machine learning
370 TopicsPower Up Your Open WebUI with Azure AI Speech: Quick STT & TTS Integration
Introduction Ever found yourself wishing your web interface could really talk and listen back to you? With a few clicks (and a bit of code), you can turn your plain Open WebUI into a full-on voice assistant. In this post, you’ll see how to spin up an Azure Speech resource, hook it into your frontend, and watch as user speech transforms into text and your app’s responses leap off the screen in a human-like voice. By the end of this guide, you’ll have a voice-enabled web UI that actually converses with users, opening the door to hands-free controls, better accessibility, and a genuinely richer user experience. Ready to make your web app speak? Let’s dive in. Why Azure AI Speech? We use Azure AI Speech service in Open Web UI to enable voice interactions directly within web applications. This allows users to: Speak commands or input instead of typing, making the interface more accessible and user-friendly. Hear responses or information read aloud, which improves usability for people with visual impairments or those who prefer audio. Provide a more natural and hands-free experience especially on devices like smartphones or tablets. In short, integrating Azure AI Speech service into Open Web UI helps make web apps smarter, more interactive, and easier to use by adding speech recognition and voice output features. If you haven’t hosted Open WebUI already, follow my other step-by-step guide to host Ollama WebUI on Azure. Proceed to the next step if you have Open WebUI deployed already. Learn More about OpenWeb UI here. Deploy Azure AI Speech service in Azure. Navigate to the Azure Portal and search for Azure AI Speech on the Azure portal search bar. Create a new Speech Service by filling up the fields in the resource creation page. Click on “Create” to finalize the setup. After the resource has been deployed, click on “View resource” button and you should be redirected to the Azure AI Speech service page. The page should display the API Keys and Endpoints for Azure AI Speech services, which you can use in Open Web UI. Settings things up in Open Web UI Speech to Text settings (STT) Head to the Open Web UI Admin page > Settings > Audio. Paste the API Key obtained from the Azure AI Speech service page into the API key field below. Unless you use different Azure Region, or want to change the default configurations for the STT settings, leave all settings to blank. Text to Speech settings (TTS) Now, let's proceed with configuring the TTS Settings on OpenWeb UI by toggling the TTS Engine to Azure AI Speech option. Again, paste the API Key obtained from Azure AI Speech service page and leave all settings to blank. You can change the TTS Voice from the dropdown selection in the TTS settings as depicted in the image below: Click Save to reflect the change. Expected Result Now, let’s test if everything works well. Open a new chat / temporary chat on Open Web UI and click on the Call / Record button. The STT Engine (Azure AI Speech) should identify your voice and provide a response based on the voice input. To test the TTS feature, click on the Read Aloud (Speaker Icon) under any response from Open Web UI. The TTS Engine should reflect Azure AI Speech service! Conclusion And that’s a wrap! You’ve just given your Open WebUI the gift of capturing user speech, turning it into text, and then talking right back with Azure’s neural voices. Along the way you saw how easy it is to spin up a Speech resource in the Azure portal, wire up real-time transcription in the browser, and pipe responses through the TTS engine. From here, it’s all about experimentation. Try swapping in different neural voices or dialing in new languages. Tweak how you start and stop listening, play with silence detection, or add custom pronunciation tweaks for those tricky product names. Before you know it, your interface will feel less like a web page and more like a conversation partner.821Views2likes1CommentAnnouncing a new Azure AI Translator API (Public Preview)
Microsoft has launched the Azure AI Translator API (Public Preview), offering flexible translation options using either neural machine translation (NMT) or generative AI models like GPT-4o. The API supports tone, gender, and adaptive custom translation, allowing enterprises to tailor output for real-time or human-reviewed workflows. Customers can mix models in a single request and authenticate via resource key or Entra ID. LLM features require deployment in Azure AI Foundry. Pricing is based on characters (NMT) or tokens (LLMs).625Views0likes0CommentsThe Future of AI: Vibe Code with Adaptive Custom Translation
This blog explores how vibe coding—a conversational, flow-based development approach—was used to build the AdaptCT playground in Azure AI Foundry. It walks through setting up a productive coding environment with GitHub Copilot in Visual Studio Code, configuring the Copilot agent, and building a translation playground using Adaptive Custom Translation (AdaptCT). The post includes real-world code examples, architectural insights, and advanced UI patterns. It also highlights how AdaptCT fine-tunes LLM outputs using domain-specific reference sentence pairs, enabling more accurate and context-aware translations. The blog concludes with best practices for vibe coding teams and a forward-looking view of AI-augmented development paradigms.388Views0likes0CommentsThe Future of AI: Developing Lacuna - an agent for Revealing Quiet Assumptions in Product Design
A conversational agent named Lacuna is helping product teams uncover hidden assumptions embedded in design decisions. Built with Copilot Studio and powered by Azure AI Foundry, Lacuna analyzes product documents to identify speculative beliefs and assess their risk using design analysis lenses: impact, confidence, and reversibility. By surfacing cognitive biases and prompting reflection, Lacuna encourages teams to validate assumptions through lightweight evidence-gathering methods. This experiment in human-AI collaboration explores how agents can foster epistemic humility and transform static documents into dynamic conversations.451Views1like1CommentDo you have experience fine tuning GPS OSS models?
Hi I found this space called Affine. It is a daily reinforcement learning competition and I'm participating in it. One thing that I am looking for collaboration on is with fine tuning GPT OSS models to score well on the evaluations. I am wondering if anyone here is interested in mining? I feel that people here would have some good reinforcement learning tricks. These models are evaluated on a set of RL-environments with validators looking for the model which dominates the Pareto frontier. I'm specifically looking to see any improvements in the coding deduction environment and the new ELR environment they made. I would like to use a GPT OSS model here but its hard to fine-tune these models in GRPO. Here is the information I found on Affine: https://www.reddit.com/r/reinforcementlearning/comments/1mnq6i0/comment/n86sjrk/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button41Views0likes0CommentsAnnouncing the Text PII August preview model release in Azure AI language
Azure AI Language is excited to announce a new preview model release for the PII (Personally Identifiable Information) redaction service, which includes support for more entities and languages, addressing customer-sourced scenarios and international use cases. What’s New | Updated Model 2025-08-01-preview Tier 1 language support for DateOfBirth entity: expanding upon the original English-only support earlier this year, we’ve added support for all Tier 1 languages: French, German, Italian, Spanish, Portuguese, Brazilian Portuguese, and Dutch New entity support: SortCode - a financial code used in the UK and Ireland to identify the specific bank and branch where an account is held. Currently we support this in only English. LicensePlateNumber - the standard alphanumeric code for vehicle identification. Note that our current scope does not support a license plate that contains only letters. Currently we support this in only English. AI quality improvements for financial entities, reducing false positives/negatives These updates respond directly to customer feedback and address gaps in entity coverage and language support. The broader language support enables global deployments and the new entity types allow for more comprehensive data extraction for our customers. This ensures an improved service quality for financial, criminal justice, and many other regulatory use cases, enabling more accurate and reliable service for our customers. Get started A more detailed tutorial and overview of the service feature can be found in our public docs. Learn more about these releases and several others enhancing our Azure AI Language offerings on our What’s new page. Explore Azure AI Language and its various capabilities Access full pricing details on the Language Pricing page Find the list of sensitive PII entities supported Try out Azure AI Foundry for a code-free experience We are looking forward to continuously improving our product offerings and features to meet customer needs and are keen to hear any comments and feedback.294Views1like0CommentsExploring the Core Components of Microsoft Fabric A Unified Data Platform
As data continues to be the new oil, organizations are increasingly seeking robust platforms that can simplify and unify their data landscape. Enter Microsoft Fabric—a next-generation data platform introduced by Microsoft that brings together all the data and analytics tools needed in the modern enterprise, integrated into a single, SaaS-based solution. In this post, we’ll break down the key components of Microsoft Fabric, explain how they work together, and highlight why this platform is a game-changer for data professionals, developers, and decision-makers alike. https://dellenny.com/exploring-the-core-components-of-microsoft-fabric-a-unified-data-platform/91Views0likes0CommentsUnlocking Innovation with Azure AI Foundry Agent Service
In today’s AI-driven landscape, the ability to build, orchestrate, and operationalize intelligent agents at scale is becoming increasingly critical for organizations seeking to leverage AI as a core capability. Microsoft’s Azure AI Foundry Agent Service, introduced as part of the Azure AI Studio ecosystem, is a game-changing platform designed to empower developers and enterprises to build sophisticated multi-agent AI systems with minimal friction. https://dellenny.com/unlocking-innovation-with-azure-ai-foundry-agent-service/46Views0likes0Comments