azure ai studio
25 TopicsCreate Your Own Copilot Using Copilot Studio
Hello everyone, I am Suniti, Beta MLSA pursuing my graduation in the field of Data Science. Today, we're diving into creating our very own copilot to guide students towards ‘becoming MLSAs’. But first thing first, let's explore Copilot Studio!18KViews4likes2CommentsExploring AI Development and Management: A Journey through Contoso Chat and LLM Ops
In this blog, we'll navigate through the world of AI models, exploring Contoso Chat, Prompt Engineering, limitations of Prompt Engineering, and Large Language Models. We'll introduce tools like the RAG Pattern and Azure AI Studio that can boost AI responses and system performance. Ready to dive into the intricacies of AI development and management? Join us!15KViews3likes1CommentJourney Series for Generative AI Application Architecture - Foundation
At Build last year, Microsoft CTO Kevin Scott proposed Copilot Stack to provide problem-solving ideas for Generative AI applications. Based on the Coplit Stack, community have developed many frameworks in the past year, such as Semantic Kernel, AutoGen, and LangChain. These frameworks are more biased toward front-end applications, and enterprises need a better engineering solution. This series hopes to give you some ideas based on Microsoft Cloud and related frameworks and tools.9.3KViews3likes1CommentBuilding your own copilot – yes, but how? (Part 1 of 2)
Are you interested in building your own AI co-pilot? Check out the first of a two-part blog post from Carlotta Castelluccio that covers the basics of creating a virtual assistant that can help you with tasks like scheduling, email management, and more. Learn about the tools and technologies involved, including Microsoft's Bot Framework and Language Understanding Intelligent Service (LUIS). Whether you're a software developer or just curious about the possibilities of AI, this post is a great introduction to building your own co-pilot.32KViews3likes2CommentsPower Up Your Open WebUI with Azure AI Speech: Quick STT & TTS Integration
Introduction Ever found yourself wishing your web interface could really talk and listen back to you? With a few clicks (and a bit of code), you can turn your plain Open WebUI into a full-on voice assistant. In this post, you’ll see how to spin up an Azure Speech resource, hook it into your frontend, and watch as user speech transforms into text and your app’s responses leap off the screen in a human-like voice. By the end of this guide, you’ll have a voice-enabled web UI that actually converses with users, opening the door to hands-free controls, better accessibility, and a genuinely richer user experience. Ready to make your web app speak? Let’s dive in. Why Azure AI Speech? We use Azure AI Speech service in Open Web UI to enable voice interactions directly within web applications. This allows users to: Speak commands or input instead of typing, making the interface more accessible and user-friendly. Hear responses or information read aloud, which improves usability for people with visual impairments or those who prefer audio. Provide a more natural and hands-free experience especially on devices like smartphones or tablets. In short, integrating Azure AI Speech service into Open Web UI helps make web apps smarter, more interactive, and easier to use by adding speech recognition and voice output features. If you haven’t hosted Open WebUI already, follow my other step-by-step guide to host Ollama WebUI on Azure. Proceed to the next step if you have Open WebUI deployed already. Learn More about OpenWeb UI here. Deploy Azure AI Speech service in Azure. Navigate to the Azure Portal and search for Azure AI Speech on the Azure portal search bar. Create a new Speech Service by filling up the fields in the resource creation page. Click on “Create” to finalize the setup. After the resource has been deployed, click on “View resource” button and you should be redirected to the Azure AI Speech service page. The page should display the API Keys and Endpoints for Azure AI Speech services, which you can use in Open Web UI. Settings things up in Open Web UI Speech to Text settings (STT) Head to the Open Web UI Admin page > Settings > Audio. Paste the API Key obtained from the Azure AI Speech service page into the API key field below. Unless you use different Azure Region, or want to change the default configurations for the STT settings, leave all settings to blank. Text to Speech settings (TTS) Now, let's proceed with configuring the TTS Settings on OpenWeb UI by toggling the TTS Engine to Azure AI Speech option. Again, paste the API Key obtained from Azure AI Speech service page and leave all settings to blank. You can change the TTS Voice from the dropdown selection in the TTS settings as depicted in the image below: Click Save to reflect the change. Expected Result Now, let’s test if everything works well. Open a new chat / temporary chat on Open Web UI and click on the Call / Record button. The STT Engine (Azure AI Speech) should identify your voice and provide a response based on the voice input. To test the TTS feature, click on the Read Aloud (Speaker Icon) under any response from Open Web UI. The TTS Engine should reflect Azure AI Speech service! Conclusion And that’s a wrap! You’ve just given your Open WebUI the gift of capturing user speech, turning it into text, and then talking right back with Azure’s neural voices. Along the way you saw how easy it is to spin up a Speech resource in the Azure portal, wire up real-time transcription in the browser, and pipe responses through the TTS engine. From here, it’s all about experimentation. Try swapping in different neural voices or dialing in new languages. Tweak how you start and stop listening, play with silence detection, or add custom pronunciation tweaks for those tricky product names. Before you know it, your interface will feel less like a web page and more like a conversation partner.795Views2likes1CommentDocAider: Automated Documentation Maintenance for Open-source GitHub Repositories
Code–level documentation of a software system provides explanations of the code functionality and usages. Documentation is crucial for giving clear insights into the code for end–users and future developers. However, creating and updating documentation manually is a demanding task, requiring significant resources and labour. With the advancement of generative AI, there is a potential to reduce human labour in documentation tasks significantly. We propose DocAider, an automation tool powered by GPT–4 that integrates the processes of documentation generation and update. DocAider can generate comprehensive and structured documentation in markdown format and update it in response to any changes made in pull requests. The mission of DocAider is to reduce developers’ burden on maintaining documentation for GitHub repositories.4.7KViews2likes0CommentsDeploying GPT-4o AI Chat app on Azure via Azure AI Services – a step-by-step guide
Are you ready to revolutionize your business with cutting-edge AI technology? Dive into our comprehensive step-by-step guide on deploying a GPT-4o AI Chat app using Azure AI Services. Discover how to harness the power of advanced natural language processing to create interactive, human-like chat experiences. From setting up your Azure account to deploying your AI model and customizing your chat app, this guide covers it all. Unleash the potential of AI in your business and stay ahead of the curve with the latest advancements from Microsoft Azure. Don’t miss out on this opportunity to transform your workflows and elevate customer interactions to new heights!6.4KViews2likes0Comments