azure ai services
564 TopicsImplementing MCP Remote Servers with Azure Function App and GitHub Copilot Integration
Introduction In the evolving landscape of AI-driven applications, the ability to seamlessly connect large language models (LLMs) with external tools and data sources is becoming a cornerstone of intelligent system design. Model Context Protocol (MCP) — a specification that enables AI agents to discover and invoke tools dynamically, based on context. While MCP is powerful, implementing it from scratch can be daunting !!! That’s where Azure Functions comes in handy. With its event-driven, serverless architecture, Azure Functions now supports a preview extension for MCP, allowing developers to build remote MCP servers that are scalable, secure, and cloud-native. Further, In VS Code, GitHub Copilot Chat in Agent Mode can connect to your deployed Azure Function App acting as an MCP server. This connection allows Copilot to leverage the tools and services exposed by your function app. Why Use Azure Functions for MCP? Serverless Simplicity: Deploy MCP endpoints without managing infrastructure. Secure by Design: Leverage HTTPS, system keys, and OAuth via EasyAuth or API Management. Language Flexibility: Build in .NET, Python, or Node.js using QuickStart templates. AI Integration: Enable GitHub Copilot, VS Code, or other AI agents to invoke your tools via SSE endpoints. Prerequisites Python version 3.11 or higher Azure Functions Core Tools >= 4.0.7030 Azure Developer CLI To use Visual Studio Code to run and debug locally: Visual Studio Code Azure Functions extension An storage emulator is needed when developing azure function app in VScode. you can deploy Azurite extension in VScode to meet this requirement. Press enter or click to view image in full size You can run the Azurite in VS Code as shown below. C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\IDE\Extensions\Microsoft\Azure Storage Emulator> .\azurite.exe Press enter or click to view image in full size alternatively, you can also run Azurite in docker container as shown below. docker run -p 10000:10000 -p 10001:10001 -p 10002:10002 \ mcr.microsoft.com/azure-storage/azurite For more information about setting up Azurite, visit Use Azurite emulator for local Azure Storage development | Microsoft Learn Github Repositories Following Github repos are needed to setup this PoC. Repository for MCP server using Azure Function App https://github.com/mafzal786/mcp-azure-functions-python.git Repository for AI Foundry agent as MCP Client https://github.com/mafzal786/ai-foundry-agent-with-remote-mcp-using-azure-functionapp.git Clone the repository Run the following command to clone the repository to start building your MCP server using Azure function app. git clone https://github.com/mafzal786/mcp-azure-functions-python.git Run the MCP server in VS Code Once cloned. Open the folder in VS Code. Create a virtual environment in VS Code. Change directory to “src” in a new terminal window, install the python dependencies and start the function host locally as shown below. cd src pip install -r requirements.txt func start Note: by default this will use the webhooks route: /runtime/webhooks/mcp/sse. Later we will use this in Azure to set the key on client/host calls: /runtime/webhooks/mcp/sse?code=<system_key> Press enter or click to view image in full size MCP Inspector In a new terminal window, install and run MCP Inspector. npx @modelcontextprotocol/inspector Click to load the MCP inspector. Also provide the generated proxy session token. http://127.0.0.1:6274/#resources In the URL type and click “Connect”: http://localhost:7071/runtime/webhooks/mcp/sse Once connected, click List Tools under Tools and select “hello_mcp” tool and click “Run Tool” for testing as shown below. Press enter or click to view image in full size Select another tool such as get_stockprice and run it as shown below. Press enter or click to view image in full size Deploy Function App to Azure from VS Code For deploying function app to azure from vs code, make sure you have Azure Tools extension enabled in VS Code. To learn more about Azure Tools extension, visit the following Azure Extensions if your VS code environment is not setup for Azure development, follow Configure Visual Studio Code for Azure development with .NET — .NET | Microsoft Learn Once Azure Tools are setup, sign in to Azure account with Azure Tools Press enter or click to view image in full size Once Sign-in is completed, you should be able to see all of your existing resources in the Resources view. These resources can be managed directly in VS Code. Look for Function App in Resource, right click and click “Deploy to Function App”. Press enter or click to view image in full size If you already have it deployed, you will get the following pop-up. Click “Deploy” Press enter or click to view image in full size This will start deploying your function app to Azure. In VS Code, Azure tab will display the following. Press enter or click to view image in full size Once the deployment is completed, you can view the function app and all the tools in Azure portal under function app as shown below. Press enter or click to view image in full size Get the mcp_extension key from Functions → App Keys in Function App. Press enter or click to view image in full size This mcp_extension key would be needed in mcp.json file in VS code, if you would like to test the MCP server using Github Copilot in VS Code. Your entries in mcp.json file will look like as below for example. { "inputs": [ { "type": "promptString", "id": "functions-mcp-extension-system-key", "description": "Azure Functions MCP Extension System Key", "password": true }, { "type": "promptString", "id": "functionapp-name", "description": "Azure Functions App Name" } ], "servers": { "remote-mcp-function": { "type": "sse", "url": "https://${input:functionapp-name}.azurewebsites.net/runtime/webhooks/mcp/sse", "headers": { "x-functions-key": "${input:functions-mcp-extension-system-key}" } }, "local-mcp-function": { "type": "sse", "url": "http://0.0.0.0:7071/runtime/webhooks/mcp/sse" } } } Test Azure Function MCP Server in MCP Inspector Launch MCP Inspector and provide the Azure Function in MCP inspector URL. Provide authentication as shown below. Bearer token is mcp_extension key. Testing an MCP server with GitHub Copilot Testing an MCP server with GitHub Copilot involves configuring and utilizing the server within your development environment to provide enhanced context and capabilities to Copilot Chat. Steps to Test an MCP Server with GitHub Copilot: Ensure Agent Mode is Enabled: Open Copilot Chat in Visual Studio Code and select “Agent” mode. This mode allows Copilot to interact with external tools and services, including MCP servers. Add the MCP Server: Open the Command Palette (Ctrl+Shift+P or Cmd+Shift+P) and run the command MCP: Add Server. Press enter or click to view image in full size Follow the prompts to configure the server. You can choose to add it to your workspace settings (creating a .vscode/mcp.json file) . Select HTTP or Server-Sent events Press enter or click to view image in full size Specify the URL and click Enter Press enter or click to view image in full size Provide a name of your choice Press enter or click to view image in full size Select scope as Global or workspace. I selected Workspace Press enter or click to view image in full size This will generate mcp.json file in .vscode or create a new entry if mcp.json already exists as shown below. Click Start to “start” the server. Also make sure your Azure function app is locally running with func start command. Press enter or click to view image in full size Now Type the prompt as shown below. Press enter or click to view image in full size Try another tool as below. Press enter or click to view image in full size VS code terminal output for reference. Press enter or click to view image in full size Testing an MCP server with Claude Desktop Claude Desktop is a standalone AI application that allows users to interact with Claude AI models directly from their desktop, providing a seamless and efficient experience. you can download Claude desktop at Download Claude In this article, I have added another tool to utilize to test your MCP server running in Azure Function app. Modify claude_desktop_config.json with the following. you can find this file in window environment at C:\Users\<username>\AppData\Roaming\Claude { "mcpServers": { "my mcp": { "command": "npx", "args": [ "mcp-remote", "http://localhost:7071/runtime/webhooks/mcp/sse" ] } } } Note: If claude_desktop_config.json does not exists, click on setting in Claude desktop under user and visit developer tab. You will see you MCP server in Claude Desktop as shown below. Press enter or click to view image in full size Type the prompt such as “What is the stock price of Tesla” . After submitting, you will notice that it is invoking the tool “get_stockprice” from the MCP server running locally and configured in the .json earlier. Click Allow once or Allow always as shown below. Following output will be displayed. Press enter or click to view image in full size Now lets try weather related prompt. As you can see, it has invoked “get_weatheralerts” tool from MCP server. Press enter or click to view image in full size Azure AI Foundry agent as MCP Client Use the following Github repo to set up Azure AI Foundry agent as MCP client. git clone https://github.com/mafzal786/ai-foundry-agent-with-remote-mcp-using-azure-functionapp.git Open the code in VS code and follow the instructions mentioned in README.md file at Github repo. Once you execute the code, following output will show up in VS code. Press enter or click to view image in full size In this code, message is hard coded. Change the content to “what is weather advisory for Florida” and rerun the program. It will call get_weatheralerts tool and output will look like as below. Press enter or click to view image in full size Conclusion The integration of Model Context Protocol (MCP) with Azure Functions marks a pivotal step in democratizing AI agent development. By leveraging Azure’s serverless architecture, developers can now build remote MCP servers that scale automatically, integrate seamlessly with other Azure services, and expose modular tools to intelligent agents like GitHub Copilot. This setup not only simplifies the deployment and management of MCP servers but also enhances the developer experience — allowing tools to be invoked contextually by AI agents in environments like VS Code, GitHub Codespaces, or Copilot Studio[2]. Whether you’re building a tool to query logs, calculate metrics, or manage data, Azure Functions provides the flexibility, security, and scalability needed to bring your AI-powered workflows to life. As the MCP spec continues to evolve, and GitHub Copilot expands its agentic capabilities, this architecture positions you to stay ahead — offering a robust foundation for cloud-native AI tooling that’s both powerful and future-proof.174Views0likes0CommentsDeployment Guide-Copilot Studio agent with MCP Server exposed by API Management using OAuth 2.0
Introduction In today’s enterprise landscape, enabling AI agents to interact with backend systems securely and at scale is critical. By exposing MCP servers through Azure API Management (APIM), organizations can provide controlled access to these services. When combined with OAuth 2.0 authorization code flow, this setup ensures robust, enterprise-grade security for AI agents built in Copilot Studio—empowering intelligent automation while maintaining strict access governance. Disclaimer & Caveats This article explores how to configure a MCP tool—exposed as a MCP server via APIM—for secure consumption by AI agents built in Copilot Studio. Leveraging the OAuth 2.0 Authorization Code Flow, this setup ensures enterprise-grade security by enabling delegated access without exposing user credentials. With Azure API Management now supporting MCP server capabilities in public preview, developers can expose REST APIs as MCP tools using a standardized JSON-RPC interface. This allows AI agents to invoke backend services securely and scalable, without the need to rebuild existing APIs. Copilot Studio, also in preview for MCP integration, empowers organizations to orchestrate intelligent agents that interact with these tools in real time. While this guide provides a foundational approach, every environment is unique. You can enhance security further by implementing app roles, conditional access policies, and extending your integration logic with custom Python code for advanced scenarios. ⚠️ Note: Both MCP server support in APIM and MCP tool integration in Copilot Studio are currently in public preview. As these platforms evolve rapidly, expect changes and improvements over time. Always refer to the https://learn.microsoft.com/en-us/azure/api-management/export-rest-mcp-server for the latest updates. This article is about consuming remote MCP servers. In Azure, managed identity can also be leveraged for APIM integration. What is Authorization Code Flow? The Authorization Code Flow is designed for applications that can securely store a client secret (like server-side apps). It allows the app to obtain an access token on behalf of the user without exposing their credentials. This flow uses an intermediate authorization code to exchange for tokens, adding an extra layer of security. Steps in the Flow User Authentication The user is redirected to the Authorization Server (In this case: Azure AD) to log in and grant consent. Authorization Code Issued After successful login, the Authorization Server sends an authorization code to the app via the redirect URI. Token Exchange The app sends the authorization code (plus client credentials) to the Token Endpoint to get: Access Token (for API calls) and Refresh Token (to renew access without user interaction) API Access The app uses the Access Token to call protected resources. Below diagram shows the Authorization code flow in detail. Press enter or click to view image in full size Microsoft identity platform and OAuth 2.0 authorization code flow — Microsoft identity platform | Microsoft Learn High Level Architecture Press enter or click to view image in full size This architecture can also be implemented with APIM backend app registration only. However, stay cautious in configuring redirect URIs appropriately. Remote MCP Servers using APIM Architecture APIM exposing Remote MCP servers, enabling AI agents—such as those built in Copilot Studio—to securely access backend services using standardized JSON-RPC interfaces. This integration offers a robust, scalable, and secure way to connect AI tools with enterprise APIs. Key Capabilities: Secure Gateway: APIM acts as an intelligent gateway, handling OAuth 2.0 Authorization Code Flow, authentication, and request routing. Monitoring & Observability: Integration with Azure Log Analytics and Application Insights enables deep visibility into API usage, performance, and errors. Policy Enforcement: APIM’s policy engine allows for custom rules, including token validation, header manipulation, and response transformation. Rate Limiting & Throttling: Built-in support for rate limits, quotas, and IP filtering helps protect backend services from abuse and ensures fair usage. Managed Identity & Entra ID: Secure service-to-service communication is enabled via system-assigned and user-assigned managed identities, with Entra ID handling identity and access management. Flexible Deployment: MCP servers can be hosted in Azure Functions, App Services, or Container Apps, and exposed via APIM with minimal changes to existing APIs. To learn more, visit https://learn.microsoft.com/en-us/samples/azure-samples/remote-mcp-apim-functions-python/remote-mcp-apim-functions-python/ Develop MCP server in VS Code This deployment guide provides sample MCP code written in python for ease of use. It is available on the following GitHub repo. However, you can also use your own MCP server. Clone the following repository and open in VS Code. git clone https://github.com/mafzal786/mcp-server.git Run the following to execute it locally. cd mcp-server uv venv uv sync uv run mcpserver.py Deploy MCP Server as Azure Container App In this deployment guide, MCP server is deployed in Azure Container App. It can also be deployed as Azure App service. Deploy the MCP server in Azure container App by running the following command. It can be deployed by many other various ways such as via VS Code or CI/CD pipeline. AZ Cli is used for simplicity. az containerapp up \ --resource-group <RESOURCE_GROUP_NAME> \ --name streamable-mcp-server2 \ --environment mcp \ --location <REGION> \ --source . Configure Authentication for Azure Container App 1. Sign in Azure portal. Visit the container App in Azure and Click “Authentication” as shown below. Press enter or click to view image in full size For more details, visit the following link: Enable authentication and authorization in Azure Container Apps with Microsoft Entra ID | Microsoft Learn Click Add Identity Provider as shown. 2. Select Microsoft from the drop down and leave everything as is as shown below. 3. This will create a new app registration for the container App. After it is all setup, it will look like as below. As soon as authentication is configured. it will make container app inaccessible except for OAuth. Note: If you have app registration for Azure Container App already configured, use that by selecting "pick an existing app registration in this directory" option. Review App Registration of Container App — Backend Visit App registration and click streamable-mcp-server2 as in this case. Click on Authentication tab. Verify the Redirect URIs. you should see a redirect URL for container app. URI will end with /.auth/login/aad/callback as shown in the green box in the below screenshot. Now click on “Expose an API”. Confirm Application ID URI is configured with scope as shown below. its format is api://<client id> Scope "user_impersonation" is created. Verify API Permission. Make sure you Grant admin consent for your tenant as shown below. More scope can be created depending on the requirement of data access. Note: Make sure to "Grant admin consent" before proceeding to next step. Create App registration for representing APIM API Lauch Azure Portal. Visit App registration. Click New registration. Create a new App registration as shown below. For example, "apim-mcp-backend-api" in this case. Click "Expose an API", configure Application ID URI, and add a scope as shown in the below diagram such as user_impersonation. Click "App roles" and create the following role as shown below. More roles can be created depending on the requirements and case by case basis. Here app roles are created to get the concept around it and how it will be used in APIM inbound policies in the coming sections. Create App Registration for Client App — Copilot Studio In these steps, we will be configuring app registration for the client app, such as copilot studio in this case acting as a client app. This is also mentioned in the “high level architecture” diagram in the earlier section of this article. Lauch Azure Portal. Visit App registration. Click New registration. Create a new App registration. leave the Redirect URL as of now, we will configure it later as it is provided by copilot studio when configuring custom MCP connector. 3. Click on API permission and click “Add a permission”. Click Microsoft Graph and then click “Delegated permissions”. Select email, openid, profile as shown below. 4. Make sure to Grant admin consent and it should look like as below. 5. Create a secret. click “Certificates & secrets”. Create a new client secret by clicking “New client secret”. store the value as it will be masked after some time. if that happens, you can always delete and re-create a new secret. 6. Capture the following as you would need it in configuring MCP tool in Copilot Studio. Client ID from the Overview Tab of app registration. Client secret from “Certificates & secrets” tab. 7. Configure API permissions for APIM API i.e. "apim-mcp-backend-api" in this case. Click “API permissions” tab. Click “Add a permission”. Click on “My APIs” tab as shown below and select "apim-mcp-backend-api". Note: If you don't see the app registration in "My APIs". Go to App registration. Click "Owners". Add your AD account as Owners. 8. Select "Delegated permissions". Then select the permission as shown below. 9. Select the Application permission. Select the App roles created in the apim-mcp-backend-api registration. Such as mcp.read in this case. You MUST “Grant admin consent” as final step. It is very important!!! I can’t emphasize more on that. without it, nothing will work!!! 10. End result of this client app registration should look like as mentioned in the below figure. Configure permissions for Container App registration Lauch Azure Portal. Visit app registration. Select app registration of Azure container app such as streamable-mcp-server2 in this case. Select API permissions. Add the following delegated and application permissions as shown in the below diagram. Note: Don't forget to Grant admin consent. Configure allowed token audience for Container App It defines which audience values (aud claim) in a token are considered valid for your app. When a client app requests an access token from Microsoft Entra ID (Azure AD), the token includes an aud claim that identifies the intended recipient. Your container app will only accept tokens where the aud claim matches one of the values in the Allowed Token Audiences list. This is important as it ensures that only tokens issued for your API or app are accepted and prevents misuse of tokens intended for other resources. This adds extra layer of security. In the Azure Portal, visit Azure Container App. i.e. streamable-mcp-server2. Click on "Authentication" Click "Edit" under identity provider Under "Allowed token audiences", add the application ID URI of "apim-mcp-backend-api". As this will be included as an audience in the access token. Best Practices Only include trusted client app IDs. Avoid using overly broad values like “allow all” (not recommended). Validate tokens using Microsoft libraries (MSAL) or built-in auth features. Configure MCP server in API Management Note: Provisioning an API Management resource is outside the scope of this document. If you do not already have an API Management instance, follow this QuickStart: https://learn.microsoft.com/en-us/azure/api-management/get-started-create-service-instance The following service tiers are available for preview: Classic Basic, Standard, Premium, and Basic v2, Standard v2, Premium v2. For the Classic Basic, Standard, or Premium tiers, you must join the AI Gateway Early Update group to enable MCP server features. Please allow up to 2 hours for the update to take effect. Expose an existing MCP server Follow these steps to expose an existing MCP server is API Management: In the Azure portal, navigate to your API Management instance. In the left-hand menu, under APIs, select MCP servers > + Create MCP server. Select Expose an existing MCP server. In Backend MCP server: Enter the existing MCP server base URL. Example: https://streamable-mcp-serverv2.kdhg489457dslkjgn,.eastus2.azurecontainerapps.io/mcpfor the Microsoft Azure Container App hosting MCP server. In Transport type, Streamable HTTP is selected by default. In New MCP server: Enter a Name the MCP server in API Management. In Base path, enter a route prefix for tools. Example: mcptools Optionally, enter a Description for the MCP server. Select Create. Below diagram shows the MCP servers configured in APIM for reference. Configure policies for MCP server Configure one or more API Management policies to help manage the MCP server. The policies are applied to all API operations exposed as tools in the MCP server and can be used to control access, authentication, and other aspects of the tools. To configure policies for the MCP server: In the Azure portal, navigate to your API Management instance. In the left-hand menu, under APIs, select MCP Servers. Select an MCP server from the list. In the left menu, under MCP, select Policies. In the policy editor, add or edit the policies you want to apply to the MCP server's tools. The policies are defined in XML format. <!-- - Policies are applied in the order they appear. - Position <base/> inside a section to inherit policies from the outer scope. - Comments within policies are not preserved. --> <!-- Add policies as children to the <inbound>, <outbound>, <backend>, and <on-error> elements --> <policies> <!-- Throttle, authorize, validate, cache, or transform the requests --> <inbound> <base /> <set-variable name="accessToken" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "").Replace("Bearer ", ""))" /> <!-- Log the captured access token to the trace logs --> <trace source="Access Token Debug" severity="information"> <message>@("Access Token: " + (string)context.Variables["accessToken"])</message> </trace> <set-variable name="userId" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "Bearer ").Split(' ')[1].AsJwt().Claims["oid"].FirstOrDefault())" /> <set-variable name="userName" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "Bearer ").Split(' ')[1].AsJwt().Claims["name"].FirstOrDefault())" /> <trace source="User Name Debug" severity="information"> <message>@("username: " + (string)context.Variables["userName"])</message> </trace> <set-variable name="scp" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "Bearer ").Split(' ')[1].AsJwt().Claims["scp"].FirstOrDefault())" /> <trace source="Scope Debug" severity="information"> <message>@("scope: " + (string)context.Variables["scp"])</message> </trace> <set-variable name="roles" value="@(context.Request.Headers.GetValueOrDefault("Authorization", "Bearer ").Split(' ')[1].AsJwt().Claims["roles"].FirstOrDefault())" /> <trace source="Role Debug" severity="information"> <message>@("Roles: " + (string)context.Variables["roles"])</message> </trace> <!-- <set-variable name="requestBody" value="@{ return context.Request.Body.As<string>(preserveContent:true); }" /> <trace source="Request Body information" severity="information"> <message>@("Request body: " + (string)context.Variables["requestBody"])</message> </trace> --> <validate-azure-ad-token tenant-id="{{tenant-id}}" header-name="Authorization" failed-validation-httpcode="401" failed-validation-error-message="Unauthorized. Access token is missing or invalid."> <client-application-ids> <application-id>{{client-application-id}}</application-id> </client-application-ids> <audiences> <audience>{{audience}}</audience> </audiences> <required-claims> <claim name="roles" match="any"> <value>mcp.read</value> </claim> </required-claims> </validate-azure-ad-token> </inbound> <!-- Control if and how the requests are forwarded to services --> <backend> <base /> </backend> <!-- Customize the responses --> <outbound> <base /> </outbound> <!-- Handle exceptions and customize error responses --> <on-error> <base /> <trace source="Role Debug" severity="error"> <message>@("username: " + (string)context.Variables["userName"] + " has error in accessing the MCP server, could be auth or role related...")</message> </trace> <return-response> <set-status code="403" reason="Forbidden" /> <set-body> {"error":"Missing required scope or role"} </set-body> </return-response> </on-error> </policies> Note: Update the above inbound policy with the tenant Id, client application id, and audience as per your environment. It is recommended to use APIM "Named values" instead of hard coding inside the policy. To learn more, visit Use named values in Azure API Management policies Configure Diagnostics for APIM In this solution, APIM diagnostics are configured to forward log data to Log Analytics. Testing and validation will be carried out using insights from Log Analytics. Note: Setting up diagnostics is outside the scope of this article. However, you can visit the following link for more information. https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-use-azure-monitor Below diagram shows what Logs are being sent to Log Analytics workspace. MCP Tool configuration in Copilot Studio Lauch copilot studio at https://copilotstudio.microsoft.com/. Configuration of environment and agent is beyond the scope of this article. It is assumed, you already have environment setup and agent has been created. Following link will help you, how to create an agent in copilot studio. Quickstart: Create and deploy an agent — Microsoft Copilot Studio | Microsoft Learn Inside agent configuration, click "Add tool". 3. Click on New tool. 4. Select Model Context Protocol. 5. Provide all relevant information for MCP server. Make sure your server URL ends with your mcp setup. In this case, it is APIM MCP server URL, with base path configured in APIM in the end. Provide server name and server description. Select OAuth 2.0 radio button. 6. Provide the following in the OAuth 2.0 section Client ID of client app registration. In this case, copilot-studio-client as configured earlier. Client secret of copilot-studio-client app registration. Authorization URL: https://login.microsoftonline.com/common/oauth2/v2.0/authorize Token URL template & Refresh URL: https://login.microsoftonline.com/oauth2/v2.0/token Scopes: openid, profile, email — which we selected earlier for Microsoft Azure Graph permissions. Click “Create”. This will provide you Redirect URL. you need to configure the redirect URL in client app registration. In this case, it is copilot-agent-client. Configure Redirect URI in Client App Registration Visit client app registration. i.e. copilot-studio-client. Click Authentication Tab and provide the Web Redirect URIs as shown below. Note: Configure Redirect URIs MUST be configured in app registration. Otherwise, authorization will not complete and sign on will fail. Configure redirect URI in APIM API app registration Also configure apim-mcp-backend-api app registration with the same redirect URI as shown below. Modify MCP connector in PowerApps Now visit the https://make.powerapps.com and open the newly created connector as shown below. Select the security tab and modify the Resource URL with application ID URI of apim-mcp-backend-api configured earlier in app registration for expose an API. Add .default in the scope. Provide the secret of client app registration as it will not let you update the connector. This is extra security measure for updating the connector in Powerapps. Click Update connector. CORS Configuration CORS configuration is a MUST!!! Since our Azure Container App is a remote MCP server with totally different domain or origin. Power Apps and CORS for External Domains — Brief Overview When embedding or integrating Power Apps with external web applications or APIs, Cross-Origin Resource Sharing (CORS) becomes a critical consideration. CORS is a browser security feature that restricts web pages from making requests to a different domain than the one that served the page, unless explicitly allowed. Key Points: Power Apps hosted on *.powerapps.com or within Microsoft 365 domains will block calls to external APIs unless those APIs include the proper CORS headers. The external API must return: Access-Control-Allow-Origin: https://apps.powerapps.com (or * for all origins, though not recommended for production) Access-Control-Allow-Methods: GET, POST, OPTIONS (or as needed) Access-Control-Allow-Headers: Content-Type, Authorization (and any custom headers) If the API requires authentication (e.g., OAuth 2.0), ensure preflight OPTIONS requests are handled correctly. For scenarios where you cannot modify the external API, consider using: Power Automate flows as a proxy Azure API Management or Azure Functions to inject CORS headers Always validate security implications before enabling wide-open CORS. If the CORS are not setup. You will encounter following error in copilot studio after pressing F12 (Browser Developer) CORS policy — blocking the container app Azure container app provides very efficient way of configuring CORS in the Azure portal. Lauch Azure Portal. Visit Azure container app i.e. streamable-mcp-server2 in this case. Click on CORS under Networking section. Configure the following in Allowed Origin Section as shown below. localhost is added to make it work from local laptop, although it is not required for Copilot Studio. 4. Click on “Allowed Method” tab and provide the following. 5. Provide wild card “*” in “Allowed Headers”tab. Although, it is not recommended for production system. it is done for the sake for simplicity. Configure that for added security 6. Click “Apply”. This will configure CORS for remote application. Test the MCP custom connector We are in the final stages of configuring the connector. It is time to test it, if everything is configured correctly and works. Launch the http://make.powerapps.com and click on “Custom connectors”, select your configured connector and click “5. Test” tab as shown below. You will see Selected Connection as blank if you are running it first time. Click “+ New connection” 2. New connection will launch the Authorization flow and browser dialog will pop up for making a request for authorization code. 3. Click “Create”. 4. Complete the login process. This will create a successful connection. 5. Click “Test operation”. If the response is 406 means everything is configured correctly as shown below. Solution validation Add user in Enterprise Application for App roles Roles have been defined under the required claims in the APIM inbound policy and also configured in the apim-mcp-backend-api app registration. As a result, any request from Copilot Studio will be denied if this role is not properly assigned. This role is included in the JWT access token, which we will validate in the following sections. To assign role, perform the following steps. Visit Azure Portal. Visit Enterprise Application. Select APIM backend app registration. In this case for example, apim-mcp-backend-api Click "Users and groups" Select "Add user/group" 5. Select User or Group who should have access to the role. 6. Click "Assign". It will look like as below. Note: Role assignment for users or groups is an important step. If it is not configured, MCP server tests will fail in Copilot studio. Test MCP server in Copilot Studio Lauch copilot studio and click on the Agent you created in earlier steps and click on “Tools tab”. Select your MCP tool as shown the following figure. Make sure it is “Enabled” if you have other tools attached to the same agent, disable them for now for testing. Make sure you have connection available which we created during the testing of custom connector in earlier step. You can also initiate a fresh connection by clicking on the drop down under “Connection” as shown below. Refreshing the tools will show all the tools available in this MCP server. Provide the sample prompt such as “Give me the stock price of tesla”. This will trigger the MCP server and call the respective method to bring the stock price of Tesla. Now try a weather-related question to see more. Now invoking weather forecast tool in the MCP server. APIM Monitoring with Log Analytics We previously configured APIM diagnostic settings to forward log data to Log Analytics. In this section, we’ll review that data, as the inbound policy in APIM sends valuable information to Log Analytics. Run the Kusto query to retrieve data from the last 30 minutes. As shown, the logs capture the APIM API endpoint URL and the backend URL, which corresponds to the Azure Container App endpoint. Scrolling further, we find the TraceRecords section. This contains the information captured by APIM inbound policies and sent to Log Analytics. The figure below illustrates the TraceRecords data. In the inbound policy, we configured it to extract details from the access token—such as the token itself, username, scope, and roles—and forward them to Log Analytics. Now let's capture the access token in the clip board, launch the http://jwt.io which is JSON Web Token (JWT) debugger, and paste the access token in the ENCODED VALUE box as show below. Note the following information. aud: This shows the Application URI ID of apim-mcp-backend-api. which shows access token is requested for that audience. appid: This shows the client Id for copilot-studio-client app registration. You can also see roles and scope. These roles are specified in APIM inbound policy. Note: As you can see, roles are included in access token and if it is not assigned in the enterprise application for "apim-mcp-backend-api", all requests will be denied by APIM inbound policy configured earlier. Perform a test using another Azure AD account that does not have the app role assigned Now, let's try the copilot studio agent by logging in with another account which is not assigned for the "mcp.read" role. Let's, review the below diagram. Logged in as demo and tried to access the MCP tool in copilot studio agent. Request failed with the error "Missing required scope or roles". If you look at it, this is coming from the APIM policy configured earlier in <on-error> Let's review log analytics. As you can see request failed due to inbound APIM policy with 403 error and there is no backend URL. Error is also reported under TraceRecords as we configured it in APIM policy. Now copy the Access token from log analytics and paste it into jwt.io. You can notice in the below diagram, there is no "roles" in the access token, resulting access denied from APIM inbound policy definition to the APIM backend i.e. azure container app. Assign the app role to the demo account Let's assign the "mcp.read" role to the demo account and test if it accesses the tool. Visit Azure Portal, Lauch Enterprise application, and select "apim-mcp-backend-api" as in this example. Click "Users and groups" Click "+ Add user/group" Select demo Click "Select" Click "Assign" End result would look like as shown below. Now, login again as demo. Make sure a new access token is generated. Access token refresh happens after one hours. As you can see in the image below, this time the request is successful after assigning the "mcp.read" app roles. Now let's review the log analytics entries. Let's review the access token in JWT.io. As you can see, roles are included in the access token. Conclusion Exposing the MCP server through Azure API Management (APIM) and integrating it with Copilot Studio agents provides a secure and scalable way to extend enterprise capabilities. By implementing OAuth 2.0, you ensure robust authentication and authorization, protecting sensitive data and maintaining compliance with industry standards. Beyond security, APIM adds significant operational value. With APIM policies, you can monitor traffic, enforce rate limits, and apply fine-grained controls to manage access and performance effectively. This combination of security and governance empowers organizations to innovate confidently while maintaining control and visibility over API usage. In today’s enterprise landscape, leveraging APIM with OAuth 2.0 for MCP integration is not just best practice—it’s a strategic move toward building resilient, secure, and well-governed solutions.598Views1like0CommentsThe Future of AI: An Intern’s Adventure Turning Hours of Video into Minutes of Meaning
This blog post, part of The Future of AI series by Microsoft’s AI Futures team, follows an intern’s journey in developing AutoHighlight—a tool that transforms long-form video into concise, narrative-driven highlight reels. By combining Azure AI Content Understanding with OpenAI reasoning models, AutoHighlight bridges the gap between machine-detected moments and human storytelling. The post explores the challenges of video summarization, the technical architecture of the solution, and the lessons learned along the way.459Views0likes0CommentsUsing the Voice Live API in Azure AI Foundry
In this blog post, we’ll explore the Voice Live API from Azure AI Foundry. Officially released for general availability on October 1, 2025, this API unifies speech recognition, generative AI, and text-to-speech capabilities into a single, streamlined interface. It removes the complexity of manually orchestrating multiple components and ensures a consistent developer experience across all models, making it easy to switch and experiment. What sets Voice Live API apart are its advanced conversational enhancements, including: Semantic Voice Activity Detection (VAD) that’s robust against background noise and accurately detects when a user intends to speak. Semantic end-of-turn detection that supports natural pauses in conversation. Server-side audio processing features like noise suppression and echo cancellation, simplifying client-side development. Let’s get started. 1. Getting Started with Voice Live API The Voice Live API ships with an SDKthat lets you open a single realtime WebSocket connection and then do everything—stream microphone audio up, receive synthesized audio/text/function‑call events down— without writing any of the low-level networking plumbing. This is how the connection is opened with the Python SDK. from azure.ai.voicelive.aio import connect from azure.core.credentials import AzureKeyCredential async with connect( endpoint=VOICE_LIVE_ENDPOINT, # https://<your-foundry-resource>.cognitiveservices.azure.com/ credential=AzureKeyCredential(VOICE_LIVE_KEY), model="gpt-4o-realtime", connection_options={ "max_msg_size": 10 * 1024 * 1024, # allow streamed PCM "heartbeat": 20, # keep socket alive "timeout": 20, # network resilience }, ) as connection: Notice that you don't need an underlying deployment nor manage any generative AI models, as the API handles all the underlying infrastructure. Immediately after connecting, declare what kind of conversation you want. This is where you “teach” the session the model instructions, which voice to synthesize, what tool functions it may call, and how to detect speech turns: from azure.ai.voicelive.models import ( RequestSession, Modality, AzureStandardVoice, InputAudioFormat, OutputAudioFormat, AzureSemanticVad, ToolChoiceLiteral, AudioInputTranscriptionOptions ) session_config = RequestSession( modalities=[Modality.TEXT, Modality.AUDIO], instructions="Assist the user with account questions succinctly.", voice=AzureStandardVoice(name="alloy", type="azure-standard"), input_audio_format=InputAudioFormat.PCM16, output_audio_format=OutputAudioFormat.PCM16, turn_detection=AzureSemanticVad( threshold=0.5, prefix_padding_ms=300, silence_duration_ms=500 ), tools=[ # optional { "name": "get_user_information", "description": "Retrieve profile and limits for a user", "input_schema": { "type": "object", "properties": {"user_id": {"type": "string"}}, "required": ["user_id"] } } ], tool_choice=ToolChoiceLiteral.AUTO, input_audio_transcription=AudioInputTranscriptionOptions(model="whisper-1"), ) await connection.session.update(session=session_config) After session setup, it is pure event-driven flow: async for event in connection: if event.type == ServerEventType.RESPONSE_AUDIO_DELTA: playback_queue.put(event.delta) elif event.type == ServerEventType.CONVERSATION_ITEM_CREATED and event.item.type == ItemType.FUNCTION_CALL: handle_function_call(event) That’s the core: one connection, one session config message, then pure event-driven flow. 2. Deep Dive: Tool (Function) Handling in the Voice Live SDK In the Voice Live context, “tools” are model-invocable functions you expose with a JSON schema. The SDK streams a structured function call request (name + incrementally streamed arguments), you execute real code locally, then feed the JSON result back so the model can incorporate it into its next spoken (and/or textual) turn. Let’s unpack the full lifecycle. First, the model emits a CONVERSATION_ITEM_CREATED event whose item.type == FUNCTION_CALL if event.item.type == ItemType.FUNCTION_CALL: await self._handle_function_call_with_improved_pattern(event, connection) Arguments stream (possibly token-by-token) until the SDK signals RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE. Optionally, the SDK may also complete the “response” segment with RESPONSE_DONE before you run the tool. Then we execute the local Python function, and explicitly request a new model response via connection.response.create(), telling the model to incorporate the tool result into a natural-language (and audio) answer. async def _handle_function_call(self, created_evt, connection): call_item = created_evt.item # ResponseFunctionCallItem name = call_item.name call_id = call_item.call_id prev_id = call_item.id # 1. Wait until arguments are fully streamed args_done = await _wait_for_event( connection, {ServerEventType.RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE} ) assert args_done.call_id == call_id arguments = args_done.arguments # JSON string # 2. (Optional) Wait for RESPONSE_DONE to avoid race with model finishing segment await _wait_for_event(connection, {ServerEventType.RESPONSE_DONE}) # 3. Execute func = self.available_functions.get(name) if not func: # Optionally send an error function output return result = await func(arguments) # Implementations are async in this sample # 4. Send output output_item = FunctionCallOutputItem(call_id=call_id, output=json.dumps(result)) await connection.conversation.item.create( previous_item_id=prev_id, item=output_item ) # 5. Trigger follow-up model response await connection.response.create() 3. Sample App: Try the repo with sample app we have created, together with all the infrastructure required already automated. This sample app simulates a friendly real‑time contact‑center rep who can listen continuously, understand you as you speak, instantly look up things like your credit card’s upcoming due date or a product detail via function calls, and then answer back naturally in a Brazilian Portuguese neural voice with almost no lag. Behind the scenes it streams your microphone audio to Azure’s Voice Live (GPT‑4o realtime) model, transcribes and reasons on the fly, selectively triggers lightweight “get user information” or “get product information” lookups to Azure AI Search , and speaks responses right back to you. Happy Coding!316Views0likes0CommentsThe Future of AI: Horses for Courses - Task-Specific Models and Content Understanding
Task-specific models are designed to excel at specific use cases, offering highly specialized solutions that can be more efficient and cost-effective than general-purpose models. These models are optimized for particular tasks, resulting in faster performance and lower latency, and they often do not require prompt engineering or fine-tuning.1.3KViews2likes1CommentUnveiling the Next Generation of Table Structure Recognition
In an era where data is abundant, the ability to accurately and efficiently extract structured information like tables from diverse document types is critical. For instance, consider the complexities of a balance sheet with multiple types of assets or an invoice with various charges, both presented in a table format that can be challenging even for humans to interpret. Traditional parsing methods often struggle with the complexity and variability of real-world tables, leading to manual intervention and inefficient workflows. This is because these methods typically rely on rigid rules or predefined templates that fail when encountering variations in layout, formatting, or content, which are common in real-world documents. While the promise of Generative AI and Large Language Models (LLMs) in document understanding is vast, our research in table parsing has revealed a critical insight: for tasks requiring precision in data alignment, such as correctly associating data cells with their respective row and column headers, classical computer vision techniques currently offer superior performance. Generative AI models, despite their powerful contextual understanding, can sometimes exhibit inconsistencies and misalignments in tabular structures, leading to compromised data integrity (Figure 1). Therefore, Azure Document Intelligence (DI) and Content Understanding (CU) leverages an even more robust and proven computer vision algorithms to ensure the foundational accuracy and consistency that enterprises demand. Figure 1: Vision LLMs struggle to accurately recognize table structure, even in simple tables. Our current table recognizer excels at accurately identifying table structures, even those with complex layouts, rotations, or curved shapes. However, it does have its limitations. For example, it occasionally fails to properly delineate a table where the logical boundaries are not visible but must be inferred from the larger document context, making suboptimal inferences. Furthermore, its architectural design makes it challenging to accelerate on modern GPU platforms, impacting its runtime efficiency. Taking these limitations in considerations and building upon our existing foundation, we are introducing the latest advancement in our table structure recognizer. This new version significantly enhances both performance and accuracy, addressing key challenges in document processing. Precise Separation Line Placement We've made significant strides in the precision of separation line placement. While predicting these separation lines might seem deceptively simple, it comes with subtle yet significant challenges. In many real-world documents, these are logical separation lines, meaning they are not always visibly drawn on the page. Instead, their positions are often implied by an array of nuanced visual cues such as table headers/footers, dot filler text, background color changes, and even the spacing and alignment of content within the cells. Figure 2: Visual Comparison of separation line prediction of current and the new version We've developed a novel model architecture that can be trained end-to-end to directly tackle the above challenges. Recognizing the difficulty for humans to consistently label table separation lines, we've devised a training objective that combines Hungarian matching with an adaptive matching weight to correctly align predictions with ground truth even when the latter is noisy. Additionally, we've incorporated a loss function inspired by speech recognition to encourage the model to accurately predict the correct number of separation lines, further enhancing its performance. Our improved algorithms now respect visual cues more effectively, ensuring that separation lines are placed precisely where they belong. This leads to cleaner, more accurate table structures and ultimately, more reliable data extraction. Figure 2 shows the comparison between the current model and the new model on a few examples. Some quantitative results can be found in Table 1. TSR (current, in %) TSR-v2 (next-gen, in %) Segment Precision Recall F1-Score Precision Recall F1-score Latin 90.2 90.7 90.4 94.0 95.7 94.8 Chinese 96.1 95.3 95.7 97.3 96.8 97.0 Japanese 93.5 93.8 93.7 95.1 97.1 96.1 Korean 95.3 95.9 95.6 97.5 97.8 97.7 Table 1: Table structure accuracy measured by cell prediction precision and recall rates at IoU (intersection over union) threshold of 0.5. Tested on in-house test datasets covering four different scripts. A Data-Driven, GPU-Accelerated Design Another innovation in this release is its data-driven, fully GPU-accelerated design. This architectural shift delivers enhanced quality and significantly faster inference speeds, which is critical for processing large volumes of documents. The design carefully considers the trade-off between model capability and latency requirements, prioritizing an architecture that leverages the inherent parallelism of GPUs. This involves favoring highly parallelizable models over serial approaches to maximize GPU utilization. Furthermore, post-processing logic has been minimized to prevent it from becoming a bottleneck. This comprehensive approach has resulted in a drastic reduction in processing latency, from 250ms per image to less than 10ms. Fueling Robustness with Synthetic Data Achieving the high level of accuracy and robustness required for enterprise-grade table recognition demands vast quantities of high-quality training data. To meet this need efficiently, we've strategically incorporated synthetic data into our development pipeline. A few examples can be found in Figure 3. Figure 3: Synthesized tables Synthetic data offers significant advantages: it's cost-effective to generate and provides unparalleled control over the dataset. This allows us to rapidly synthesize diverse and specific table styles, including rare or challenging layouts, which would be difficult and expensive to collect from real-world documents. Crucially, synthetic data comes with perfectly consistent labels. Unlike human annotation, which can introduce variability, synthetic data ensures that our models learn from a flawlessly labeled ground truth, leading to more reliable and precise training outcomes. Summary This latest version of our table structure recognizer enhances critical document understanding capabilities. We've refined separation line placement to better respect visual cues and implied structures, supported by our synthetic data approach for consistent training. This enhancement, in turn, allows users to maintain the table structure as intended, reducing the need for manual post-processing to clean up the structured output. Additionally, a GPU-accelerated, data-driven design delivers both improved quality and faster performance, crucial for processing large document volumes.1.2KViews2likes3CommentsSeamlessly Integrating Azure Document Intelligence with Azure API Management (APIM)
Note: For multi-region deployments (e.g., doc-intel-1 in Region 1 and doc-intel-2 in Region 2), use this approach. For resources within the same region, this configuration is redundant. Instead, consolidate traffic into a single resource and, if required, raise a support ticket to request a higher TPS limit. In today’s data-driven world, organizations are increasingly turning to AI for document understanding. Whether it's extracting invoices, contracts, ID cards, or complex forms, Azure Document Intelligence (formerly known as Form Recognizer) provides a robust, AI-powered solution for automated document processing. But what happens when you want to scale, secure, and load balance your document intelligence backend for high availability and enterprise-grade integration? Enter Azure API Management (APIM) — your gateway to efficient, scalable API orchestration. In this blog, we’ll explore how to integrate Azure Document Intelligence with APIM using a load-balanced architecture that works seamlessly with the Document Intelligence SDK — without rewriting your application logic. Azure Doc Intelligence SDKs simplify working with long-running document analysis operations — particularly asynchronous calls — by handling the polling and response parsing under the hood. Why Use API Management with Document Intelligence? While the SDK is great for client-side development, APIM adds essential capabilities for enterprise-scale deployments: 🔐 Security & authentication at the gateway level ⚖️ Load balancing across multiple backend instances 🔁 Circuit breakers, caching, and retries 📊 Monitoring and analytics 🔄 Response rewriting and dynamic routing By routing all SDK and API calls through APIM, you get full control over traffic flow, visibility into usage patterns, and the ability to scale horizontally with multiple Document Intelligence backends. SDK Behavior with Document Intelligence When using the Document Intelligence SDK (e.g., begin_analyze_document), it follows this two-step pattern: POST request to initiate document analysis Polling (GET) request to the operation-location URL until results are ready This is an asynchronous pattern where the SDK expects a polling URL in the response of the POST. If you’re not careful, this polling can bypass APIM — which defeats the purpose of using APIM in the first place. So what do we do? The Smart Rewrite Strategy We use APIM to intercept and rewrite the response from the POST call. POST Flow SDK sends a POST to: https://apim-host/analyze APIM routes the request to one of the backend services: https://doc-intel-backend-1/analyze Backend responds with: operation-location: https://doc-intel-backend-1/operations/123 APIM rewrites this header before returning to the client: operation-location: https://apim-host/operations/poller?backend=doc-intel-backend-1 Now, the SDK will automatically poll APIM, not the backend directly. GET (Polling) Flow Path to be set as /operations/123 in GET operation of APIM SDK polls: https://apim-host/operations/123?backend=doc-intel-backend-1 APIM extracts the query parameter backend=doc-intel-backend-1 APIM dynamically sets the backend URL for this request to: https://doc-intel-backend-1 It forwards the request to: https://doc-intel-backend-1/operations/123 Backend sends the status/result back to APIM → which APIM returns to the SDK. All of this happens transparently to the SDK. Sample policies //Outbound policies for POST - /documentintelligence/documentModels/prebuilt-read:analyze //--------------------------------------------------------------------------------------------------- <!-- - Policies are applied in the order they appear. - Position <base/> inside a section to inherit policies from the outer scope. - Comments within policies are not preserved. --> <!-- Add policies as children to the <inbound>, <outbound>, <backend>, and <on-error> elements --> <policies> <!-- Throttle, authorize, validate, cache, or transform the requests --> <inbound> <base /> </inbound> <!-- Control if and how the requests are forwarded to services --> <backend> <base /> </backend> <!-- Customize the responses --> <outbound> <base /> <set-header name="operation-location" exists-action="override"> <value>@{ // Original operation-location from backend var originalOpLoc = context.Response.Headers.GetValueOrDefault("operation-location", ""); // Encode original URL to pass as query parameter var encoded = System.Net.WebUtility.UrlEncode(originalOpLoc); // Construct APIM URL pointing to poller endpoint with backendUrl var apimUrl = $"https://tstmdapim.azure-api.net/document-intelligent/poller?backendUrl={encoded}"; return apimUrl; }</value> </set-header> </outbound> <!-- Handle exceptions and customize error responses --> <on-error> <base /> </on-error> </policies> //Inbound policies for Get (Note: path for get should be modified - /document-intelligent/poller //---------------------------------------------------------------------------------------------- <!-- - Policies are applied in the order they appear. - Position <base/> inside a section to inherit policies from the outer scope. - Comments within policies are not preserved. --> <!-- Add policies as children to the <inbound>, <outbound>, <backend>, and <on-error> elements --> <policies> <!-- Throttle, authorize, validate, cache, or transform the requests --> <inbound> <base /> <choose> <when condition="@(context.Request.Url.Query.ContainsKey("backendUrl"))"> <set-variable name="decodedUrl" value="@{ var backendUrlEncoded = context.Request.Url.Query.GetValueOrDefault("backendUrl", ""); // Make sure to decode the URL properly, potentially multiple times if needed var decoded = System.Net.WebUtility.UrlDecode(backendUrlEncoded); // Check if it's still encoded and decode again if necessary while (decoded.Contains("%")) { decoded = System.Net.WebUtility.UrlDecode(decoded); } return decoded; }" /> <!-- Log the decoded URL for debugging remove if not needed--> <trace source="Decoded URL">@((string)context.Variables["decodedUrl"])</trace> <send-request mode="new" response-variable-name="backendResponse" timeout="30" ignore-error="false"> <set-url>@((string)context.Variables["decodedUrl"])</set-url> <set-method>GET</set-method> <authentication-managed-identity resource="https://cognitiveservices.azure.com/" /> </send-request> <return-response response-variable-name="backendResponse" /> </when> <otherwise> <return-response> <set-status code="400" reason="Missing backendUrl query parameter" /> <set-body>{"error": "Missing backendUrl query parameter."}</set-body> </return-response> </otherwise> </choose> </inbound> <!-- Control if and how the requests are forwarded to services --> <backend> <base /> </backend> <!-- Customize the responses --> <outbound> <base /> </outbound> <!-- Handle exceptions and customize error responses --> <on-error> <base /> </on-error> </policies> Load Balancing in APIM You can configure multiple backend services in APIM and use built-in load-balancing policies to: Distribute POST requests across multiple Document Intelligence instances Use custom headers or variables to control backend selection Handle failure scenarios with circuit-breakers and retries Reference: Azure API Management backends – Microsoft Learn Sample: Using APIM Circuit Breaker & Load Balancing – Microsoft Community Hub Conclusion By integrating Azure Document Intelligence with Azure API Management native capabilities like Load balancing, rewrite header, authentication, rate limiting policies, organizations can transform their document processing workflows into scalable, secure, and efficient systems.1.5KViews5likes17CommentsThe Future of AI: The paradigm shifts in Generative AI Operations
Dive into the transformative world of Generative AI Operations (GenAIOps) with Microsoft Azure. Discover how businesses are overcoming the challenges of deploying and scaling generative AI applications. Learn about the innovative tools and services Azure AI offers, and how they empower developers to create high-quality, scalable AI solutions. Explore the paradigm shift from MLOps to GenAIOps and see how continuous improvement practices ensure your AI applications remain cutting-edge. Join us on this journey to harness the full potential of generative AI and drive operational excellence.7.3KViews1like1Comment