cloud security
112 TopicsHacking Made Easy, Patching Made Optional: A Modern Cyber Tragedy
In today’s cyber threat landscape, the tools and techniques required to compromise enterprise environments are no longer confined to highly skilled adversaries or state-sponsored actors. While artificial intelligence is increasingly being used to enhance the sophistication of attacks, the majority of breaches still rely on simple, publicly accessible tools and well-established social engineering tactics. Another major issue is the persistent failure of enterprises to patch common vulnerabilities in a timely manner—despite the availability of fixes and public warnings. This negligence continues to be a key enabler of large-scale breaches, as demonstrated in several recent incidents. The Rise of AI-Enhanced Attacks Attackers are now leveraging AI to increase the credibility and effectiveness of their campaigns. One notable example is the use of deepfake technology—synthetic media generated using AI—to impersonate individuals in video or voice calls. North Korean threat actors, for instance, have been observed using deepfake videos and AI-generated personas to conduct fraudulent job interviews with HR departments at Western technology companies. These scams are designed to gain insider access to corporate systems or to exfiltrate sensitive intellectual property under the guise of legitimate employment. Social Engineering: Still the Most Effective Entry Point And yet, many recent breaches have begun with classic social engineering techniques. In the cases of Coinbase and Marks & Spencer, attackers impersonated employees through phishing or fraudulent communications. Once they had gathered sufficient personal information, they contacted support desks or mobile carriers, convincingly posing as the victims to request password resets or SIM swaps. This impersonation enabled attackers to bypass authentication controls and gain initial access to sensitive systems, which they then leveraged to escalate privileges and move laterally within the network. Threat groups such as Scattered Spider have demonstrated mastery of these techniques, often combining phishing with SIM swap attacks and MFA bypass to infiltrate telecom and cloud infrastructure. Similarly, Solt Thypoon (formerly DEV-0343), linked to North Korean operations, has used AI-generated personas and deepfake content to conduct fraudulent job interviews—gaining insider access under the guise of legitimate employment. These examples underscore the evolving sophistication of social engineering and the need for robust identity verification protocols. Built for Defense, Used for Breach Despite the emergence of AI-driven threats, many of the most successful attacks continue to rely on simple, freely available tools that require minimal technical expertise. These tools are widely used by security professionals for legitimate purposes such as penetration testing, red teaming, and vulnerability assessments. However, they are also routinely abused by attackers to compromise systems Case studies for tools like Nmap, Metasploit, Mimikatz, BloodHound, Cobalt Strike, etc. The dual-use nature of these tools underscores the importance of not only detecting their presence but also understanding the context in which they are being used. From CVE to Compromise While social engineering remains a common entry point, many breaches are ultimately enabled by known vulnerabilities that remain unpatched for extended periods. For example, the MOVEit Transfer vulnerability (CVE-2023-34362) was exploited by the Cl0p ransomware group to compromise hundreds of organizations, despite a patch being available. Similarly, the OpenMetadata vulnerability (CVE-2024-28255, CVE-2024-28847) allowed attackers to gain access to Kubernetes workloads and leverage them for cryptomining activity days after a fix had been issued. Advanced persistent threat groups such as APT29 (also known as Cozy Bear) have historically exploited unpatched systems to maintain long-term access and conduct stealthy operations. Their use of credential harvesting tools like Mimikatz and lateral movement frameworks such as Cobalt Strike highlights the critical importance of timely patch management—not just for ransomware defense, but also for countering nation-state actors. Recommendations To reduce the risk of enterprise breaches stemming from tool misuse, social engineering, and unpatched vulnerabilities, organizations should adopt the following practices: 1. Patch Promptly and Systematically Ensure that software updates and security patches are applied in a timely and consistent manner. This involves automating patch management processes to reduce human error and delay, while prioritizing vulnerabilities based on their exploitability and exposure. Microsoft Intune can be used to enforce update policies across devices, while Windows Autopatch simplifies the deployment of updates for Windows and Microsoft 365 applications. To identify and rank vulnerabilities, Microsoft Defender Vulnerability Management offers risk-based insights that help focus remediation efforts where they matter most. 2. Implement Multi-Factor Authentication (MFA) To mitigate credential-based attacks, MFA should be enforced across all user accounts. Conditional access policies should be configured to adapt authentication requirements based on contextual risk factors such as user behavior, device health, and location. Microsoft Entra Conditional Access allows for dynamic policy enforcement, while Microsoft Entra ID Protection identifies and responds to risky sign-ins. Organizations should also adopt phishing-resistant MFA methods, including FIDO2 security keys and certificate-based authentication, to further reduce exposure. 3. Identity Protection Access Reviews and Least Privilege Enforcement Conducting regular access reviews ensures that users retain only the permissions necessary for their roles. Applying least privilege principles and adopting Microsoft Zero Trust Architecture limits the potential for lateral movement in the event of a compromise. Microsoft Entra Access Reviews automates these processes, while Privileged Identity Management (PIM) provides just-in-time access and approval workflows for elevated roles. Just-in-Time Access and Risk-Based Controls Standing privileges should be minimized to reduce the attack surface. Risk-based conditional access policies can block high-risk sign-ins and enforce additional verification steps. Microsoft Entra ID Protection identifies risky behaviors and applies automated controls, while Conditional Access ensures access decisions are based on real-time risk assessments to block or challenge high-risk authentication attempts. Password Hygiene and Secure Authentication Promoting strong password practices and transitioning to passwordless authentication enhances security and user experience. Microsoft Authenticator supports multi-factor and passwordless sign-ins, while Windows Hello for Business enables biometric authentication using secure hardware-backed credentials. 4. Deploy SIEM and XDR for Detection and Response A robust detection and response capability is vital for identifying and mitigating threats across endpoints, identities, and cloud environments. Microsoft Sentinel serves as a cloud-native SIEM that aggregates and analyses security data, while Microsoft Defender XDR integrates signals from multiple sources to provide a unified view of threats and automate response actions. 5. Map and Harden Attack Paths Organizations should regularly assess their environments for attack paths such as privilege escalation and lateral movement. Tools like Microsoft Defender for Identity help uncover Lateral Movement Paths, while Microsoft Identity Threat Detection and Response (ITDR) integrates identity signals with threat intelligence to automate response. These capabilities are accessible via the Microsoft Defender portal, which includes an attack path analysis feature for prioritizing multicloud risks. 6. Stay Current with Threat Actor TTPs Monitor the evolving tactics, techniques, and procedures (TTPs) employed by sophisticated threat actors. Understanding these behaviours enables organizations to anticipate attacks and strengthen defenses proactively. Microsoft Defender Threat Intelligence provides detailed profiles of threat actors and maps their activities to the MITRE ATT&CK framework. Complementing this, Microsoft Sentinel allows security teams to hunt for these TTPs across enterprise telemetry and correlate signals to detect emerging threats. 7. Build Organizational Awareness Organizations should train staff to identify phishing, impersonation, and deepfake threats. Simulated attacks help improve response readiness and reduce human error. Use Attack Simulation Training, in Microsoft Defender for Office 365 to run realistic phishing scenarios and assess user vulnerability. Additionally, educate users about consent phishing, where attackers trick individuals into granting access to malicious apps. Conclusion The democratization of offensive security tooling, combined with the persistent failure to patch known vulnerabilities, has significantly lowered the barrier to entry for cyber attackers. Organizations must recognize that the tools used against them are often the same ones available to their own security teams. The key to resilience lies not in avoiding these tools, but in mastering them—using them to simulate attacks, identify weaknesses, and build a proactive defense. Cybersecurity is no longer a matter of if, but when. The question is: will you detect the attacker before they achieve their objective? Will you be able to stop them before reaching your most sensitive data? Additional read: Gartner Predicts 30% of Enterprises Will Consider Identity Verification and Authentication Solutions Unreliable in Isolation Due to AI-Generated Deepfakes by 2026 Cyber security breaches survey 2025 - GOV.UK Jasper Sleet: North Korean remote IT workers’ evolving tactics to infiltrate organizations | Microsoft Security Blog MOVEit Transfer vulnerability Solt Thypoon Scattered Spider SIM swaps Attackers exploiting new critical OpenMetadata vulnerabilities on Kubernetes clusters | Microsoft Security Blog Microsoft Defender Vulnerability Management - Microsoft Defender Vulnerability Management | Microsoft Learn Zero Trust Architecture | NIST tactics, techniques, and procedures (TTP) - Glossary | CSRC https://learn.microsoft.com/en-us/security/zero-trust/deploy/overviewAnnouncing a New Microsoft Security Virtual Training Day
We’re thrilled to announce a brand-new opportunity for learning and growth: Microsoft Virtual Training Day: Strength Cloud Security with Microsoft Defender for Cloud! This free, online event is designed to empower professionals with the skills and knowledge needed to thrive in today’s digital landscape. During this training, you’ll be able to: Learn how to increase cloud security using Microsoft Defender for Cloud and how to deploy security across your DevOps workflows. Discover how to detect risks, maintain compliance, and protect hybrid and multicloud environments. Find out how to defend servers, containers, storage, and databases using built-in security. Chat with Microsoft experts—ask questions and get answers on real-world security challenges. Here’s what you can expect: Part 1 Part 2 Introduction Introduction What a comprehensive cloud-native application protection platform looks like Comprehensive workload protection (part 1) Break: 10 minutes Break: 10 minutes Starting with proactive security Comprehensive workload protection (part 2) Break: 10 minutes Automating responses Operationalizing Posture Management Closing question and answer Closing question and answer Why Attend this Virtual Training Day? Microsoft Virtual Training Days offer a host of benefits: Flexible Learning: Attend from anywhere, at your own pace. Expert Instruction: Gain insights from industry leaders and certified professionals. Certification Opportunities: Many sessions prepare you for Microsoft certifications. Networking: Connect with peers and professionals across industries. Free Resources: Access downloadable materials and follow-up learning paths. Earn a voucher: Upon completion of the event, the exam is offered at a 50% discount off the exam rate. Don't miss out on this opportunity. Go and registertoday! For more information on all things security, please visit our Security Hub.Introducing Microsoft Sentinel data lake
Today, we announced a significant expansion of Microsoft Sentinel’s capabilities through the introduction of Sentinel data lake, now rolling out in public preview. Security teams cannot defend what they cannot see and analyze. With exploding volumes of security data, organizations are struggling to manage costs while maintaining effective threat coverage. Do-it-yourself security data architectures have perpetuated data silos, which in turn have reduced the effectiveness of AI solutions in security operations. With Sentinel data lake, we are taking a major step to address these challenges. Microsoft Sentinel data lake enables a fully managed, cloud-native, data lake that is purposefully designed for security, right inside Sentinel. Built on a modern lake architecture and powered by Azure, Sentinel data lake simplifies security data management, eliminates security data silos, and enables cost-effective long-term security data retention with the ability to run multiple forms of analytics on a single copy of that data. Security teams can now store and manage all security data. This takes the market-leading capabilities of Sentinel SIEM and supercharges it even further. Customers can leverage the data lake for retroactive TI matching and hunting over a longer time horizon, track low and slow attacks, conduct forensics analysis, build anomaly insights, and meet reporting & compliance needs. By unifying security data, Sentinel data lake provides the AI ready data foundation for AI solutions. Let’s look at some of Sentinel data lake’s core features. Simplified onboarding and enablement inside Defender Portal: Customers can easily discover and enable the new data lake from within the Defender portal, either from the banner on the home page or from settings. Setting up a modern data lake now is just a click away, empowering security teams to get started quickly without a complex setup. Simplified security data management: Sentinel data lake works seamlessly with existing Sentinel connectors. It brings together security logs from Microsoft services across M365, Defender, Azure, Entra, Purview, Intune plus third-party sources like AWS, GCP, network and firewall data from 350+ connectors and solutions. The data lake supports Sentinel’s existing table schemas while customers can also create custom connectors to bring raw data into the data lake or transform it during ingestion. In the future, we will enable additional industry-standard schemas. The data lake expands beyond just activity logs by including a native asset store. Critical asset information is added to the data lake using new Sentinel data connectors for Microsoft 365, Entra, and Azure, enabling a single place to analyze activity and asset data enriched with Threat intelligence. A new table management experience makes it easy for customers to choose where to send and store data, as well as set related retention policies to optimize their security data estate. Customers can easily send critical, high-fidelity security data to the analytics tier or choose to send high-volume, low fidelity logs to the new data lake tier. Any data brought into the analytics tier is automatically mirrored into the data lake at no additional charge, making data lake the central location for all security data. Advanced data analysis capabilities over data in the data lake: Sentinel data lake stores all security data in an open format to enable analysts to do multi-modal security analytics on a single copy of data. Through the new data lake exploration experience in the Defender portal, customers can leverage Kusto query language to analyze historical data using the full power of Kusto. Since the data lake supports the Sentinel table schema, advanced hunting queries can be run directly on the data lake. Customers can also schedule long-running jobs, either once or on a schedule, that perform complex analysis on historical data for in-depth security insights. These insights generated from the data lake can be easily elevated to analytics tier and leveraged in Sentinel for threat investigation and response. Additionally, as part of the public preview, we are also releasing a new Sentinel Visual Studio Code extension that enables security teams to easily connect to the same data lake data and use Python notebooks, as well as spark and ML libraries to deeply analyze lake data for anomalies. Since the environment is fully managed, there is no compute infrastructure to set up. Customers can just install the Visual Studio Code extension and use AI coding agents like GitHub Copilot to build a notebook and execute it in the managed environment. These notebooks can also be scheduled as jobs and the resulting insights can be elevated to analytics tier and leveraged in Sentinel for threat investigation and response. Flexible business model: Sentinel data lake enables customers to separate their data ingestion and retention needs from their security analytics needs, allowing them to ingest and store data cost effectively and then pay separately when analyzing data for their specific needs. Let’s put this all together and show an example of how a customer can operationalize and derive value from the data lake for retrospective threat intelligence matching in Microsoft Sentinel. Network logs are typically high-volume logs but can often contain key insights for detecting initial entry point of an attack, command and control connection, lateral movement or an exfiltration attempt. Customers can now send these high-volume logs to the data lake tier. Next, they can create a python notebook that can join latest threat intelligence from Microsoft Defender Threat Intelligence to scan network logs for any connections to/from a suspicious IP or domain. They can schedule this notebook to run as a scheduled job, and any insights can then be promoted to analytics tiers and leveraged to enrich ongoing investigation, hunts, response or forensics analysis. All this is possible cost-effectively without having to set up any complex infrastructure, enabling security teams to achieve deeper insights. This preview is now rolling out for customers in Defender portal in our supported regions. To learn more, check out our Mechanics video and our documentation or talk to your account teams. Get started today Join us as we redefine what’s possible in security operations: Onboard Sentinel data lake: https://aka.ms/sentineldatalakedocs Explore our pricing: https://aka.ms/sentinel/pricingblog For the supported regions, please refer to https://aka.ms/sentinel/datalake/geos Learn more about our MDTI news: http://aka.ms/mdti-convergence General Availability of Auxiliary Logs and Reduced PricingSecure and govern AI apps and agents with Microsoft Purview
The Microsoft Purview family is here to help you secure and govern data across third party IaaS and Saas, multi-platform data environment, while helping you meet compliance requirements you may be subject to. Purview brings simplicity with a comprehensive set of solutions built on a platform of shared capabilities, that helps keep your most important asset, data, safe. With the introduction of AI technology, Purview also expanded its data coverage to include discovering, protecting, and governing the interactions of AI apps and agents, such as Microsoft Copilots like Microsoft 365 Copilot and Security Copilot, Enterprise built AI apps like Chat GPT enterprise, and other consumer AI apps like DeepSeek, accessed through the browser. To help you view, investigate interactions with all those AI apps, and to create and manage policies to secure and govern them in one centralized place, we have launched Purview Data Security Posture Management (DSPM) for AI. You can learn more about DSPM for AI here with short video walkthroughs: Learn how Microsoft Purview Data Security Posture Management (DSPM) for AI provides data security and compliance protections for Copilots and other generative AI apps | Microsoft Learn Purview capabilities for AI apps and agents To understand our current set of capabilities within Purview to discover, protect, and govern various AI apps and agents, please refer to our Learn doc here: Microsoft Purview data security and compliance protections for Microsoft 365 Copilot and other generative AI apps | Microsoft Learn Here is a quick reference guide for the capabilities available today: Note that currently, DLP for Copilot and adhering to sensitivity label are currently designed to protect content in Microsoft 365. Thus, Security Copilot and Coplot in Fabric, along with Copilot studio custom agents that do not use Microsoft 365 as a content source, do not have these features available. Please see list of AI sites supported by Microsoft Purview DSPM for AI here Conclusion Microsoft Purview can help you discover, protect, and govern the prompts and responses from AI applications in Microsoft Copilot experiences, Enterprise AI apps, and other AI apps through its data security and data compliance solutions, while allowing you to view, investigate, and manage interactions in one centralized place in DSPM for AI. Follow up reading Check out the deployment guides for DSPM for AI How to deploy DSPM for AI - https://aka.ms/DSPMforAI/deploy How to use DSPM for AI data risk assessment to address oversharing - https://aka.ms/dspmforai/oversharing Address oversharing concerns with Microsoft 365 blueprint - aka.ms/Copilot/Oversharing Explore the Purview SDK Microsoft Purview SDK Public Preview | Microsoft Community Hub (blog) Microsoft Purview documentation - purview-sdk | Microsoft Learn Build secure and compliant AI applications with Microsoft Purview (video) References for DSPM for AI Microsoft Purview data security and compliance protections for Microsoft 365 Copilot and other generative AI apps | Microsoft Learn Considerations for deploying Microsoft Purview AI Hub and data security and compliance protections for Microsoft 365 Copilot and Microsoft Copilot | Microsoft Learn Block Users From Sharing Sensitive Information to Unmanaged AI Apps Via Edge on Managed Devices (preview) | Microsoft Learn as part of Scenario 7 of Create and deploy a data loss prevention policy | Microsoft Learn Commonly used properties in Copilot audit logs - Audit logs for Copilot and AI activities | Microsoft Learn Supported AI sites by Microsoft Purview for data security and compliance protections | Microsoft Learn Where Copilot usage data is stored and how you can audit it - Microsoft 365 Copilot data protection and auditing architecture | Microsoft Learn Downloadable whitepaper: Data Security for AI Adoption | Microsoft Explore the roadmap for DSPM for AI Public roadmap for DSPM for AI - Microsoft 365 Roadmap | Microsoft 365PMPurCheck out the latest security skill-building resources on Microsoft Learn
Prove your experience with this new Microsoft Applied Skill Are you an identity and access professional? Do you have a foundational understanding of Microsoft Entra ID? Showcase your experience and readiness for identity scenarios by earning our new Microsoft Applied Skill: Get started with identities and access using Microsoft Entra. You can prepare for the skills assessment by completing our Learning Path—Perform basic identity and access tasks—here you'll learn how to: Create, configure, and manage identities Describe the authentication capabilities of Microsoft Entra ID Describe the access management capabilities of Microsoft Entra Describe the identity protection and governance capabilities of Microsoft Entra Get started with identity and access labs On average, this Learning Path requires less than four hours to complete. Get started today! Certification update: Goodbye, SC-400 – hello, SC-401! As you may already know, we will be retiring Microsoft Certified: Information Protection and Compliance Administrator Associate Certification and its related Exam SC-400: Administering Information Protection and Compliance in Microsoft 365 on May 31, 2025. If you are considering renewing the certification please do so before the date. There is still several ways to showcase your expertise of Purview through the new Microsoft Certified: Information Security Administrator Certification and applied skills mentioned in this blog. There's still time: catch our Learn Live Series and enhance your security for AI capabilities As organizations develop, use, and increasingly rely on AI applications, they must address new and amplified security risks. Are you prepared to secure your environment for AI adoption? How about identifying threats to your AI and safeguarding data? Watch on demand: Learn Live – Security for AI with Microsoft Purview and Defender for Cloud In this four-part series, IT pros and security practitioners can hone their security skillsets with a deeper understanding of AI-centric challenges, opportunities, and best practices using Microsoft Security solutions. Topics include: Manage AI Data Security Challenges with Microsoft Purview: Microsoft Purview helps you strengthen data security in AI environments, providing tools to manage challenges from AI technology. Manage Compliance with Microsoft Purview with Microsoft 365 Copilot: Use Microsoft Purview for compliance management with Microsoft 365 Copilot. You'll learn how to handle compliance aspects of Copilot's AI functionalities through Purview. Identify and Mitigate AI Data Security Risks: Microsoft Purview Data Security Posture Management (DSPM) for AI helps organizations monitor AI activity, enforce security policies, and prevent unauthorized data exposure. Enable Advanced Protection for AI Workloads with Microsoft Defender for Cloud: As organizations use and develop AI applications, they need to address new and amplified security risks. Prepare your environment for secure AI adoption to safeguard your data and identify threats to your AI. If you are looking for more training and resources related to Microsoft Security, please visit the Security Hub.Enterprise-grade controls for AI apps and agents built with Azure AI Foundry and Copilot Studio
AI innovation is moving faster than ever, and more AI projects are moving beyond experimentation into deployment, to drive tangible business impact. As organizations accelerate innovation with custom AI applications and agents, new risks emerge across the software development lifecycle and AI stack related to data oversharing and leaks, new vulnerabilities and threats, and non-compliance with stringent regulatory requirements Through 2025, poisoning of software supply chains and infrastructure technology stacks will constitute more than 70% of malicious attacks against AI used in the enterprise 1 , highlighting potential threats that originate early in development. Today, the average cost of a data breach is $4.88 million, but when security issues are caught early in the development process, that number drops dramatically to just $80 per incident 2 . The message is very clear; security can’t be an afterthought anymore. It must be a team sport across the organization, embedded from the start and throughout the development lifecycle. That's why developers and security teams should align on processes and tools that bring security into every stage of the AI development lifecycle and give security practitioners visibility into and the ability to mitigate risks. To address these growing challenges and help customers secure and govern their AI workloads across development and security teams, we are: Enabling Azure AI Foundry and Microsoft Copilot Studio to provide best-in-class foundational capabilities to secure and govern AI workloads Deeply integrating and embedding industry-leading capabilities from Microsoft Purview, Microsoft Defender, and Microsoft Entra into Azure AI Foundry and Microsoft Copilot Studio This week, 3,000 developers are gathering in Seattle for the annual Microsoft Build conference, with many more tuning in online, to learn practical skills for accelerating their AI apps and agents' innovation. To support their AI innovation journey, today we are excited to announce several new capabilities to help developers and organizations secure and govern AI apps and agents. New Azure AI Foundry foundational capabilities to secure and govern AI workloads Azure AI Foundry enhancements for AI security and safety With 70,000 customers, 100 trillion tokens processed this quarter, and 2 billion enterprise search queries each day, Azure AI Foundry has grown beyond just an application layer—it's now a comprehensive platform for building agents that can plan, take action, and continuously learn to drive real business outcomes. To help organizations build and deploy AI with confidence, we’re introducing new security and safety capabilities and insights for developers in Azure AI Foundry Introducing Spotlighting to detect and block prompt injection attacks in real time As AI systems increasingly rely on external data sources, a new class of threats has emerged. Indirect prompt injection attacks embed hidden instructions in documents, emails, and web content, tricking models into taking unauthorized actions without any direct user input. These attacks are difficult to detect and hard to prevent using traditional filters alone. To address this, Azure AI Content Safety is introducing Spotlighting, now available in preview. Spotlighting strengthens the Prompt Shields guardrail by improving its ability to detect and handle potential indirect prompt injections, where hidden adversarial instructions are embedded in external content. This new capability helps prevent the model from inadvertently acting on malicious prompts that are not directly visible to the user. Enable Spotlighting in Azure AI Content Safety to detect potential indirect prompt injection attacks New capabilities for task adherence evaluation and task adherence mitigation to ensure agents remain within scope As developers build more capable agents, organizations face growing pressure to help confirm those agents act within defined instructions and policy boundaries. Even small deviations can lead to tool misuse, broken workflows, or risks like unintended exposure of sensitive data. To solve this, Azure AI Foundry now includes task adherence for agents, now in preview and powered by two components: a real-time evaluation and a new control within Azure AI Content Safety. At the core is a real-time task adherence evaluation API, part of Azure AI Content Safety. This API assesses whether an agent’s behavior is aligned with its assigned task by analyzing the user’s query, system instructions, planned tool calls, and the agent’s response. The evaluation framework is built on Microsoft’s Agent Evaluators, which measure intent resolution, tool selection accuracy, completeness of response, and overall alignment to the original request. Developers can run this scoring logic locally using the Task Adherence Evaluator in the Azure AI Evaluation SDK, with a five-point scale that ranges from fully nonadherent to fully adherent. This gives teams a flexible and transparent way to inspect task-level behavior before it causes downstream issues. Task adherence is enforced through a new control in Azure AI Content Safety. If an agent goes off-task, the control can block tool use, pause execution, or trigger human review. In Azure AI Agent Service, it is available as an opt-in feature and runs automatically. Combined with real-time evaluation, this control helps to ensure that agents stay on task, follow instructions, and operate according to enterprise policies. Learn more about Prompt Shields in Azure AI Content Safety. Azure AI Foundry continuous evaluation and monitoring of agentic systems Maintaining high performance and compliance for AI agents after deployment is a growing challenge. Without ongoing oversight, issues like performance degradation, safety risks, or unintentional misuse of resources can slip through unnoticed. To address this, Azure AI Foundry introduces continuous evaluation and monitoring of agentic systems, now in preview, provides a single pane of glass dashboard to track key metrics such as performance, quality, safety, and resource usage in real time. Continuous evaluation runs quality and safety evaluations at a sampled rate of production usage with results made available in the Azure AI Foundry Monitoring dashboard and published to Application Insights. Developers can set alerts to detect drift or regressions and use Azure Monitor to gain full-stack visibility into their AI systems. For example, an organization using an AI agent to assist with customer-facing tasks can monitor groundedness and detect a decline in quality when the agent begins referencing irrelevant information, helping teams to act before it potentially negatively affects trust of users. Azure AI Foundry evaluation integrations with Microsoft Purview Compliance Manager, Credo AI, and Saidot for streamlined compliance AI regulations and standards introduce new requirements for transparency, documentation, and risk management for high-risk AI systems. As developers build AI applications and agents, they may need guidance and tools to help them evaluate risks based on these requirements and seamlessly share control and evaluation insights with compliance and risk teams. Today, we are announcing previews for Azure AI Foundry evaluation tool’s integration with a compliance management solution, Microsoft Purview Compliance Manager, and AI governance solutions, Credo AI and Saidot. These integrations help define risk parameters, run suggested compliance evaluations, and collect evidence for control testing and auditing. For example, for a developer who’s building an AI agent in Europe may be required by their compliance team to complete a Data Protection Impact Assets (DPIA) and Algorithmic Impact Assessment (AIA) to meet internal risk management and technical documentation requirements aligned with emerging AI governance standards and best practices. Based on Purview Compliance Manager’s step-by-step guidance on controls implementation and testing, the compliance teams can evaluate risks such as potential bias, cybersecurity vulnerabilities, or lack of transparency in model behavior. Once the evaluation is conducted in Azure AI Foundry, the developer can obtain a report with documented risk, mitigation, and residual risk for compliance teams to upload to Compliance Manager to support audits and provide evidence to regulators or external stakeholders. Assess controls for Azure AI Foundry against emerging AI governance standards Learn more about Purview Compliance Manager. Learn more about the integration with Credo AI and Saidot in this blogpost. Leading Microsoft Entra, Defender and Purview value extended to Azure AI Foundry and Microsoft Copilot Studio Introducing Microsoft Entra Agent ID to help address agent sprawl and manage agent identity Organizations are rapidly building their own AI agents, leading to agent sprawl and a lack of centralized visibility and management. Security teams often struggle to keep up, unable to see which agents exist and whether they introduce security or compliance risks. Without proper oversight, agent sprawl increases the attack surface and makes it harder to manage these non-human identities. To address this challenge, we’re announcing the public preview of Microsoft Entra Agent ID, a new capability in the Microsoft Entra admin center that gives security admins visibility and control over AI agents built with Copilot Studio and Azure AI Foundry. With Microsoft Entra Agent ID, an agent created through Copilot Studio or Azure AI Foundry is automatically assigned an identity with no additional work required from the developers building them. This is the first step in a broader initiative to manage and protect non-human identities as organizations continue to build AI agents. : Security and identity admins can gain visibility into AI agents built in Copilot Studio and Azure AI Foundry in the Microsoft Entra Admin Center This new capability lays the foundation for more advanced capabilities coming soon to Microsoft Entra. We also know that no one can do it alone. Security has always been a team sport, and that’s especially true as we enter this new era of protecting AI agents and their identities. We’re energized by the momentum across the industry; two weeks ago, we announced support for the Agent-to-Agent (A2A) protocol and began collaborating with partners to shape the future of AI identity workflows. Today, we’re also excited to announce new partnerships with ServiceNow and Workday. As part of this, we’ll integrate Microsoft Entra Agent ID with the ServiceNow AI Platform and the Workday Agent System of Record. This will allow for automated provisioning of identities for future digital employees. Learn more about Microsoft Entra Agent ID. Microsoft Defender security alerts and recommendations now available in Azure AI Foundry As more AI applications are deployed to production, organizations need to predict and prevent potential AI threats with natively integrated security controls backed by industry-leading Gen AI and threat intelligence for AI deployments. Developers need critical signals from security teams to effectively mitigate security risks related to their AI deployments. When these critical signals live in separate systems outside the developer experience, this can create delays in mitigation, leaving opportunities for AI apps and agents to become liabilities and exposing organizations to various threats and compliance violations. Now in preview, Microsoft Defender for Cloud integrates AI security posture management recommendations and runtime threat protection alerts directly into the Azure AI Foundry portal. These capabilities, previously announced as part of the broader Microsoft Defender for Cloud solution, are extended natively into Azure AI Foundry enabling developers to access alerts and recommendations without leaving their workflows. This provides real-time visibility into security risks, misconfigurations, and active threats targeting their AI applications on specific Azure AI projects, without needing to switch tools or wait on security teams to provide details. Security insights from Microsoft Defender for Cloud help developers identify and respond to threats like jailbreak attacks, sensitive data leakage, and misuse of system resources. These insights include: AI security posture recommendations that identify misconfigurations and vulnerabilities in AI services and provide best practices to reduce risk Threat protection alerts for AI services that notify developers of active threats and provide guidance for mitigation, across more than 15 detection types For example, a developer building an AI-powered agent can receive security recommendations suggesting the use of Azure Private Link for Azure AI Services resources. This reduces the risk of data leakage by handling the connectivity between consumers and services over the Azure backbone network. Each recommendation includes actionable remediation steps, helping teams identify and mitigate risks in both pre- and post-deployment phases. This helps to reduce risks without slowing down innovation. : Developers can view security alerts on the Risks + alerts page in Azure AI Foundry : Developers can view recommendations on the Guardrails + controls page in Azure AI Foundry This integration is currently in preview and will be generally available in June 2025 in Azure AI Foundry. Learn more about protecting AI services with Microsoft Defender for Cloud. Microsoft Purview capabilities extended to secure and govern data in custom-built AI apps and agents Data oversharing and leakage are among the top concerns for AI adoption, and central to many regulatory requirements. For organizations to confidently deploy AI applications and agents, both low code and pro code developers need a seamless way to embed security and compliance controls into their AI creations. Without simple, developer-friendly solutions, security gaps can quickly become blockers, delaying deployment and increasing risks as applications move from development to production. Today, Purview is extending its enterprise-grade data security and compliance capabilities, making it easier for both low code and pro code developers to integrate data security and compliance into their AI applications and agents, regardless of which tools or platforms they use. For example, with this update, Microsoft Purview DSPM for AI becomes the one place data security teams can see all the data risk insights across Microsoft Copilots, agents built in Agent Builder and Copilot Studio, and custom AI apps and agents built in Azure AI Foundry and other platforms. Admins can easily drill into security and compliance insights for specific AI apps or agents, making it easier to investigate and take action on potential risks. : Data security admins can now find data security and compliance insights across Microsoft Copilots, agents built with Agent Builder and Copilot Studio, and custom AI apps and agents in Microsoft Purview DSPM for AI In the following sections, we will provide more details about the updates to Purview capabilities in various AI workloads. 1. Microsoft Purview data security and compliance controls can be extended to any custom-built AI application and agent via the new Purview SDK or the native Purview integration with Azure AI Foundry. The new capabilities make it easy and effortless for security teams to bring the same enterprise-grade data security compliance controls available today for Microsoft 365 Copilot to custom AI applications and agents, so organizations can: Discover data security risks, such as sensitive data in user prompts, and data compliance risks, such as harmful content, and get recommended actions to mitigate risks proactively in Microsoft Purview Data Security Posture Management (DSPM) for AI. Protect sensitive data against data leakage and insider risks with Microsoft Purview data security policies. Govern AI interactions with Audit, Data Lifecycle Management, eDiscovery, and Communication Compliance. Microsoft Purview SDK Microsoft Purview now offers Purview SDK, a set of REST APIs, documentation, and code samples, currently in preview, enabling developers to integrate Purview's data security and compliance capabilities into AI applications or agents within any integrated development environment (IDE). : By embedding Purview APIs into the IDE, developers help enable their AI apps to be secured and governed at runtime For example, a developer building an AI agent using an AWS model can use the Purview SDK to enable their AI app to automatically identify and block sensitive data entered by users before it’s exposed to the model, while also providing security teams with valuable signals that support compliance. With Purview SDK, startups, ISVs, and partners can now embed Purview industry-leading capabilities directly into their AI software solutions, making these solutions Purview aware and easier for their customers to secure and govern data in their AI solutions. For example, Infosys Vice President and Delivery Head of Cyber Security Practice, Ashish Adhvaryu indicates, “Infosys Cyber Next platform integrates Microsoft Purview to provide enhanced AI security capabilities. Our solution, the Cyber Next AI assistant (Cyber Advisor) for the SOC analyst, leverages Purview SDK to drive proactive threat mitigation with real-time monitoring and auditing capabilities. This integration provides holistic AI-assisted protection, enhancing cybersecurity posture." Microsoft partner EY (previously known as Ernst and Young) has also leveraged the new Purview SDK to embed Purview value into their GenAI initiatives. “We’re not just building AI tools, we are creating Agentic solutions where trust, security, and transparency are present from the start, supported by the policy controls provided through the Purview SDK. We’re seeing 25 to 30 percent time savings when we build secure features using the Purview SDK,” noted Sumanta Kar, Partner, Innovation and Emerging Tech at EY. Learn more about the Purview SDK. Microsoft Purview integrates natively with Azure AI Foundry Organizations are developing an average of 14 custom AI applications. The rapid pace of AI innovation may leave security teams unaware of potential data security and compliance risks within their environments. With the update announced today, Azure AI Foundry signals are now directly integrated with Purview Data Security Posture Management for AI, Insider Risk Management, and data compliance controls, minimizing the need for additional development work. For example, for AI applications and agents built with Azure AI Foundry models, data security teams can gain visibility into AI usage and data risks in Purview DSPM for AI, with no additional work from developers. Data security teams can also detect, investigate, and respond to both malicious and inadvertent user activities, such as a departing employee leveraging an AI agent to retrieve an anomalous amount of sensitive data, with Microsoft Purview Insider Risk Management (IRM) policies. Lastly, user prompts and AI responses in Azure AI apps and agents can now be ingested into Purview compliance tools as mentioned above. Learn more about Microsoft Purview for Azure AI Foundry. 2. Purview data protections extended to Copilot Studio agents grounded in Microsoft Dataverse data Coming to preview in June, Purview Information Protection extends auto-labeling and label inheritance coverage to Dataverse to help prevent oversharing and data leaks. Information Protection makes it easier for organizations to automatically classify and protect sensitive data at scale. A common challenge is that sensitive data often lands in Dataverse from various sources without consistent labeling or protection. The rapid adoption of agents built using Copilot Studio and grounding data from Dataverse increases the risk of data oversharing and leakage if data is not properly protected. With auto-labeling, data stored in Dataverse tables can be automatically labeled based on policies set in Microsoft Purview, regardless of its source. This reduces the need for manual labeling effort and protects sensitive information from the moment it enters Dataverse. With label inheritance, AI agent responses grounded in Dataverse data will automatically carry and honor the source data’s sensitivity label. If a response pulls from multiple tables with different labels, the most restrictive label is applied to ensure consistent protection. For example, a financial advisor building an agent in Copilot Studio might connect multiple Dataverse tables, some labeled as “General” and others as “Highly Confidential.” If a response pulls from both, it will inherit the most restrictive label, in this case, "Highly Confidential,” to prevent unauthorized access and ensure appropriate protections are applied across both maker and users of the agent. Together, auto-labeling and label inheritance in Dataverse support a more secure, automated foundation for AI. : Sensitivity labels will be automatically applied to data in Dataverse : AI-generated responses will inherit and honor the source data’s sensitivity labels Learn more about protecting Dataverse data with Microsoft Purview. 3. Purview DSPM for AI can now provide visibility into unauthenticated interactions with Copilot Studio agents As organizations increasingly use Microsoft Copilot Studio to deploy AI agents for frontline customer interactions, gaining visibility into unauthenticated user interactions and proactively mitigating risks becomes increasingly critical. Building on existing Purview and Copilot Studio integrations, we’ve extended DSPM for AI and Audit in Copilot Studio to provide visibility into unauthenticated interactions, now in preview. This gives organizations a more comprehensive view of AI-related data security risks across authenticated and unauthenticated users. For example, a healthcare provider hosting an external, customer-facing agent assistant must be able to detect and respond to attempts by unauthenticated users to access sensitive patient data. With these new capabilities in DSPM for AI, data security teams can now identify these interactions, assess potential exposure of sensitive data, and act accordingly. Additionally, integration with Purview Audit provides teams with seamless access to information needed for audit requirements. : Gain visibility into all AI interactions, including those from unauthenticated users Learn more about Purview for Copilot Studio. 4. Purview Data Loss Prevention extended to more Microsoft 365 agent scenarios To help organizations prevent data oversharing through AI, at Ignite 2024, we announced that data security admins could prevent Microsoft 365 Copilot from using certain labeled documents as grounding data to generate summaries or responses. Now in preview, this control also extends to agents published in Microsoft 365 Copilot that are grounded by Microsoft 365 data, including pre-built Microsoft 365 agents, agents built with the Agent Builder, and agents built with Copilot Studio. This helps ensure that files containing sensitive content are used appropriately by AI agents. For example, confidential legal documents with highly specific language that could lead to improper guidance if summarized by an AI agent, or "Internal only” documents that shouldn’t be used to generate content that can be shared outside of the organization. : Extend data loss prevention (DLP) policies to Microsoft 365 Copilot agents to protect sensitive data Learn more about Data Loss Prevention for Microsoft 365 Copilot and agents. The data protection capabilities we are extending to agents in Agent Builder and Copilot Studio demonstrate our continued investment in strengthening the Security and Governance pillar of the Copilot Control System (CSS). CCS provides integrated controls to help IT and security teams secure, manage, and monitor Copilot and agents across Microsoft 365, spanning governance, management, and reporting. Learn more here. Explore additional resources As developers and security teams continue to secure AI throughout its lifecycle, it’s important to stay ahead of emerging risks and ensure protection. Microsoft Security provides a range of tools and resources to help you proactively secure AI models, apps, and agents from code to runtime. Explore the following resources to deepen your understanding and strengthen your approach to AI security: Learn more about Security for AI solutions on our webpage Learn more about Microsoft Purview SDK Get started with Azure AI Foundry Get started with Microsoft Entra Get started with Microsoft Purview Get started with Microsoft Defender for Cloud Get started with Microsoft 365 Copilot Get started with Copilot Studio Sign up for a free Microsoft 365 E5 Security Trial and Microsoft Purview Trial 1 Predicts 2025: Navigating Imminent AI Turbulence for Cybersecurity, Jeremy D'Hoinne, Akif Khan, Manuel Acosta, Avivah Litan, Deepak Seth, Bart Willemsen, 10 February 2025 2 IBM. "Cost of a Data Breach 2024: Financial Industry." IBM Think, 13 Aug. 2024, https://www.ibm.com/think/insights/cost-of-a-data-breach-2024-financial-industry; Cser, Tamas. "The Cost of Finding Bugs Later in the SDLC." Functionize, 5 Jan. 2023, https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlcUnderstanding and mitigating security risks in MCP implementations
Introducing any new technology can introduce new security challenges or exacerbate existing security risks. In this blog post, we’re going to look at some of the security risks that could be introduced to your environment when using Model Context Protocol (MCP), and what controls you can put in place to mitigate them. MCP is a framework that enables seamless integration between LLM applications and various tools and data sources. MCP defines: A standardized way for AI models to request external actions through a consistent API Structured formats for how data should be passed to and from AI systems Protocols for how AI requests are processed, executed, and returned MCP allows different AI systems to use a common set of tools and patterns, ensuring consistent behavior when AI models interact with external systems. MCP architecture MCP follows a client-server architecture that allows AI models to interact with external tools efficiently. Here’s how it works: MCP Host – The AI model (e.g., Azure OpenAI GPT) requesting data or actions. MCP Client – An intermediary service that forwards the AI model's requests to MCP servers. MCP Server – Lightweight applications that expose specific capabilities (APIs, databases, files, etc.). Data Sources – Various backend systems, including local storage, cloud databases, and external APIs. MCP security controls Any system which has access to important resources has implied security challenges. Security challenges can generally be addressed through correct application of fundamental security controls and concepts. As MCP is only newly defined, the specification is changing very rapidly and as the protocol evolves. Eventually the security controls within it will mature, enabling a better integration with enterprise and established security architectures and best practices. Research published in the Microsoft Digital Defense Report states that 98% of reported breaches would be prevented by robust security hygiene and the best protection against any kind of breach is to get your baseline security hygiene, secure coding best practices and supply chain security right – those tried and tested practices that we already know about still make the most impact in reducing security risk. Let's look at some of the ways that you can start to address security risks when adopting MCP. MCP server authentication (if your MCP implementation was before 26th April 2025) Problem statement: The original MCP specification assumed that developers would write their own authentication server. This requires knowledge of OAuth and related security constraints. MCP servers acted as OAuth 2.0 Authorization Servers, managing the required user authentication directly rather than delegating it to an external service such as Microsoft Entra ID. As of 26 April 2025, an update to the MCP specification allows for MCP servers to delegate user authentication to an external service. Risks: Misconfigured authorization logic in the MCP server can lead to sensitive data exposure and incorrectly applied access controls. OAuth token theft on the local MCP server. If stolen, the token can then be used to impersonate the MCP server and access resources and data from the service that the OAuth token is for. Mitigating controls: Thoroughly review your MCP server authorization logic, here some posts discussing this in more detail - Azure API Management Your Auth Gateway For MCP Servers | Microsoft Community Hub and Using Microsoft Entra ID To Authenticate With MCP Servers Via Sessions · Den Delimarsky Implement best practices for token validation and lifetime Use secure token storage and encrypt tokens Excessive permissions for MCP servers Problem statement: MCP servers may have been granted excessive permissions to the service/resource they are accessing. For example, an MCP server that is part of an AI sales application connecting to an enterprise data store should have access scoped to the sales data and not allowed to access all the files in the store. Referencing back to the principle of least privilege (one of the oldest security principles), no resource should have permissions in excess of what is required for it to execute the tasks it was intended for. AI presents an increased challenge in this space because to enable it to be flexible, it can be challenging to define the exact permissions required. Risks: Granting excessive permissions can allow for exfiltration or amending data that the MCP server was not intended to be able to access. This could also be a privacy issue if the data is personally identifiable information (PII). Mitigating controls: Clearly define the permissions that the MCP server has to access the resource/service it connects to. These permissions should be the minimum required for the MCP server to access the tool or data it is connecting to. Indirect prompt injection attacks Problem statement: Researchers have shown that the Model Context Protocol (MCP) is vulnerable to a subset of Indirect Prompt Injection attacks known as Tool Poisoning Attacks. Tool poisoning is a scenario where an attacker embeds malicious instructions within the descriptions of MCP tools. These instructions are invisible to users but can be interpreted by the AI model and its underlying systems, leading to unintended actions that could ultimately lead to harmful outcomes. Risks: Unintended AI actions present a variety of security risks that include data exfiltration and privacy breaches. Mitigating controls: Implement AI prompt shields: in Azure AI Foundry, you can follow these steps to implement AI prompt shields. Implement robust supply chain security: you can read more about how Microsoft implements supply chain security internally here. Established security best practices that will uplift your MCP implementation’s security posture Any MCP implementation inherits the existing security posture of your organization's environment that it is built upon, so when considering the security of MCP as a component of your overall AI systems it is recommended that you look at uplifting your overall existing security posture. The following established security controls are especially pertinent: Secure coding best practices in your AI application - protect against the OWASP Top 10, the OWASP Top 10 for LLMs, use of secure vaults for secrets and tokens, implementing end-to-end secure communications between all application components, etc. Server hardening – use MFA where possible, keep patching up to date, integrate the server with a third party identity provider for access, etc. Keep devices, infrastructure and applications up to date with patches Security monitoring – implementing logging and monitoring of an AI application (including the MCP client/servers) and sending those logs to a central SIEM for detection of anomalous activities Zero trust architecture – isolating components via network and identity controls in a logical manner to minimize lateral movement if an AI application were compromised. Conclusion MCP is a promising development in the AI space that enables rich data and context access. As developers embrace this new approach to integrating their organization's APIs and connectors into LLMs, they need to be aware of security risks and how to implement controls to reduce those risks. There are mitigating security controls that can be put in place to reduce the risks inherent in the current specification, but as the protocol develops expect that some of the risks will reduce or disappear entirely. We encourage you to contribute to and suggest security related MCP RFCs to make this protocol even better! With thanks to OrinThomas, dasithwijes, dendeli and Peter Marcu for their inputs and collaboration on this post.