azure kubernetes service
205 TopicsFind the Alerts You Didn't Know You Were Missing with Azure SRE Agent
I had 6 alert rules. CPU. Memory. Pod restarts. Container errors. OOMKilled. Job failures. I thought I was covered. Then my app went down. I kept refreshing the Azure portal, waiting for an alert. Nothing. That's when it hit me: my alerts were working perfectly. They just weren't designed for this failure mode. Sound familiar? The Problem Every Developer Knows If you're a developer or DevOps engineer, you've been here: a customer reports an issue, you scramble to check your monitoring, and then you realize you don't have the right alerts set up. By the time you find out, it's already too late. You set up what seems like reasonable alerting and assume you're covered. But real-world failures are sneaky. They slip through the cracks of your carefully planned thresholds. My Setup: AKS with Redis I love to vibe code apps using GitHub Copilot Agent mode with Claude Opus 4.5. It's fast, it understands context, and it lets me focus on building rather than boilerplate. For this project, I built a simple journal entry app: AKS cluster hosting the web API Azure Cache for Redis storing journal data Azure Monitor alerts for CPU, memory, pod restarts, container errors, OOMKilled, and job failures Seemed solid. What could go wrong? The Scenario: Redis Password Rotation Here's something that happens constantly in enterprise environments: the security team rotates passwords. It's best practice. It's in the compliance checklist. And it breaks things when apps don't pick up the new credentials. I simulated exactly this. The pods came back up. But they couldn't connect to Redis (as expected). The readiness probes started failing. The LoadBalancer had no healthy backends. The endpoint timed out. And not a single alert fired. Using SRE Agent to Find the Alert Gaps Instead of manually auditing every alert rule and trying to figure out what I missed, I turned to Azure SRE Agent. I asked it a simple question: "My endpoint is timing out. What alerts do I have, and why didn't any of them fire?" Within minutes, it had diagnosed the problem. Here's what it found: My Existing Alerts Why They Didn't Fire High CPU/Memory No resource pressure,just auth failures Pod Restarts Pods weren't restarting, just unhealthy Container Errors App logs weren't being written OOMKilled No memory issues Job Failures No K8s jobs involved The gaps SRE Agent identified: ❌ No synthetic URL availability test ❌ No readiness/liveness probe failure alerts ❌ No "pods not ready" alerts scoped to my namespace ❌ No Redis connection error detection ❌ No ingress 5xx/timeout spike alerts ❌ No per-pod resource alerts (only node-level) SRE Agent didn't just tell me what was wrong, it created a GitHub issue with : KQL queries to detect each failure type Bicep code snippets for new alert rules Remediation suggestions for the app code Exact file paths in my repo to update Check it out: GitHub Issue How I Built It: Step by Step Let me walk you through exactly how I set this up inside SRE Agent. Step 1: Create an SRE Agent I created a new SRE Agent in the Azure portal. Since this workflow analyzes alerts across my subscription (not just one resource group), I didn't configure any specific resource groups. Instead, I gave the agent's managed identity Reader permissions on my entire subscription. This lets it discover resources, list alert rules, and query Log Analytics across all my resource groups. Step 2: Connect GitHub to SRE Agent via MCP I added a GitHub MCP server to give the agent access to my source code repository.MCP (Model Context Protocol) lets you bring any API into the agent. If your tool has an API, you can connect it. I use GitHub for both source code and tracking dev tickets, but you can connect to wherever your code lives (GitLab, Azure DevOps) or your ticketing system (Jira, ServiceNow, PagerDuty). Step 3: Create a Subagent inside SRE Agent for managing Azure Monitor Alerts I created a focused subagent with a specific job and only the tools it needs: Azure Monitor Alerts Expert Prompt: " You are expert in managing operations related to azure monitor alerts on azure resources including discovering alert rules configured on azure resources, creating new alert rules (with user approval and authorization only), processing the alerts fired on azure resources and identifying gaps in the alert rules. You can get the resource details from azure monitor alert if triggered via alert. If not, you need to ask user for the specific resource to perform analysis on. You can use az cli tool to diagnose logs, check the app health metrics. You must use the app code and infra code (bicep files) files you have access to in the github repo <insert your repo> to further understand the possible diagnoses and suggest remediations. Once analysis is done, you must create a github issue with details of analysis and suggested remediation to the source code files in the same repo." Tools enabled: az cli – List resources, alert rules, action groups Log Analytics workspace querying – Run KQL queries for diagnostics GitHub MCP – Search repositories, read file contents, create issues Step 4: Ask the Subagent About Alert Gaps I gave the agent context and asked a simple question: "@AzureAlertExpert: My API endpoint http://132.196.167.102/api/journals/john is timing out. What alerts do I have configured in rg-aks-journal, and why didn't any of them fire? The agent did the analysis autonomously and summarized findings with suggestions to add new alert rules in a GitHub issue. Here's the agentic workflow to perform azure monitor alert operations Why This Matters Faster response times. Issues get diagnosed in minutes, not hours of manual investigation. Consistent analysis. No more "I thought we had an alert for that" moments. The agent systematically checks what's covered and what's not. Proactive coverage. You don't have to wait for an incident to find gaps. Ask the agent to review your alerts before something breaks. The Bottom Line Your alerts have gaps. You just don't know it until something slips through. I had 6 alert rules and still missed a basic failure. My pods weren't restarting, they were just unhealthy. My CPU wasn't spiking, the app was just returning errors. None of my alerts were designed for this. You don't need to audit every alert rule manually. Give SRE Agent your environment, describe the failure, and let it tell you what's missing. Stop discovering alert gaps from customer complaints. Start finding them before they matter. A Few Tips Give the agent Reader access at subscription level so it can discover all resources Use a focused subagent prompt, don't try to do everything in one agent Test your MCP connections before running workflows What Alert Gaps Have Burned You? What's the alert you wish you had set up before an incident? Credential rotation? Certificate expiry? DNS failures? Let us know in the comments.86Views0likes0CommentsSecure, Seamless Access using Managed Identities with Azure Files SMB
As organizations evolve their application and storage environments, whether on‑premises, hybrid, or cloud, secure access is top of mind. Organizations are vigilant about protecting sensitive data while enabling agile application access across distributed environments. SMB shares are commonly used for persistent storage in applications like AKS for container workloads, web applications, and App Services. Traditional models that rely on credentials like storage account keys do not meet the demands of a Zero Trust architecture, where every access request must be verified explicitly, granted with least privilege, and designed to assume malicious access from bad actors. We are excited to announce the Public Preview of Managed Identities support with Azure Files SMB. This capability provides a secure, identity-driven approach for customer applications that eliminates credentials-based access and integrates seamlessly with MS Entra ID. Azure virtual machines, containers, and applications running in Azure can now authenticate to Azure Files using their own managed identity, and mount shares using short lived OAuth tokens over Kerberos. This unlocks secure file share access for both first party and customer applications, including Azure Kubernetes Service (AKS), Azure Functions, App Services, and other cloud native services By leveraging Managed Identities, customers gain: Zero Trust Alignment–Identity tied to a specific resource, token refreshes every hour, and no passwords or keys to manage or rotate with Azure handling end-to-end identity management Role Based Access Control – Built-in RBAC for least-privilege enforcement Compliance Mandate Resolution – Compliant with FIPS, removing need for NTLMv2 Multi-Client Support – Works with Windows and Linux clients over SMB This capability brings a secure, simple, and scalable access model that helps organizations meet industry standard security requirements while inheriting Microsoft Entra ID’s enterprise grade identity, governance, and security capabilities for file shares. Securing Real World Applications To illustrate how Managed Identities strengthen security, the following example workloads highlight where customers will benefit from this capability. Eliminate Secret Sprawl for Continuous Integration, Continuous Deployment (CI/CD) workloads Azure Files SMB provides a centralized location for storing software development artifacts generated during CI/CD pipelines. CI/CD workloads span far beyond application code, covering infrastructure updates, data engineering workflows, ML pipelines, and compliance automation, making them foundational to modern DevOps practices. Build agents in Azure DevOps or other CI/CD systems often run on both Linux and Windows, requiring a common storage backend for binaries and configuration files. Historically, these agents authenticated to Azure Files using storage account keys. With Managed Identities, build agents can now authenticate using their own identity from Microsoft Entra ID, with authorization governed through Azure RBAC. This enhances security, removes static credentials, and simplifies compliance. “Managed Identities support with SMB shares will enable us to remove dependencies on storage account keys to run our CI/CD pipelines, enabling stronger security and alignment with Zero-Trust principles." Alex Garcia, Staff Dev Ops Engineer, Unity Technologies. Secure Persistent Files Storage with Azure Kubernetes Service (AKS) Stateful AKS workloads rely on persistent volumes for configuration, logs, and application data. Previously, mounting Azure Files required storing account keys or secrets in Kubernetes. Organizations requested exceptions from their security organizations to continue using shared keys until a secure managed identities-based solution was available. With this feature, AKS clusters can authenticate directly to Azure Files SMB without storage account keys. This enables secure, token‑based access for persistent volume mounts, improving security posture and eliminating the need for exceptions to use access tied to storage account keys. Learn more in the Azure Files AKS CSI documentation. Get Started with Managed Identities with SMB Azure Files Start using Managed Identities with Azure Files today at no additional cost. This feature is supported on HDD and SSD SMB shares across all billing models. Refer to our documentation for complete set-up guidance. Whether provisioning new storage or enhancing existing deployments, this capability provides secure, enterprise‑grade access with a streamlined configuration experience. Secure your workloads today! For any questions, reach out to the team at azurefiles@microsoft.com363Views0likes0CommentsExpanding the Public Preview of the Azure SRE Agent
We are excited to share that the Azure SRE Agent is now available in public preview for everyone instantly – no sign up required. A big thank you to all our preview customers who provided feedback and helped shape this release! Watching teams put the SRE Agent to work taught us a ton, and we’ve baked those lessons into a smarter, more resilient, and enterprise-ready experience. You can now find Azure SRE Agent directly in the Azure Portal and get started, or use the link below. 📖 Learn more about SRE Agent. 👉 Create your first SRE Agent (Azure login required) What’s New in Azure SRE Agent - October Update The Azure SRE Agent now delivers secure-by-default governance, deeper diagnostics, and extensible automation—built for scale. It can even resolve incidents autonomously by following your team’s runbooks. With native integrations across Azure Monitor, GitHub, ServiceNow, and PagerDuty, it supports root cause analysis using both source code and historical patterns. And since September 1, billing and reporting are available via Azure Agent Units (AAUs). Please visit product documentation for the latest updates. Here are a few highlights for this month: Prioritizing enterprise governance and security: By default, the Azure SRE Agent operates with least-privilege access and never executes write actions on Azure resources without explicit human approval. Additionally, it uses role-based access control (RBAC) so organizations can assign read-only or approver roles, providing clear oversight and traceability from day one. This allows teams to choose their desired level of autonomy from read-only insights to approval-gated actions to full automation without compromising control. Covering the breadth and depth of Azure: The Azure SRE Agent helps teams manage and understand their entire Azure footprint. With built-in support for AZ CLI and kubectl, it works across all Azure services. But it doesn’t stop there—diagnostics are enhanced for platforms like PostgreSQL, API Management, Azure Functions, AKS, Azure Container Apps, and Azure App Service. Whether you're running microservices or managing monoliths, the agent delivers consistent automation and deep insights across your cloud environment. Automating Incident Management: The Azure SRE Agent now plugs directly into Azure Monitor, PagerDuty, and ServiceNow to streamline incident detection and resolution. These integrations let the Agent ingest alerts and trigger workflows that match your team’s existing tools—so you can respond faster, with less manual effort. Engineered for extensibility: The Azure SRE Agent incident management approach lets teams reuse existing runbooks and customize response plans to fit their unique workflows. Whether you want to keep a human in the loop or empower the Agent to autonomously mitigate and resolve issues, the choice is yours. This flexibility gives teams the freedom to evolve—from guided actions to trusted autonomy—without ever giving up control. Root cause, meet source code: The Azure SRE Agent now supports code-aware root cause analysis (RCA) by linking diagnostics directly to source context in GitHub and Azure DevOps. This tight integration helps teams trace incidents back to the exact code changes that triggered them—accelerating resolution and boosting confidence in automated responses. By bridging operational signals with engineering workflows, the agent makes RCA faster, clearer, and more actionable. Close the loop with DevOps: The Azure SRE Agent now generates incident summary reports directly in GitHub and Azure DevOps—complete with diagnostic context. These reports can be assigned to a GitHub Copilot coding agent, which automatically creates pull requests and merges validated fixes. Every incident becomes an actionable code change, driving permanent resolution instead of temporary mitigation. Getting Started Start here: Create a new SRE Agent in the Azure portal (Azure login required) Blog: Announcing a flexible, predictable billing model for Azure SRE Agent Blog: Enterprise-ready and extensible – Update on the Azure SRE Agent preview Product documentation Product home page Community & Support We’d love to hear from you! Please use our GitHub repo to file issues, request features, or share feedback with the team5.6KViews2likes3CommentsAnnouncing a flexible, predictable billing model for Azure SRE Agent
Billing for Azure SRE Agent will start on September 1, 2025. Announced at Microsoft Build 2025, Azure SRE Agent is a pre-built AI agent for root cause analysis, uptime improvement, and operational cost reduction. Learn more about the billing model and example scenarios.3.6KViews1like1CommentReimagining AI Ops with Azure SRE Agent: New Automation, Integration, and Extensibility features
Azure SRE Agent offers intelligent and context aware automation for IT operations. Enhanced by customer feedback from our preview, the SRE Agent has evolved into an extensible platform to automate and manage tasks across Azure and other environments. Built on an Agentic DevOps approach - drawing from proven practices in internal Azure operations - the Azure SRE Agent has already saved over 20,000 engineering hours across Microsoft product teams operations, delivering strong ROI for teams seeking sustainable AIOps. An Operations Agent that adapts to your playbooks Azure SRE Agent is an AI powered operations automation platform that empowers SREs, DevOps, IT operations, and support teams to automate tasks such as incident response, customer support, and developer operations from a single, extensible agent. Its value proposition and capabilities have evolved beyond diagnosis and mitigation of Azure issues, to automating operational workflows and seamless integration with the standards and processes used in your organization. SRE Agent is designed to automate operational work and reduce toil, enabling developers and operators to focus on high-value tasks. By streamlining repetitive and complex processes, SRE Agent accelerates innovation and improves reliability across cloud and hybrid environments. In this article, we will look at what’s new and what has changed since the last update. What’s New: Automation, Integration, and Extensibility Azure SRE Agent just got a major upgrade. From no-code automation to seamless integrations and expanded data connectivity, here’s what’s new in this release: No-code Sub-Agent Builder: Rapidly create custom automations without writing code. Flexible, event-driven triggers: Instantly respond to incidents and operational changes. Expanded data connectivity: Unify diagnostics and troubleshooting across more data sources. Custom actions: Integrate with your existing tools and orchestrate end-to-end workflows via MCP. Prebuilt operational scenarios: Accelerate deployment and improve reliability out of the box. Unlike generic agent platforms, Azure SRE Agent comes with deep integrations, prebuilt tools, and frameworks specifically for IT, DevOps, and SRE workflows. This means you can automate complex operational tasks faster and more reliably, tailored to your organization’s needs. Sub-Agent Builder: Custom Automation, No Code Required Empower teams to automate repetitive operational tasks without coding expertise, dramatically reducing manual workload and development cycles. This feature helps address the need for targeted automation, letting teams solve specific operational pain points without relying on one-size-fits-all solutions. Modular Sub-Agents: Easily create custom sub-agents tailored to your team’s needs. Each sub-agent can have its own instructions, triggers, and toolsets, letting you automate everything from outage response to customer email triage. Prebuilt System Tools: Eliminate the inefficiency of creating basic automation from scratch, and choose from a rich library of hundreds of built-in tools for Azure operations, code analysis, deployment management, diagnostics, and more. Custom Logic: Align automation to your unique business processes by defining your automation logic and prompts, teaching the agent to act exactly as your workflow requires. Flexible Triggers: Automate on Your Terms Invoke the agent to respond automatically to mission-critical events, not wait for manual commands. This feature helps speed up incident response and eliminate missed opportunities for efficiency. Multi-Source Triggers: Go beyond chat-based interactions, and trigger the agent to automatically respond to Incident Management and Ticketing systems like PagerDuty and ServiceNow, Observability Alerting systems like Azure Monitor Alerts, or even on a cron-based schedule for proactive monitoring and best-practices checks. Additional trigger sources such as GitHub issues, Azure DevOps pipelines, email, etc. will be added over time. This means automation can start exactly when and where you need it. Event-Driven Operations: Integrate with your CI/CD, monitoring, or support systems to launch automations in response to real-world events - like deployments, incidents, or customer requests. Vital for reducing downtime, it ensures that business-critical actions happen automatically and promptly. Expanded Data Connectivity: Unified Observability and Troubleshooting Integrate data, enabling comprehensive diagnostics and troubleshooting and faster, more informed decision-making by eliminating silos and speeding up issue resolution. Multiple Data Sources: The agent can now read data from Azure Monitor, Log Analytics, and Application Insights based on its Azure role-based access control (RBAC). Additional observability data sources such as Dynatrace, New Relic, Datadog, and more can be added via the Remote Model Context Protocol (MCP) servers for these tools. This gives you a unified view for diagnostics and automation. Knowledge Integration: Rather than manually detailing every instruction in your prompt, you can upload your Troubleshooting Guide (TSG) or Runbook directly, allowing the agent to automatically create an execution plan from the file. You may also connect the agent to resources like SharePoint, Jira, or documentation repositories through Remote MCP servers, enabling it to retrieve needed files on its own. This approach utilizes your organization’s existing knowledge base, streamlining onboarding and enhancing consistency in managing incidents. Azure SRE Agent is also building multi-agent collaboration by integrating with PagerDuty and Neubird, enabling advanced, cross-platform incident management and reliability across diverse environments. Custom Actions: Automate Anything, Anywhere Extend automation beyond Azure and integrate with any tool or workflow, solving the problem of limited automation scope and enabling end-to-end process orchestration. Out-of-the-Box Actions: Instantly automate common tasks like running azcli, kubectl, creating GitHub issues, or updating Azure resources, reducing setup time and operational overhead. Communication Notifications: The SRE Agent now features built-in connectors for Outlook, enabling automated email notifications, and for Microsoft Teams, allowing it to post messages directly to Teams channels for streamlined communication. Bring Your Own Actions: Drop in your own Remote MCP servers to extend the agent’s capabilities to any custom tool or workflow. Future-proof your agentic DevOps by automating proprietary or emerging processes with confidence. Prebuilt Operations Scenarios Address common operational challenges out of the box, saving teams time and effort while improving reliability and customer satisfaction. Incident Response: Minimize business impact and reduce operational risk by automating detection, diagnosis, and mitigation of your workload stack. The agent has built-in runbooks for common issues related to many Azure resource types including Azure Kubernetes Service (AKS), Azure Container Apps (ACA), Azure App Service, Azure Logic Apps, Azure Database for PostgreSQL, Azure CosmosDB, Azure VMs, etc. Support for additional resource types is being added continually, please see product documentation for the latest information. Root Cause Analysis & IaC Drift Detection: Instantly pinpoint incident causes with AI-driven root cause analysis including automated source code scanning via GitHub and Azure DevOps integration. Proactively detect and resolve infrastructure drift by comparing live cloud environments against source-controlled IaC, ensuring configuration consistency and compliance. Handle Complex Investigations: Enable the deep investigation mode that uses a hypothesis-driven method to analyze possible root causes. It collects logs and metrics, tests hypotheses with iterative checks, and documents findings. The process delivers a clear summary and actionable steps to help teams accurately resolve critical issues. Incident Analysis: The integrated dashboard offers a comprehensive overview of all incidents managed by the SRE Agent. It presents essential metrics, including the number of incidents reviewed, assisted, and mitigated by the agent, as well as those awaiting human intervention. Users can leverage aggregated visualizations and AI-generated root cause analyses to gain insights into incident processing, identify trends, enhance response strategies, and detect areas for improvement in incident management. Inbuilt Agent Memory: The new SRE Agent Memory System transforms incident response by institutionalizing the expertise of top SREs - capturing, indexing, and reusing critical knowledge from past incidents, investigations, and user guidance. Benefit from faster, more accurate troubleshooting, as the agent learns from both successes and mistakes, surfacing relevant insights, runbooks, and mitigation strategies exactly when needed. This system leverages advanced retrieval techniques and a domain-aware schema to ensure every on-call engagement is smarter than the last, reducing mean time to resolution (MTTR) and minimizing repeated toil. Automatically gain a continuously improving agent that remembers what works, avoids past pitfalls, and delivers actionable guidance tailored to the environment. GitHub Copilot and Azure DevOps Integration: Automatically triage, respond to, and resolve issues raised in GitHub or Azure DevOps. Integration with modern development platforms such as GitHub Copilot coding agent increases efficiency and ensures that issues are resolved faster, reducing bottlenecks in the development lifecycle. Ready to get started? Azure SRE Agent home page Product overview Pricing Page Pricing Calculator Pricing Blog Demo recordings Deployment samples What’s Next? Give us feedback: Your feedback is critical - You can Thumbs Up / Thumbs Down each interaction or thread, or go to the “Give Feedback” button in the agent to give us in-product feedback - or you can create issues or just share your thoughts in our GitHub repo at https://github.com/microsoft/sre-agent. We’re just getting started. In the coming months, expect even more prebuilt integrations, expanded data sources, and new automation scenarios. We anticipate continuous growth and improvement throughout our agentic AI platforms and services to effectively address customer needs and preferences. Let us know what Ops toil you want to automate next!2.8KViews1like0CommentsProactive Monitoring Made Simple with Azure SRE Agent
SRE teams strive for proactive operations, catching issues before they impact customers and reducing the chaos of incident response. While perfection may be elusive, the real goal is minimizing outages and gaining immediate line of sight into production environments. Today, that’s harder than ever. It requires correlating countless signals and alerts, understanding how they relate—or don’t relate—to each other, and assigning the right sense of urgency and impact. Anything that shortens this cycle, accelerates detection, and enables automated remediation is what modern SRE teams crave. What if you could skip the scripting and pipelines? What if you could simply describe what you want in plain language and let it run automatically on a schedule? Scheduled Tasks for Azure SRE Agent With Scheduled Tasks for Azure SRE Agent, that what-if scenario is now a reality. Scheduled tasks combine natural language prompts with Azure SRE Agent’s automation capabilities, so you can express intent, set a schedule, and let the agent do the rest—without writing a single line of code. This means: ⚡ Faster incident response through early detection ✅ Better compliance with automated checks 🎯 More time for high-value engineering work and innovation 💡 The shift from reactive to proactive: Instead of waiting for alerts to fire or customers to report issues, you’re continuously monitoring, validating, and catching problems before they escalate. How Scheduled Tasks Work Under the Hood When you create a Scheduled Task, the process is more than just running a prompt on a timer. Here’s what happens: 1. Prompt Interpretation and Plan Creation The SRE Agent takes your natural language prompt—such as “Scan all resources for security best practices”—and converts it into a structured execution plan. This plan defines the steps, tools, and data sources required to fulfill your request. 2. Built-In Tools and MCP Integration The agent uses its built-in capabilities (Azure CLI, Log Analytics workspace, Appinsights) and can also leverage 3 rd party data sources or tools via MCP server integration for extended functionality. 3. Results Analysis and Smart Summarization After execution, the agent analyzes results, identifies anomalies or issues, and provides actionable summaries not just raw data dumps. 4. Notification and Escalation Based on findings, the agent can: Post updates to Teams channels Create or update incidents Send email notifications Trigger follow-up actions Real-World Use Cases for Proactive Ops Here’s where scheduled tasks shine for SRE teams: Use Case Prompt Example Schedule Security Posture Check “Scan all subscriptions for resources with public endpoints and flag any that shouldn’t be exposed” Daily Cost Anomaly Detection “Compare this week’s spend against last week and alert if any service exceeds 20% growth” Weekly Compliance Drift Detection “Check all storage accounts for encryption settings and report any non-compliant resources” Daily Resource Health Summary “Summarize the health status of all production VMs and highlight any degraded instances” Every 4 hours Incident Trend Analysis “Analyze ICM incidents from the past week, identify patterns, and summarize top contributing services” Weekly Getting Started in 3 Steps Step 1: Define Your Intent Write a natural language prompt describing what you want to monitor or check. Be specific about: - What resources or scope - What conditions to look for - What action to take if issues are found Example: > “Every morning at 8 AM, check all production Kubernetes clusters for pods in CrashLoopBackOff state. If any are found, post a summary to the #sre-alerts Teams channel with cluster name, namespace, and pod details.” Step 2: Set Your Schedule Choose how often the task should run: - Cron expressions for precise control - Simple intervals (hourly, daily, weekly) Step 3: Define Where to Receive Updates Include in your prompt where you want results delivered when the task finishes execution. The agent can use its built-in tools and connectors to: - Post summaries to a Teams channel - Send email notifications - Create or update ICM incidents Example prompt with notification: > "Check all production databases for long-running queries over 30 seconds. If any are found, post a summary to the #database-alerts Teams channel." Why This Matters for Proactive Operations Traditional monitoring approaches have limitations: Traditional Approach With Scheduled Tasks Write scripts, maintain pipelines Describe in plain language Static thresholds and rules Contextual, AI-powered analysis Alert fatigue from noisy signals Smart summarization of what matters Separate tools for check vs. action Unified detection and response Requires dedicated DevOps effort Any SRE can create and modify The result? Your team spends less time building and maintaining monitoring infrastructure and more time on the work that truly requires human expertise. Best Practices for Scheduled Tasks Start simple, iterate — Begin with one or two high-value checks and expand as you gain confidence Be specific in prompts — The more context you provide, the better the results Set appropriate frequencies — Not everything needs to run hourly; match the schedule to the risk Review and refine — Check task results periodically and adjust prompts for better accuracy What’s Next? Scheduled tasks are just the beginning. We’re continuing to invest in capabilities that help SRE teams shift left—catching issues earlier, automating routine checks, and freeing up time for strategic work. Ready to Start? Use this sample that shows how to create a scheduled health check sub-agent: https://github.com/microsoft/sre-agent/blob/main/samples/automation/samples/02-scheduled-health-check-sample.md This example demonstrates: - Building a HealthCheckAgent using built-in tools like Azure CLI and Log Analytics Workspace - Scheduling daily health checks for a container app at 7 AM - Sending email alerts when anomalies are detected 🔗 Explore more samples here: https://github.com/microsoft/sre-agent/tree/main/samples More to Learn Ignite 2025 announcements: https://aka.ms/ignite25/blog/sreagent Documentation: https://aka.ms/sreagent/docs Support & Feature Requests: https://github.com/microsoft/sre-agent/issues751Views1like0CommentsGenerally Available - Azure Monitor Private Link Scope (AMPLS) Scale Limits Increased by 10x!
Introduction We are excited to announce the General Availability (GA) of Azure Monitor Private Link Scope (AMPLS) scale limit increase, delivering 10x scalability improvements compared to previous limits. This enhancement empowers customers to securely connect more Azure Monitor resources via Private Link, ensuring network isolation, compliance, and Zero Trust alignment for large-scale environments. What is Azure Monitor Private Link Scope (AMPLS)? Azure Monitor Private Link Scope (AMPLS) is a feature that allows you to securely connect Azure Monitor resources to your virtual network using private endpoints. This ensures that your monitoring data is accessed only through authorized private networks, preventing data exfiltration and keeping all traffic inside the Azure backbone network. AMPLS – Scale Limits Increased by 10x in Public Cloud & Sovereign Cloud (Fairfax/Mooncake) - Regions In a groundbreaking development, we are excited to share that the scale limits for Azure Monitor Private Link Scope (AMPLS) have been significantly increased by tenfold (10x) in Public & Sovereign Cloud regions as part of the General Availability! This substantial enhancement empowers our customers to manage their resources more efficiently and securely with private links using AMPLS, ensuring that workload logs are routed via the Microsoft backbone network. What’s New? 10x Scale Increase Connect up to 3,000 Log Analytics workspaces per AMPLS (previously 300) Connect up to 10,000 Application Insights components per AMPLS (previously 1,000) 20x Resource Connectivity Each Azure Monitor resource can now connect to 100 AMPLS resources (previously 5) Enhanced UX/UI Redesigned AMPLS interface supports loading 13,000+ resources with pagination for smooth navigation Private Endpoint Support Each AMPLS object can connect to 10 private endpoints, ensuring secure telemetry flows Why It Matters Top Azure Strategic 500 customers, including major Telecom service providers and Banking & Financial Services organizations, have noted that previous AMPLS limits did not adequately support their increasing requirements. The demand for private links has grown 3–5 times over existing capacity, affecting both network isolation and integration of essential workloads. This General Availability release resolves these issues, providing centralized monitoring at scale while maintaining robust security and performance. Customer Stories Our solution now enables customers to scale their Azure Monitor resources significantly, ensuring seamless network configurations and enhanced performance. Customer B - Case Study: Leading Banking & Financial Services Customer Challenge: The Banking Customer faced complexity in delivering personalized insights due to intricate workflows and content systems. They needed a solution that could scale securely while maintaining compliance and performance for business-critical applications. Solution: The Banking Customer has implemented Microsoft Private Links Services (AMPLS) to enhance the security and performance of financial models for smart finance assistants, leading to greater efficiency and improved client engagement. To ensure secure telemetry flow and compliance, the banking customer implemented Azure Monitor with Private Link Scope (AMPLS) and leveraged the AMPLS Scale Limit Increase feature. Business Impact: Strengthened security posture aligned with Zero Trust principles Improved operational efficiency for monitoring and reporting Delivered a future-ready architecture that scales with evolving compliance and performance demands Customer B - Case Study: Leading Telecom Service Provider - Scaling Secure Monitoring with AMPLS Architecture: A Leading Telecom Service Provider employs a highly micro-segmented design where each DevOps team operates in its own workspace to maximize security and isolation. Challenge: While this design strengthens security, it introduces complexity for large-scale monitoring and reporting due to physical and logical limitations on Azure Monitor Private Link Scope (AMPLS). Previous scale limits made it difficult to centralize telemetry without compromising isolation. Solution: The AMPLS Scale Limit Increase feature enabled the Telecom Service Provider to expand Azure Monitor resources significantly. Monitoring traffic now routes through Microsoft’s backbone network, reducing data exfiltration risks and supporting Zero Trust principles. Impact & Benefits Scalability: Supports up to 3,000 Log Analytics workspaces and 10,000 Application Insights components per AMPLS (10× increase). Efficiency: Each Azure Monitor resource can now connect to 100 AMPLS resources (20× increase). Security: Private connectivity via Microsoft backbone mitigates data exfiltration risks. Operational Excellence: Simplifies configuration for 13K+ Azure Monitor resources, reducing overhead for DevOps teams. Customer Benefits & Results Our solution significantly enhances customers’ ability to manage Azure Monitor resources securely and at scale using Azure Monitor Private Link Scope (AMPLS). Key Benefits Massive Scale Increase 3,000 Log Analytics workspaces (previously 300) 10,000 Application Insights components (previously 1,000) Each AMPLS object can now connect to: Azure Monitor resources can now connect with up to 100 AMPLS resources (20× increase). Broader Resource Support - Supported resource types include: Data Collection Endpoints (DCE) Log Analytics Workspaces (LA WS) Application Insights components (AI) Improved UX/UI Redesigned AMPLS interface supports loading 13,000+ Azure Monitor resources with pagination for smooth navigation. Private Endpoint Connectivity Each AMPLS object can connect to 10 private endpoints, ensuring secure telemetry flows. Resources: Explore the new capabilities of Azure Monitor Private Link Scope (AMPLS) and see how it can transform your network isolation and resource management. Visit our Azure Monitor Private Link Scope (AMPLS) documentation page for more details and start leveraging these enhancements today! For detailed information on configuring Azure Monitor private link scope and azure monitor resources, please refer to the following link: Use Azure Private Link to connect networks to Azure Monitor - Azure Monitor | Microsoft Learn Design your Azure Private Link setup - Azure Monitor | Microsoft Learn Configure your private link - Azure Monitor | Microsoft Learn322Views0likes0CommentsAnnouncing Advanced Kubernetes Troubleshooting Agent Capabilities (preview) in Azure Copilot
What’s new? Today, we're announcing Kubernetes troubleshooting agent capabilities in Azure Copilot, offering an intuitive, guided agentic experience that helps users detect, triage, and resolve common Kubernetes issues in their AKS clusters. The agent can provide root cause analysis for Kubernetes clusters and resources and is triggered by Kubernetes-specific keywords. It can detect problems like resource failures and scaling bottlenecks and intelligently correlates signals across metrics and events using `kubectl` commands when reasoning and provides actionable solutions. By simplifying complex diagnostics and offering clear next steps, the agent empowers users to troubleshoot independently. How it works With Kubernetes troubleshooting agent, Azure Copilot automatically investigates issues in your cluster by running targeted `kubectl` commands and analyzing your cluster’s configuration and current state. For instance, it identifies failing or pending pods, cluster events, resource utilization metrics, and configuration details to build a complete picture of what’s causing the issue. Azure Copilot then determines the most effective mitigation steps for your specific environment. It provides clear, step-by-step guidance, and in many cases, offers a one-click fix to resolve the issue automatically. If Azure Copilot can’t fully resolve the problem, it can generate a pre-populated support request with all the diagnostic details Microsoft Support needs. You’ll be able to review and confirm everything before the request is submitted. This agent is available via Azure Copilot in the Azure Portal. Learn more about how Azure Copilot works. How to Get Started To start using agents, your global administrator must request access to the agents preview at the tenant level in the Azure Copilot admin center. This confirms your interest in the preview and allows us to enable access. Once approved, users will see the Agent mode toggle in Azure Copilot chat and can then start using Copilot agents. Capacity is limited, so sign up early for the best chance to participate. Additionally, if you are interested in helping shape the future of agentic cloud ops and the role Copilot will play in it, please join our customer feedback program by filling up this form. Agents (preview) in Azure Copilot | Microsoft Learn Troubleshooting sample prompts From an AKS cluster resource, click Kubernetes troubleshooting with Copilot to automatically open Azure Copilot in context of the resource you want to troubleshoot: Try These Prompts to Get Started: Here are a few examples of the kinds of prompts you can use. If you're not already working in the context of a resource, you may need to provide the specific resource that you want to troubleshoot. "My pod keeps restarting can you help me figure out why" "Pods are stuck pending what is blocking them from being scheduled" "I am getting ImagePullBackOff how do I fix this" "One of my nodes is NotReady what is causing it" "My service cannot reach the backend pod what should I check" Note: When using these kinds of prompts, be sure agent mode is enabled by selecting the icon in the chat window: Learn More Troubleshooting agent capabilities in Agents (preview) in Azure Copilot | Microsoft Learn Announcing the CLI Agent for AKS: Agentic AI-powered operations and diagnostics at your fingertips - AKS Engineering Blog Microsoft Copilot in Azure Series - Kubectl | Microsoft Community Hub469Views3likes0Comments