project and click Create. Agent Builder generates a scaffolded implementation of the MCP protocol that you can extend. Use the built-in VS Code debugger: Press F5 or click Debug in Agent Builder Test with prompts like: System: You are a weather forecast professional that can tell weather information based on given location. User: What is the weather in Shanghai? Agent Builder will automatically connect to your running server and show the response, making it easy to test and refine the tool-agent interaction. AI Sparks from Prototype to Production with AI Toolkit Building AI-powered applications from scratch or infusing intelligence into existing systems? AI Sparks is your go-to webinar series for mastering the AI Toolkit (AITK) from foundational concepts to cutting-edge techniques. In this bi-weekly, hands-on series, we’ll cover: 🚀SLMs & Local Models – Test and deploy AI models and applications efficiently on your own terms locally, to edge devices or to the cloud 🔍 Embedding Models & RAG – Supercharge retrieval for smarter applications using existing data. 🎨 Multi-Modal AI – Work with images, text, and beyond. 🤖 Agentic Frameworks – Build autonomous, decision-making AI systems. Watch on Demand Share your feedback Get started with the latest version, share your feedback, and let us know how these new features help you in your AI development journey. As always, we’re here to listen, collaborate, and grow alongside our amazing user community. Thank you for being a part of this journey—let’s build the future of AI together! Join our Microsoft Azure AI Foundry Discord channel to continue the discussion 🚀AI Toolkit for Visual Studio Code: October 2024 Update Highlights
The AI Toolkit’s October 2024 update revolutionizes Visual Studio Code with game-changing features for developers, researchers, and enthusiasts. Explore multi-model integration, including GitHub Models, ONNX, and Google Gemini, alongside custom model support. Dive into multi-modal capabilities for richer AI testing and seamless multi-platform compatibility across Windows, macOS, and Linux. Tailored for productivity, the enhanced Model Catalog simplifies choosing the best tools for your projects. Try it now and share feedback to shape the future of AI in VS Code!2.9KViews4likes0CommentsLocal AI on Windows: Explaining the Audio Editor App Sample
Take a look at an app sample from this year's Build that showcases three different local models being leveraged on Windows. Get a high-level overview of Silero Voice Activity Detection, Whisper Transcription, and MiniLM embeddings models, and how they are used to implement an "audio smart trimming" feature. All code for this sample has been open-sourced if you would like to dive into how the sample was built.Make Phi-4-mini-reasoning more powerful with industry reasoning on edge devices
In situations with limited computing, Phi-4-mini-reasoning will is an excellent model choice. We can use Microsoft Olive or Apple MLX Framework to quantize Phi-4-mini-reasoning and deploy it on edge terminals such as IoT, Laotop and mobile devices. Quantization In order to solve the problem that the model is difficult to deploy directly to specific hardware, we need to reduce the complexity of the model through model quantization. Undertaking the quantization process will inevitably cause precision loss. Quantize Phi-4-mini-reasoning using Microsoft Olive Microsoft Olive is an AI model optimization toolkit for ONNX Runtime. Given a model and target hardware, Olive (short for Onnx LIVE) will combine the most appropriate optimization techniques to output the most efficient ONNX model for inference in the cloud or on the edge. We can combine Microsoft Olive and Phi-4-mini-reasoning on Azure AI Foundry's Model Catalog to quantize Phi-4-mini-reasoning to an ONNX format model. Create your Notebook on Azure ML Install Microsoft Olive pip install git+https://github.com/Microsoft/Olive.git Quantize using Microsoft Olive olive auto-opt --model_name_or_path {Azure Model Catalog path ,such as azureml://registries/azureml/models/Phi-4-mini-reasoning/versions/1 }--device cpu --provider CPUExecutionProvider --use_model_builder --precision int4 --output_path ./phi-4-14b-reasoninig-onnx --log_level 1 Register your quantized Model ! python -m mlx_lm.generate --model ./phi-4-mini-reasoning --adapter-path ./adapters --max-token 4096 --prompt "A 54-year-old construction worker with a long history of smoking presents with swelling in his upper extremity and face, along with dilated veins in this region. After conducting a CT scan and venogram of the neck, what is the most likely diagnosis for the cause of these symptoms?" --extra-eos-token "<|end|>" Download to local and run Download the onnx model to local device ml_client.models.download("phi-4-mini-onnx-int4-cpu", 1) Running onnx model with onnxruntime-genai Install onnxruntime-genai (This is CPU version) pip install onnxruntime-genai Run it import onnxruntime_genai as og model_folder = "Your ONNX Model Path" model = og.Model(model_folder) tokenizer = og.Tokenizer(model) tokenizer_stream = tokenizer.create_stream() search_options = {} search_options['max_length'] = 32768 chat_template = "<|user|>{input}<|end|><|assistant|>" text = 'A school arranges dormitories for students. If each dormitory accommodates 5 people, 4 people cannot live there; if each dormitory accommodates 6 people, one dormitory only has 4 people, and two dormitories are empty. Find the number of students in this grade and the number of dormitories.' prompt = f'{chat_template.format(input=text)}' input_tokens = tokenizer.encode(prompt) params = og.GeneratorParams(model) params.set_search_options(**search_options) generator = og.Generator(model, params) generator.append_tokens(input_tokens) while not generator.is_done(): generator.generate_next_token() new_token = generator.get_next_tokens()[0] print(tokenizer_stream.decode(new_token), end='', flush=True) Get Notebook from Phi Cookbook : https://aka.ms/phicookbook Quantize Phi-4-mini-reasoning model using Apple MLX Install Apple MLX Framework pip install -U mlx-lm Convert Phi-4-mini-reasoning model through Apple MLX quantization python -m mlx_lm.convert --hf-path {Phi-4-mini-reasoning Hugging face id} -q Run Phi-4-mini-reasoning with Apple MLX in terminal python -m mlx_lm.generate --model ./mlx_model --max-token 2048 --prompt "A school arranges dormitories for students. If each dormitory accommodates 5 people, 4 people cannot live there; if each dormitory accommodates 6 people, one dormitory only has 4 people, and two dormitories are empty. Find the number of students in this grade and the number of dormitories." --extra-eos-token "<|end|>" --temp 0.0 Fine-tuning We can fine-tune the CoT data of different scenarios to enable Phi-4-mini-reasoning to have reasoning capabilities for different scenarios. Here we use the Medical CoT data from a public Huggingface datasets as our example (this is just an example. If you need rigorous medical reasoning, please seek more professional data support) We can fine-tune our CoT data in Azure ML Fine-tune Phi-4-mini-reasoning using Microsoft Olive in Azure ML Note- Please use Standard_NC24ads_A100_v4 to run this sample Get Data from Hugging face datasets pip install datasets run this script to get train data from datasets import load_dataset def formatting_prompts_func(examples): inputs = examples["Question"] cots = examples["Complex_CoT"] outputs = examples["Response"] texts = [] for input, cot, output in zip(inputs, cots, outputs): text = prompt_template.format(input, cot, output) + "<|end|>" # text = prompt_template.format(input, cot, output) + "<|endoftext|>" texts.append(text) return { "text": texts, } # Create the English dataset dataset = load_dataset("FreedomIntelligence/medical-o1-reasoning-SFT","en", split = "train",trust_remote_code=True) dataset = dataset.map(formatting_prompts_func, batched = True,remove_columns=["Question", "Complex_CoT", "Response"]) dataset.to_json("en_dataset.jsonl") Fine-tuning with Microsoft Olive olive finetune \ --method lora \ --model_name_or_path {Azure Model Catalog path , azureml://registries/azureml/models/Phi-4-mini-reasoning/versions/1} \ --trust_remote_code \ --data_name json \ --data_files ./en_dataset.jsonl \ --train_split "train[:16000]" \ --eval_split "train[16000:19700]" \ --text_field "text" \ --max_steps 100 \ --logging_steps 10 \ --output_path {Your fine-tuning save path} \ --log_level 1 Convert the model to ONNX with Microsoft Olive olive capture-onnx-graph \ --model_name_or_path {Azure Model Catalog path , azureml://registries/azureml/models/Phi-4-mini-reasoning/versions/1} \ --adapter_path {Your fine-tuning adapter path} \ --use_model_builder \ --output_path {Your save onnx path} \ --log_level 1 olive generate-adapter \ --model_name_or_path {Your save onnx path} \ --output_path {Your save onnx adapter path} \ --log_level 1 Run the model with onnxruntime-genai-cuda Install onnxruntime-genai-cuda SDK import onnxruntime_genai as og import numpy as np import os model_folder = "./models/phi-4-mini-reasoning/adapter-onnx/model/" model = og.Model(model_folder) adapters = og.Adapters(model) adapters.load('./models/phi-4-mini-reasoning/adapter-onnx/model/adapter_weights.onnx_adapter', "en_medical_reasoning") tokenizer = og.Tokenizer(model) tokenizer_stream = tokenizer.create_stream() search_options = {} search_options['max_length'] = 200 search_options['past_present_share_buffer'] = False search_options['temperature'] = 1 search_options['top_k'] = 1 prompt_template = """<|user|>{}<|end|><|assistant|><think>""" question = """ A 33-year-old woman is brought to the emergency department 15 minutes after being stabbed in the chest with a screwdriver. Given her vital signs of pulse 110\/min, respirations 22\/min, and blood pressure 90\/65 mm Hg, along with the presence of a 5-cm deep stab wound at the upper border of the 8th rib in the left midaxillary line, which anatomical structure in her chest is most likely to be injured? """ prompt = prompt_template.format(question, "") input_tokens = tokenizer.encode(prompt) params = og.GeneratorParams(model) params.set_search_options(**search_options) generator = og.Generator(model, params) generator.set_active_adapter(adapters, "en_medical_reasoning") generator.append_tokens(input_tokens) while not generator.is_done(): generator.generate_next_token() new_token = generator.get_next_tokens()[0] print(tokenizer_stream.decode(new_token), end='', flush=True) inference model with onnxruntime-genai cuda olive finetune \ --method lora \ --model_name_or_path {Azure Model Catalog path , azureml://registries/azureml/models/Phi-4-mini-reasoning/versions/1} \ --trust_remote_code \ --data_name json \ --data_files ./en_dataset.jsonl \ --train_split "train[:16000]" \ --eval_split "train[16000:19700]" \ --text_field "text" \ --max_steps 100 \ --logging_steps 10 \ --output_path {Your fine-tuning save path} \ --log_level 1 Fine-tune Phi-4-mini-reasoning using Apple MLX locally on MacOS Note- we recommend that you use devices with a minimum of 64GB Memory and Apple Silicon devices Get the DataSet from Hugging face datasets pip install datasets run this script to get train and valid data from datasets import load_dataset prompt_template = """<|user|>{}<|end|><|assistant|><think>{}</think>{}<|end|>""" def formatting_prompts_func(examples): inputs = examples["Question"] cots = examples["Complex_CoT"] outputs = examples["Response"] texts = [] for input, cot, output in zip(inputs, cots, outputs): # text = prompt_template.format(input, cot, output) + "<|end|>" text = prompt_template.format(input, cot, output) + "<|endoftext|>" texts.append(text) return { "text": texts, } dataset = load_dataset("FreedomIntelligence/medical-o1-reasoning-SFT","en", trust_remote_code=True) split_dataset = dataset["train"].train_test_split(test_size=0.2, seed=200) train_dataset = split_dataset['train'] validation_dataset = split_dataset['test'] train_dataset = train_dataset.map(formatting_prompts_func, batched = True,remove_columns=["Question", "Complex_CoT", "Response"]) train_dataset.to_json("./data/train.jsonl") validation_dataset = validation_dataset.map(formatting_prompts_func, batched = True,remove_columns=["Question", "Complex_CoT", "Response"]) validation_dataset.to_json("./data/valid.jsonl") Fine-tuning with Apple MLX python -m mlx_lm.lora --model ./phi-4-mini-reasoning --train --data ./data --iters 100 Running the model ! python -m mlx_lm.generate --model ./phi-4-mini-reasoning --adapter-path ./adapters --max-token 4096 --prompt "A 54-year-old construction worker with a long history of smoking presents with swelling in his upper extremity and face, along with dilated veins in this region. After conducting a CT scan and venogram of the neck, what is the most likely diagnosis for the cause of these symptoms?" --extra-eos-token "<|end|>" Get Notebook from Phi Cookbook : https://aka.ms/phicookbook We hope this sample has inspired you to use Phi-4-mini-reasoning and Phi-4-reasoning to complete industry reasoning for our own scenarios. Related resources Phi4-mini-reasoning Tech Report https://aka.ms/phi4-mini-reasoning/techreport Phi-4-Mini-Reasoning technical Report· microsoft/Phi-4-mini-reasoning Phi-4-mini-reasoning on Azure AI Foundry https://aka.ms/phi4-mini-reasoning/azure Phi-4 Reasoning Blog https://aka.ms/phi4-mini-reasoning/blog Phi Cookbook https://aka.ms/phicookbook Showcasing Phi-4-Reasoning: A Game-Changer for AI Developers | Microsoft Community Hub Models Phi-4 Reasoning https://huggingface.co/microsoft/Phi-4-reasoning Phi-4 Reasoning Plus https://huggingface.co/microsoft/Phi-4-reasoning-plus Phi-4-mini-reasoning Hugging Face https://aka.ms/phi4-mini-reasoning/hf Phi-4-mini-reasoning on Azure AI Foundry https://aka.ms/phi4-mini-reasoning/azure Microsoft (Microsoft) Models on Hugging Face Phi-4 Reasoning Models Azure AI Foundry Models Access Phi-4-reasoning models Phi Models at Azure AI Foundry Models Phi Models on Hugging Face Phi Models on GitHub Marketplace ModelsAI Toolkit for VS Code January Update
AI Toolkit is a VS Code extension aiming to empower AI engineers in transforming their curiosity into advanced generative AI applications. This toolkit, featuring both local-enabled and cloud-accelerated inner loop capabilities, is set to ease model exploration, prompt engineering, and the creation and evaluation of generative applications. We are pleased to announce the January Update to the toolkit with support for OpenAI's o1 model and enhancements in the Model Playground and Bulk Run features. What's New? January’s update brings several exciting new features to boost your productivity in AI development. Here's a closer look at what's included: Support for OpenAI’s new o1 Model: We've added access to GitHub hosted OpenAI’s latest o1 model. This new model replaces the o1-preview and offers even better performance in handling complex tasks. You can start interacting with the o1 model within VS Code for free by using the latest AI Toolkit update. Chat History Support in Model Playground: We have heard your feedback that tracking past model interactions is crucial. The Model Playground has been updated to include support for chat history. This feature saves chat history as individual files stored entirely on your local machine, ensuring privacy and security. Bulk Run with Prompt Templating: The Bulk Run feature, introduced in the AI Toolkit December release, now supports prompt templating with variables. This allows users to create templates for prompts, insert variables, and run them in bulk. This enhancement simplifies the process of testing multiple scenarios and models. Stay tuned for more updates and enhancements as we continue to innovate and support your journey in AI development. Try out the AI Toolkit for Visual Studio Code, share your thoughts, and file issues and suggest features in our GitHub repo. Thank you for being a part of this journey with us!