compliance management
173 TopicsMicrosoft 365 compliance center: Unified compliance administration for all customers
Microsoft 365 compliance center has been enhanced with several exciting capabilities and is now available to all customers with Microsoft 365, Office 365, Enterprise Mobility + Security (EMS), and Windows 10 Enterprise plans.54KViews14likes0CommentsHow to troubleshoot sensitivity Labels – Part 1
Often people came and asked this same question. Although all my eventual on-hands experience would increase, it can be tricky to answer to this question, or even just to give a straightforward method. To understand any kind of steps in a troubleshooting process, you have to know the product, know its features or purpose, and what's required to deploy it and/or in what order. Please join in as we share a few steps on how to troubleshoot sensitivity labels through this series. Hope you enjoy.20KViews11likes13CommentsSensitivity Auto-labelling via Document Property
Why is this needed? Sensitivity labels are generally relevant within an organisation only. If a file is labelled within one environment and then moved to another environment, sensitivity label content markings may be visible, but by default, the applied sensitivity label will not be understood. This can lead to scenarios where information that has been generated externally is not adequately protected. My favourite analogy for these scenarios is to consider the parallels between receiving sensitive information and unpacking groceries. When unpacking groceries, you might sit your grocery bag on a counter or on the floor next to the pantry. You’ll likely then unpack each item, take a look at it and then decide where to place it. Without looking at an item to determine its correct location, you might place it in the wrong location. Porridge might be safe from the kids on the bottom shelf. If you place items that need to be protected, such as chocolate, on the bottom shelf, it’s not likely to last very long. So, I affectionately refer to information that hasn’t been evaluated as ‘porridge’, as until it has been checked, it will end up on the bottom shelf of the pantry where it is quite accessible. Label-based security controls, such as Data Loss Prevention (DLP) policies using conditions of ‘content contains sensitivity label’ will not apply to these items. To ensure the security of any contained sensitive information, we should look for potential clues to its sensitivity and then utilize these clues to ensure that the contained information is adequately protected - We take a closer look at the ‘porridge’, determine whether it’s an item that needs protection and if so, move it to a higher shelf in the pantry so that it’s out of reach for the kids. Effective use of Purview revolves around the use of ‘know your data’ strategies. We should be using as many methods as possible to try to determine the sensitivity of items. This can include the use of Sensitive Information Types (SITs) containing keyword or pattern-based classifiers, trainable classifiers, Exact Data Match, Document fingerprinting, etc. Matching items via SITs present in the items content can be problematic due to false positives. Keywords like ‘Sensitive’ or ‘Protected’ may be mentioned out of context, such as when referring to a classification or an environment. When classifications have been stamped via a property, it allows us to match via context rather than content. We don’t need to guess at an item’s sensitivity if another system has already established what the item’s classification is. These methods are much less prone to false positives. Why isn’t everyone doing this? Document properties are often not considered in Purview deployments. SharePoint metadata management seems to be a dying artform and most compliance or security resources completing Purview configurations don’t have this skill set. There’s also a lack of understanding of the relevance of checking for item properties. Microsoft haven’t helped as the documentation in this space is somewhat lacking and needs to be unpicked via some aligning DLP guidance (Create a DLP policy to protect documents with FCI or other properties). Many of these configurations will also be tied to regional requirements. Document properties being used by systems where I’m from, in Australia, will likely be very different to those used in other parts of the world. In the following sections, we’ll take a look at applicable use cases and walk through how to enable these configurations. Scenarios for use Labelling via document property isn’t for everyone. If your organisation is new to classification or you don’t have external partners that you collaborate with at higher sensitivity levels, then this likely isn’t for you. For those that collaborate heavily and have a shared classification framework, as is often seen across government, this is a must! This approach will also be highly relevant to multi-tenant organisations or conglomerates where information is regularly shared between environments. The following scenarios are examples of where this configuration will be relevant: 1. Migrating from 3 rd party classification tools If an item has been previously stamped by a 3 rd party classification tool, then evaluating its applied document properties will provide a clear picture of its security classification. These properties can then be used in service-based auto-labelling policies to effectively transition items from 3 rd party tools to Microsoft Purview sensitivity labels. As labels are applied to items, they will be brought into scope of label-based controls. 2. Detecting data spill Data spill is a term that is used to define situations where information that is of a higher than permitted security classification land in an environment. Consider a Microsoft 365 tenant that is approved for the storage of Official information but Top Secret files are uploaded to it. Document properties that align with higher than permitted classifications provide us with an almost guaranteed method of identifying spilled items. Pairing this document property with an auto-labelling policy allows for the application of encryption to lock unauthorized users out of the items. Tools like Content Explorer and eDiscovery can then be used to easily perform cleanup activities. If using document properties and auto-labelling for this purpose, keep in mind that you’ll need to create sensitivity labels for higher than permitted classifications in order to catch spilled items. These labels won’t impact usability as you won’t publish them to users. You will, however, need to publish them to a single user or break glass account so that they’re not ignored by auto-labelling. 3. Blocking access by AI tools If your organization was concerned about items with certain properties applied being accessed by generative AI tools, such as Copilot, you could use Auto-labelling to apply a sensitivity label that restricts EXTRACT permissions. You can find some information on this at Microsoft 365 Copilot data protection architecture | Microsoft Learn. This should be relevant for spilled data, but might also be useful in situations where there are certain records that have been marked via properties and which should not be Copilot accessible. 4. External Microsoft Purview Configurations Sensitivity labels are relevant internally only. A label, in its raw form, is essentially a piece of metadata with an ID (or GUID) that we stamp on pieces of information. These GUIDs are understood by your tenant only. If an item marked with a GUID shows up in another Microsoft 365 tenant, the GUID won’t correspond with any of that tenant’s labels or label-based controls. The art in Microsoft Purview lies in interpreting the sensitivity of items based on content markings and other identifiers, so that data security can be maintained. Document properties applied by Purview, such as ClassificationContentMarkingHeaderText are not relevant to a specific tenant, which makes them portable. We can use these properties to help maintain classifications as items move between environments. 5. Utilizing metadata applied by Records Management solutions Some EDRMS, Records or Content Management solutions will apply properties to items. If an item has been previously managed and then stamped with properties, potentially including a security classification, via one of these systems, we could use this information to inform sensitivity label application. 6. 3 rd party classification tools used externally Even if your organisation hasn’t been using 3rd party classification tools, you should consider that partner organisations, such as other Government departments, might be. Evaluating the properties applied by external organisations to items that you receive will allow you to extend protections to these items. If classification tools like Janus or Titus are used in your geography/industry, then you may want to consider checking for their properties. Regarding the use of auto-classification tools Some organisations, particularly those in Government, will have organisational policies that prevent the use of automatic classification capabilities. These policies are intended to ensure that each item is assessed by an actual person for risk of disclosure rather than via an automated service that could be prone to error. However, when auto-labelling is used to interpret and honour existing classifications, we are lowering rather than raising the risk profile. If the item’s existing classification (applied via property) is ignored, the item will be treated as porridge and is likely to be at risk. If auto-labelling is able to identify a high-risk item and apply the relevant label, it will then be within scope of Purview’s data security controls, including label-based DLP, groups and sites data out of place alerting, and potentially even item encryption. The outcome is that, through the use of auto-labelling, we are able to significantly reduce risk of inappropriate or unintended disclosure. Configuration Process Setting up document property-based auto-labelling is fairly straightforward. We need to setup a managed property and then utilize it an auto-labelling policy. Below, I've split this process into 6 steps: Step 1 – Prepare your files In order to make use of document properties, an item with the properties applied will first need to be indexed by SharePoint. SharePoint will record the properties as ‘crawled properties’, which we’ll then need to convert into ‘managed properties’ to make them useful. If you already have items with the relevant properties stored in SharePoint, then they are likely already indexed. If not, you’ll need to upload or create an item or items with the properties applied. For testing, you’ll want to create a file with each property/value combination so that you can confirm that your auto-labelling policies are all working correctly. This could require quite a few files depending on the number of properties you’re looking for. To kick off your crawled property generation though, you could create or upload a single file with the correct properties applied. For example: In the above, I’ve created properties for ClassificationContentMarkingHeaderText and ClassificationContentMarkingFooterText, which you’ll often see applied by Purview when an item has a sensitivity label content marking applied to it. I’ve also included properties to help identify items classified via JanusSeal, Titus and Objective. Step 2 – Index the files After creating or uploading your file, we then need SharePoint to index it. This should happen fairly quickly depending on the size of your environment. I'd expect to wait sometime between 10 minutes and 24 hrs. If you're not in a hurry, then I'd recommend just checking back the next day. You'll know when this has been completed when you head into SharePoint Admin > Search > Managed Search Schema > Crawled Properties and can find your newly indexed properties: Step 3 – Configure managed properties Next, the properties need to be configured as managed properties. To do this, go to SharePoint Admin > More features > Search > Managed Search Schema > Managed Properties. Create a new managed property and give it a name. Note that there are some character restrictions in naming, but you should be able to get it close to your document property name. Set the property’s type to text, select queryable and retrievable. Under ‘mappings to crawled properties’, choose add mapping, search for and select the property indexed from the file property. Note that the crawled property will have the same name as your document property, so there’s no need to browse through all of them: Repeat this so that you have a managed property for each document property that you want to look for. Step 4 – Configure Auto-labelling policies Next up, create some auto-labelling policies. You’ll need one for each label that you want to apply, not one per property as you can check multiple properties within the one auto-labelling policy. - From within Purview, head to Information Protection > Policies > Auto-labelling policies. - Create a new policy using the custom policy template. - Give your policy an appropriate name (e.g. Label PROTECTED via property). - Select the label that you want to apply (e.g. PROTECTED). - Select SharePoint based services (SharePoint and OneDrive). - Name your auto-labelling rules appropriately (e.g. SPO – Contains PROTECTED property) - Enter your conditions as a long string with property and value separated via a colon and multiple entries separated with a comma. For example: ClassificationContentMarkingHeaderText:PROTECTED,ClassificationContentMarkingFooterText:PROTECTED,Objective-Classification:PROTECTED,PMDisplay:PROTECTED,TitusSEC:PROTECTED Note that the properties that you are referencing are the Managed Property rather than the document property. This will be relevant if your managed property ended up having a different name due to character restrictions. After pasting in your string into the UI, the resultant rule should look something like this: When done, you can either leave your policy in simulation mode or save it and then turn it on from the auto-labelling policies screen. Just be aware of any potential impacts, such as accidently locking users out by automatically deploying a label with encryption configuration. You can reduce any potential impact by targeting your auto-labelling policy at a site or set of sites initially and then expanding its scope after testing. Step 5 - Test Testing your configuration will be as easy as uploading or creating a set of files with the relevant document properties in place. Once uploaded, you’ll need to give SharePoint some time to index the items and then the auto-labelling policy some time to apply sensitivity labels to them. To confirm label application, you can head to the document library where your test files are located and enable the sensitivity column. Files that have been auto-labelled will have their label listed: You could also check for auto-labelling activity in Purview via Activity explorer: Step 6 – Expand into DLP If you’ve spent the time setting up managed properties, then you really should consider capitalizing on them in your DLP configurations. DLP policy conditions can be configured in the same manner that we configured Auto-labelling in Step 3 above. The document property also gives us an anchor for DLP conditions that is independent of an item’s sensitivity label. You may wish to consider the following: DLP policies blocking external sharing of items with certain properties applied. This might be handy for situations where auto-labelling hasn’t yet labelled an item. DLP policies blocking the external sharing of items where the applied sensitivity label doesn’t match the applied document property. This could provide an indication of risky label downgrade. You could extend such policies into Insider Risk Management (IRM) by creating IRM policies that are aligned with the above DLP policies. This will allow for document properties to be considered in user risk calculation, which can inform controls like Adaptive Protection. Here's an example of a policy from the DLP rule summary screen that shows conditions of item contains a label or one of our configured document properties: Thanks for reading and I hope this article has been of use. If you have any questions or feedback, please feel free to reach out.2.1KViews8likes8CommentsSecure and govern AI apps and agents with Microsoft Purview
The Microsoft Purview family is here to help you secure and govern data across third party IaaS and Saas, multi-platform data environment, while helping you meet compliance requirements you may be subject to. Purview brings simplicity with a comprehensive set of solutions built on a platform of shared capabilities, that helps keep your most important asset, data, safe. With the introduction of AI technology, Purview also expanded its data coverage to include discovering, protecting, and governing the interactions of AI apps and agents, such as Microsoft Copilots like Microsoft 365 Copilot and Security Copilot, Enterprise built AI apps like Chat GPT enterprise, and other consumer AI apps like DeepSeek, accessed through the browser. To help you view, investigate interactions with all those AI apps, and to create and manage policies to secure and govern them in one centralized place, we have launched Purview Data Security Posture Management (DSPM) for AI. You can learn more about DSPM for AI here with short video walkthroughs: Learn how Microsoft Purview Data Security Posture Management (DSPM) for AI provides data security and compliance protections for Copilots and other generative AI apps | Microsoft Learn Purview capabilities for AI apps and agents To understand our current set of capabilities within Purview to discover, protect, and govern various AI apps and agents, please refer to our Learn doc here: Microsoft Purview data security and compliance protections for Microsoft 365 Copilot and other generative AI apps | Microsoft Learn Here is a quick reference guide for the capabilities available today: Note that currently, DLP for Copilot and adhering to sensitivity label are currently designed to protect content in Microsoft 365. Thus, Security Copilot and Coplot in Fabric, along with Copilot studio custom agents that do not use Microsoft 365 as a content source, do not have these features available. Please see list of AI sites supported by Microsoft Purview DSPM for AI here Conclusion Microsoft Purview can help you discover, protect, and govern the prompts and responses from AI applications in Microsoft Copilot experiences, Enterprise AI apps, and other AI apps through its data security and data compliance solutions, while allowing you to view, investigate, and manage interactions in one centralized place in DSPM for AI. Follow up reading Check out the deployment guides for DSPM for AI How to deploy DSPM for AI - https://aka.ms/DSPMforAI/deploy How to use DSPM for AI data risk assessment to address oversharing - https://aka.ms/dspmforai/oversharing Address oversharing concerns with Microsoft 365 blueprint - aka.ms/Copilot/Oversharing Explore the Purview SDK Microsoft Purview SDK Public Preview | Microsoft Community Hub (blog) Microsoft Purview documentation - purview-sdk | Microsoft Learn Build secure and compliant AI applications with Microsoft Purview (video) References for DSPM for AI Microsoft Purview data security and compliance protections for Microsoft 365 Copilot and other generative AI apps | Microsoft Learn Considerations for deploying Microsoft Purview AI Hub and data security and compliance protections for Microsoft 365 Copilot and Microsoft Copilot | Microsoft Learn Block Users From Sharing Sensitive Information to Unmanaged AI Apps Via Edge on Managed Devices (preview) | Microsoft Learn as part of Scenario 7 of Create and deploy a data loss prevention policy | Microsoft Learn Commonly used properties in Copilot audit logs - Audit logs for Copilot and AI activities | Microsoft Learn Supported AI sites by Microsoft Purview for data security and compliance protections | Microsoft Learn Where Copilot usage data is stored and how you can audit it - Microsoft 365 Copilot data protection and auditing architecture | Microsoft Learn Downloadable whitepaper: Data Security for AI Adoption | Microsoft Explore the roadmap for DSPM for AI Public roadmap for DSPM for AI - Microsoft 365 Roadmap | Microsoft 365PMPurIntroducing the Azure Threat Research Matrix
When performing a security assessment, it’s common to find the assessment team attribute their actions to the MITRE ATT&CK knowledge base so that high-level stakeholders can visually see what techniques were successful and defenders can understand the techniques that were performed. However, the commonly utilized MITRE knowledge base lacks formal documentation of Azure or AzureAD-related tactics, techniques, or procedures (TTPs) that assessment teams can attribute to. Over the past year, Microsoft has worked with some of the top Azure security researchers to create the Azure Threat Research Matrix (ATRM), a matrix that provides details around the tactics & techniques a potential adversary may use to compromise an Azure Resource or Azure Active Directory.28KViews7likes6CommentsMicrosoft Purview: The Ultimate AI Data Security Solution
Introduction AI is transforming the way enterprises operate, however with great innovation comes great responsibility. I’ve spent the last few years helping organizations secure their data with tools like Azure Information Protection, Data Loss Prevention, and now Microsoft Purview. As generative AI tools like Microsoft Copilot become embedded in everyday workflows, the need for clear governance and robust data protection is more urgent than ever. Through this blog post, let's explore how Microsoft Purview can help organizations stay ahead of securing AI interactions without slowing down innovation. What’s the Issue? AI agents are increasingly used to process sensitive data, often through natural language prompts. Without proper oversight, this can lead to data oversharing, compliance violations, and security risks. Why It’s Urgent? According to the recent trends of 2025, over half of corporate users bring their own AI tools to work, often consumer-grade apps like ChatGPT or DeepSeek. These tools bypass enterprise protections, making it difficult to monitor and control data exposure. Use Cases Enterprise AI Governance: Apply consistent policies across Microsoft and third-party AI tools. Compliance Auditing: Generate audit logs for AI interactions to meet regulatory requirements. Risk Mitigation: Block risky uploads and enforce adaptive protection based on user behavior. How Microsoft Purview Solves It Data Security Posture Management (DSPM) for AI Purview’s DSPM for AI provides a centralized dashboard to monitor AI activity, assess data risks, and enforce compliance policies across Copilots, agents, and third-party AI apps. It correlates data classification, user behavior, and policy coverage to surface real-time risks, such as oversharing via AI agents, and generates actionable recommendations to remediate gaps. DSPM integrates with tools like Microsoft Security Copilot for AI-assisted investigations and supports automated scanning, trend analytics, and posture reporting. It also extends protection to third-party AI tools like ChatGPT through endpoint DLP and browser extensions, ensuring consistent governance across both managed and unmanaged environments 2. Unified Protection Across AI Agents Whether you're using Microsoft 365 Copilot, Security Copilot, or Azure AI services, Purview applies consistent security and compliance controls. Agents inherit protection from their parent apps, including sensitivity labels, data loss prevention (DLP), and Insider Risk Management. Real-Time Risk Detection Purview enables real-time monitoring of prompts and responses, helping security teams detect oversharing and policy violations instantly. From Microsoft Learn – Insider Risk 4. One-Click Policy Activation Administrators can leverage Microsoft Purview’s Data Security Posture Management (DSPM) for AI to rapidly deploy comprehensive security and compliance controls via one-click policy activation. This streamlined mechanism enables organizations to enforce prebuilt policy templates across AI ecosystems, ensuring prompt implementation of data loss prevention (DLP), sensitivity labeling, and Insider Risk Management on both Microsoft and third-party AI services. Through DSPM’s unified policy orchestration layer, security teams gain granular telemetry into prompt and response flows, real-time policy enforcement, and detailed incident reporting. Automated analytics continuously assess risk posture, enabling adaptive policy adjustments and scalable governance as new AI tools and user workflows are introduced into the enterprise environment. Please note: After implementing policy changes, it can take up to 24 hours for changes to become visible and take full effect across your environment. From Microsoft Learn – Purview Data Security Posture Management (DSPM) portal 5. Support for Third-Party AI Apps Purview extends robust data security and compliance to browser-based AI tools such as ChatGPT and Google Gemini by employing endpoint Data Loss Prevention (DLP) and browser extensions that monitor and control data flows in real time. Through Microsoft Purview’s Data Security Posture Management (DSPM) for AI, organizations can implement granular controls for sensitive data accessed during both Microsoft-native and third-party AI interactions. DSPM offers continuous discovery and classification of data assets, linking AI prompts and responses to their original data sources to automatically enforce data protection policies, including sensitivity labeling, adaptive access controls, and comprehensive content inspection, contextually for each AI transaction. For unsanctioned AI services reached via browsers, the Purview browser extension inspects both input and output, enabling endpoint DLP to block, alert, or redact sensitive material instantly, thus preventing unauthorized uploads, downloads, or copy/paste activities. Security teams benefit from rich telemetry on AI usage patterns, which integrate with user risk profiles and anomaly detection to identify and flag suspicious attempts to extract confidential information. Close integration with Microsoft Security Copilot and automated analytics further enhances visibility across all AI data flows, supporting incident response, audit, and compliance reporting needs. Purview’s adaptive policy orchestration ensures that evolving AI services and workflows are continuously assessed for risk, and that controls are dynamically aligned with business, regulatory, and security requirements, enabling scalable, policy-driven governance for the expanding enterprise AI ecosystem. Pros and Cons The following table outlines the key advantages and potential limitations of implementing AI and agent data security controls within Microsoft Purview. Pros Cons License Needed Centralized AI governance Requires proper licensing and setup Microsoft 365 E5 or equivalent Purview add-on license Real-time risk detection May need browser extensions for full coverage Microsoft 365 E5 or Purview add-on Supports both Microsoft and third-party AI apps Some features limited to enterprise versions Microsoft 365 E5, E5 Compliance, or equivalent Purview add-on Conclusion Microsoft Purview offers a comprehensive solution for securing AI agents and their data interactions. By leveraging DSPM for AI, organizations can confidently adopt AI technologies while maintaining control over sensitive information. Explore Microsoft Purview’s DSPM for AI here. Start by assessing your current AI usage and activate one-click policies to secure your environment today! FAQ 1. What is the purpose of Microsoft Purview’s AI and agent data security controls? The purpose is to ensure that sensitive data accessed or processed by AI systems and agents is governed, protected, and monitored using Microsoft Purview’s compliance and security capabilities. Microsoft Purview data security and compliance protection 2. How does Microsoft Purview help secure AI-generated content? Microsoft Purview applies data loss prevention (DLP), sensitivity labels, and information protection policies to AI-generated content, ensuring it adheres to organizational compliance standards. Microsoft Purview Information Protection 3. Can Microsoft Purview track and audit AI interactions with sensitive data? Yes. Microsoft Purview provides audit logs and activity explorer capabilities that allow organizations to monitor how AI systems and agents interact with sensitive data. Search the audit log 4. What role do sensitivity labels play in AI data governance? Sensitivity labels classify and protect data based on its sensitivity level. When applied, they enforce encryption, access restrictions, and usage rights, even when data is processed by AI. Learn about sensitivity labels 5. How does Microsoft Purview integrate with Copilot and other AI tools? Microsoft Purview extends its data protection and compliance capabilities to Microsoft 365 Copilot and other AI tools by ensuring that data accessed by these tools is governed under existing policies. Microsoft 365 admin center Microsoft 365 Copilot usage 6. Are there specific controls for third-party AI agents? Yes. Microsoft Purview supports conditional access, DLP, and access reviews to manage and monitor third-party AI agents that interact with organizational data. What is Conditional Access in Microsoft Entra ID? 7. How can organizations ensure AI usage complies with regulatory requirements? By using Microsoft Purview’s compliance manager, organizations can assess and manage regulatory compliance risks associated with AI usage. Microsoft Purview Compliance Manager About the Author: Hi! Jacques “Jack” here, I’m a Microsoft Technical Trainer at Microsoft. I wanted to share a topic that is often top of mind, AI governance. I’ve been working with Microsoft Purview since its launch in 2022, building on prior experience with Azure Information Protection and Data Loss Prevention. I also have great expertise with Generative AI technologies since their public release in November 2022, including Microsoft Copilot and other enterprise-grade AI solutions.