azure ai search
14 TopicsThe Future of AI: Autonomous Agents for Identifying the Root Cause of Cloud Service Incidents
Discover how Microsoft is transforming cloud service incident management with autonomous AI agents. Learn how AI-enhanced troubleshooting guides and agentic workflows are reducing downtime and empowering on-call engineers.1.4KViews3likes0CommentsTransforming Customer Support with Azure OpenAI, Azure AI Services, and Voice AI Agents
Customer support today is under immense pressure to meet the rising expectations of speed, personalization, and always-on availability. Yet, businesses still struggle with 1. Long wait times and call center 2. queues 3. Disconnected support channels 4. Limited availability of agents outside business hours 5. Repetitive issues consuming valuable human time 6. Frustrated users due to lack of immediate and contextual answers These inefficiencies are costing businesses over $3.7 trillion annually in poor service delivery, while over 70% of agents (based on the research) spend excessive time searching for the right answers instead of resolving problems directly How Voice AI Agents Are Transforming the Support Experience Enter the era of voice-enabled AI agents—powered by Azure OpenAI, Azure AI Services, and ServiceNow—designed to completely transform the way customers engage with support systems. These agents can now: Handle complex user queries in natural language Access enterprise systems (like CRM, ITSM, HR) in real-time Automate repetitive tasks such as password resets, ticket status updates, or return tracking Escalate only when human assistance is truly needed Create connected, seamless, and intelligent support experiences across departments Let’s take a closer look at four architecture patterns that showcase how enterprises can deploy these agents effectively. 🔷 Architecture Pattern 1: Unified Voice Agent with Azure AI + ServiceNow + CRM Integration In this architecture, the customer support journey begins when a user initiates a voice-based conversation through a front-end interface such as a web application, mobile app, or smart device. The captured audio is streamed directly to Azure OpenAI GPT-4o's real-time API, which performs immediate speech-to-text transcription, interprets the intent behind the request, and prepares the initial system response—all in a single seamless stream. Once the user’s intent is understood (e.g., "create a ticket", "check incident status", or "list recent issues"), GPT-4o passes control to Semantic Kernel, which orchestrates the next steps through function calling. Semantic Kernel hosts pre-defined tools (functions) that map to ServiceNow API actions, such as createIncident, getIncidentStatus, listIncidents, or searchKnowledgeBase. These function calls are then securely routed to ServiceNow via REST APIs. ServiceNow executes the appropriate actions—whether it's creating a new support ticket, retrieving the status of an open incident, or searching its Knowledge Base. CRM data is also seamlessly accessed, if needed, to enrich responses with personalized context such as customer history or case metadata. The result from ServiceNow (e.g., an incident ID or KB article summary) is then sent back to Azure GPT-4o, which converts the structured data into a natural spoken response. This final audio output is delivered to the user in real time, completing the end-to-end conversational loop. Additionally, tools like Azure Monitor or Application Insights can be integrated to log telemetry, track usage trends, monitor latency, and analyze user satisfaction over time. This architecture enables organizations to streamline customer support operations, reduce wait times, and deliver natural, intelligent assistance across any channel—voice-first. 🔷 Architecture Pattern 2: Scalable Customer Support with Multi-Agent Voice Architecture This architecture introduces a modular and distributed agent-based design to deliver intelligent, scalable customer support through a voice interface. The process starts with the User Proxy Agent, which acts as the entry point for all user conversations. It captures voice input and forwards the request to the Master Agent, which serves as the brain of the architecture. The Master Agent, empowered with a large language model (LLM) and memory, interprets the intent behind the user's input and dynamically routes the request to the most appropriate domain-specific agent. These include specialized agents such as the Activation Agent, Root Agent, Sales Agent, or Technical Agent, each designed to handle specific workflows or business tasks. The Activation Agent connects to web services and handles provisioning or onboarding scenarios. The Root Agent taps into document search systems (like Azure Cognitive Search) to answer questions grounded in internal documentation. The Sales Agent is equipped with structured logic models (SLMs) and CRM access to retrieve sales-related data from backend databases. The Technical Agent is containerized via Docker and built to manage backend diagnostics, code-level issues, or infrastructure status—often connecting to systems like ServiceNow for real-time ITSM execution. Once the task is executed by the respective agent, results are passed back through the Master Agent and ultimately to the User Proxy Agent, which synthesizes the output into a voice response and delivers it to the user. The presence of shared memory between agents allows for maintaining context across multi-turn conversations, enabling complex, multi-step interactions (e.g., “Create a ticket, check the latest order status, and escalate it if unresolved.”) without breaking continuity. This architecture is ideal for enterprises looking to scale customer support horizontally, adding new agents without disrupting existing workflows. It enables parallelism, specialization, and real-time orchestration, providing faster resolutions while reducing the burden on human agents. Best suited for distributed support operations across IT, HR, sales, and field support—where task-specific intelligence and modular scale are critical. 🔷 Architecture Pattern 3: Customer Support Reinvented with Voice RAG + Azure AI + ServiceNow This architecture brings a cutting-edge twist to Retrieval-Augmented Generation (RAG) by enabling it through a Voice AI agent—creating a truly conversational experience grounded in enterprise knowledge. By combining Azure OpenAI models with the ServiceNow Knowledge Base, this pattern ensures accurate, voice-driven support for employees or customers in real time. The process begins when a user interacts with a voice-enabled interface—via phone, web, or embedded assistant. The Voice AI agent streams the audio to Azure OpenAI GPT-4o, which transcribes the voice input, understands the intent, and then triggers a RAG pipeline. Instead of relying solely on the model’s internal memory, the system performs a real-time query against the ServiceNow Product Knowledge Base, retrieving relevant knowledge articles, troubleshooting guides, or support workflows. These results are embedded directly into the prompt, creating an enriched context that is passed to the language model via Azure AI Foundry. The model then generates a natural, contextually accurate spoken response, which is converted back into audio and voiced to the user—creating a seamless end-to-end Voice RAG experience. This approach ensures that responses are not only conversational but also deeply grounded in trusted enterprise knowledge. Ideal for helpdesk automation, HR support, and IT troubleshooting—where users prefer speaking naturally and need verified, document-backed responses in real time. 🔷 Architecture Pattern 4: Conversational Customer Support with AI Avatars and Azure AI This architecture delivers rich, conversational experiences by integrating AI avatars, Azure AI, and ServiceNow to offer human-like, intelligent customer support across channels. It merges natural speech, facial expression, and enterprise data to create a highly engaging support assistant. The interaction begins when a user speaks with an AI avatar application, whether embedded in a web portal, mobile device, or kiosk. The voice is captured and processed through a speech-to-text pipeline, which feeds the Avatar Module and Live Discussions Engine to manage lip-sync, emotional tone, and turn-taking. Behind the scenes, the avatar is connected to Azure AI services, including Custom Neural Voice (CNV) and Azure OpenAI, which enable the avatar to understand intent and generate responses in natural, conversational language. Most critically, the system integrates directly with the ServiceNow platform. Through secure APIs, the avatar queries ServiceNow to: Retrieve case status updates Provide summaries of incident history Look up Knowledge Base articles Trigger incident creation if needed These ServiceNow results are then passed through the text-to-speech module, with support for multilingual voice synthesis, and rendered by the avatar using expressive animation. Responses are visually delivered as live or pre-rendered avatar videos, creating a truly interactive and personalized experience. This pattern not only answers basic questions but also surfaces dynamic enterprise data—turning the AI avatar into a frontline voice agent capable of real-time, connected support across IT, HR, or customer service domains. Best for branded digital experiences, frontline support stations, or HR/IT helpdesk automation where facial presence, empathy, and backend integration are essential. ✨ Closing Thoughts: The Future of Customer Support Is Here Customer expectations have evolved—and so must the way we deliver support. By combining the power of Azure OpenAI, Azure AI Services, and ServiceNow, we’re not just automating tasks—we’re reinventing how organizations connect with their users. Whether it's: A unified voice agent handling IT tickets and CRM queries, A multi-agent architecture scaling across departments, A voice-enabled RAG system delivering knowledge-grounded answers in real time, or A human-like AI avatar offering face-to-face support— These architectures are driving a new era of intelligent, conversational, and scalable customer service. 👉 Join us at the Microsoft Booth during ServiceNow Knowledge 2025 (starting May 6th) to experience these solutions live, explore the tech behind them, and imagine how they can transform your business. Let’s build the future of support—together.989Views1like1CommentThe Future of AI: Harnessing AI for E-commerce - personalized shopping agents
Explore the development of personalized shopping agents that enhance user experience by providing tailored product recommendations based on uploaded images. Leveraging Azure AI Foundry, these agents analyze images for apparel recognition and generate intelligent product recommendations, creating a seamless and intuitive shopping experience for retail customers.924Views5likes3CommentsProject Maria: Bringing Speech and Avatars Together for Next-Generation Customer Experiences
In an age where digital transformation influences nearly every aspect of business, companies are actively seeking innovative ways to differentiate their customer interactions. Traditional text-based chatbots, while helpful, often leave users wanting a more natural, personalized, and efficient experience. Imagine hosting a virtual brand ambassador—a digital twin of yourself or your organization’s spokesperson—capable of answering customer queries in real time with a lifelike voice and expressive 2D or 3D face. This is where Project Maria comes in. Project Maria is an internal Microsoft initiative that integrates cutting-edge speech-to-text (STT), text-to-speech (TTS), large language model and avatar technologies. Using Azure AI speech and custom neural voice models, it seeks to create immersive, personalized interactions for customers—reducing friction, increasing brand loyalty, and opening new business opportunities in areas such as customer support, product briefings, digital twins, live marketing events, safety briefings, and beyond. In this blog post, we will dive into: The Problem and Rationale for evolving beyond basic text-based solutions. Speech-to-Text (STT), Text-to-Speech (TTS) Pipelines, Azure OpenAI GPT-4o Real-Time API that power natural conversations. Avatar Models in Azure, including off-the-shelf 2D avatars and fully customized custom avatar Neural Voice Model Creation, from data gathering to training and deployment on Azure. Security and Compliance considerations for handling sensitive voice assets and data. Use Cases from customer support to digital brand ambassadors and safety briefings. Real-World Debut of Project Maria, showcased at the AI Leaders’ Summit in Seattle. Future Outlook on how custom avatar will reshape business interactions, scale presence, and streamline time-consuming tasks. If you’re developing or considering a neural (custom) voice + avatar models for your product or enterprise, this post will guide you through both conceptual and technical details to help you get started—and highlight where the field is heading next. 1. The Problem: Limitations of Text-Based Chatbots 1.1 Boredom and Fatigue in Text Interactions Text-based chatbots have come a long way, especially with the advent of powerful Large Language Models (LLMs) and Small Large Models (SLMs). Despite these innovations, interactions can still become tedious—often requiring users to spend significant personal time crafting the right questions. Many of us have experienced chatbots that respond with excessively verbose or repetitive messages, leading to boredom or even frustration. In industries that demand immediacy—like healthcare, finance, or real-time consumer support—purely text-based exchanges can feel slow and cumbersome. Moreover, text chat requires a user’s full attention to read and type, whether in a busy contact center environment or an internal knowledge base where employees juggle multiple tasks. 1.2 Desire for More Engaging and Efficient Modalities Today’s users expect something closer to human conversation. Devices ranging from smartphones to smart speakers and in-car infotainment systems have normalized voice-based interfaces. Adding an avatar—whether a 2D or 3D representation—deepens engagement by combining speech with a friendly visual persona. This can elevate brand identity: an avatar that looks, talks, and gestures like your company’s brand ambassador or a well-known subject-matter expert. 1.3 The Need for Scalability In a busy customer support environment, human representatives simply can’t handle an infinite volume of conversations or offer 24/7 coverage across multiple channels. Automation is essential, yet providing high-quality automated interactions remains challenging. While a text-based chatbot might handle routine queries, a voice-based, avatar-enabled agent can manage more complex requests with greater dynamism and personality. By giving your digital support assistant both a “face” and a voice aligned with your brand, you can foster deeper emotional connections and provide a more genuine, empathetic experience. This blend of automation and personalization scales your support operations, ensuring higher customer satisfaction while freeing human agents to focus on critical or specialized tasks. 2. The Vision: Project Maria’s Approach Project Maria addresses these challenges by creating a unified pipeline that supports: Speech-to-Text (STT) for recognizing user queries quickly and accurately. Natural Language Understanding (NLU) layers (potentially leveraging Azure OpenAI or other large language models) for comprehensive query interpretation. Text-to-Speech (TTS) that returns highly natural-sounding responses, possibly in multiple languages, with customized prosody and style. Avatar Rendering, which can be a 2D animated avatar or a more advanced 3D digital twin, bringing personality and facial expressions to the conversation. By using Azure AI Services—particularly the Speech and Custom Neural Voice offerings—can deliver brand-specific voices. This ensures that each brand or individual user’s avatar can match (or approximate) a signature voice, turning a run-of-the-mill voice assistant into a truly personal digital replicas 3. Technical Foundations 3.1 Speech-to-Text (STT) At the heart of the system is Azure AI Services for Speech, which provides: Real-time transcription capabilities with a variety of languages and dialects. Noise suppression, ensuring robust performance in busy environments. Streaming APIs, critical for real-time or near-real-time interactions. When a user speaks, audio data is captured (for example, via a web microphone feed or a phone line) and streamed to the Azure service. The recognized text is returned in segments, which the NLU or conversation manager can interpret. 3.1.1 Audio Pipeline Capture: The user’s microphone audio is captured by a front-end (e.g., a web app, mobile app, or IoT device). Pre-processing: Noise reduction or volume normalization might be applied locally or in the cloud, ensuring consistent input. Azure STT Ingestion: Data is sent to the Speech service endpoint, authenticated via subscription keys or tokens (more on security later). Result Handling: The recognized text arrives in partial hypotheses (partial transcripts) and final recognized segments. Project Maria (Custom Avatar) processes these results to understand user intent 3.2 Text-to-Speech (TTS) Once an intent is identified and a response is formulated, the system needs to deliver speech output. Standard Neural Voices: Microsoft provides a wide range of prebuilt voices in multiple languages. Custom Neural Voice: For an even more personalized experience, you can train a voice model that matches a brand spokesperson or a distinct voice identity. This is done using your custom datasets, ensuring the final system speaks exactly like the recorded persona. 3.2.1 Voice Font Selection and Configuration In a typical architecture: The conversation manager (which could be an orchestrator or a custom microservice) provides the text output to the TTS service. The TTS service uses a configured voice font—like en-US-JennyNeural or a custom neural voice ID (like Maria Neural Voice) if you have a specialized voice model. The synthesized audio is returned as an audio stream (e.g., PCM or MP3). You can play this in a webpage directly or in a native app environment. Azure OpenAI GPT-4o Real-Time API integrates with Azure's Speech Services to enable seamless interactions. First, your speech is transcribed in near real time. GPT-4o then processes this text to generate context-aware responses, which are converted to natural-sounding audio via Azure TTS. This audio is synchronized with avatar models to create a lifelike, engaging interface 3.3 Real-Time Conversational Loop Maria is designed for real-time or text to speech conversations. The user’s speech is continuously streamed to Azure STT. The recognized text triggers a real-time inference step for the next best action or response. The response is generated by Azure OpenAI model (like GPT-4o) or other LLM/SLM The text is then synthesized to speech, which the user hears with minimal latency. 3.4 Avatars: 2D and Beyond 3.4.1 Prebuilt Azure 2D Avatars Azure AI Speech Services includes an Avatar capability that can be activated to display a talking head or a 2D animated character. Developers can: Choose from prebuilt characters or import basic custom animations. Synchronize lip movements to the TTS output. Overlay brand-specific backgrounds or adopt transparency for embedding in various UIs. 3.4.2 Fully Custom Avatars (Customer Support Agent Like Maria) For organizations wanting a customer support agent, subject-matter expert, or brand ambassador: Capture: Record high-fidelity audio and video of the person you want to replicate. The more data, the better the outcome (though privacy and licensing must be considered). Modeling: Use advanced 3D or specialized 2D animation software (or partner with Microsoft’s custom avatar creation solutions) to generate a rigged model that matches the real person’s facial geometry and expressions. Integration: Once the model is rigged, it can be integrated with the TTS engine. As text is converted to speech, the avatar automatically animates lip shapes and facial expressions in near real time. 3.5 Latency and Bandwidth Considerations When building an interactive system, keep an eye on: Network latency: Real-time STT and TTS require stable, fast connections. Compute resources: If hosting advanced ML or high concurrency, scaling containers (e.g., via Docker and Kubernetes) is critical. Avatars: Real-time animation might require sending frames or instructions to a client’s browser or device. 4. Building the Model: Neural Voice Model Creation 4.1 Data Gathering To train a custom neural voice, you typically need: High-quality audio clips: Ideally recorded in a professional studio to minimize background noise, with the same microphone setup throughout. Matching transcripts for each clip. Minimum data duration: Microsoft recommends a certain threshold (e.g., 300+ utterances, typically around 30 minutes to a few hours of recorded speech, depending on the complexity of the final voice needed). 4.2 Training Process Data Upload: Use the Azure Speech portal or APIs to upload your curated dataset. Model Training: Azure runs training jobs that often require a few hours (or more). This step includes: Acoustic feature extraction (spectrogram analysis). Language or phoneme modeling for the relevant language and accent. Prosody tuning, ensuring the voice can handle various styles (cheerful, empathetic, urgent, etc.). Quality Checks: After training, you receive an initial voice model. You can generate test phrases to assess clarity, intonation, and overall quality. Iteration: If the voice quality is not satisfactory, you gather more data or refine the existing data (removing noisy segments or inaccurate transcripts). 4.3 Deployment Once satisfied with the custom neural voice: Deploy the model to an Azure endpoint within your subscription. Configure your TTS engine to use the custom endpoint ID instead of a standard voice. 5. Securing Avatar and Voice Models Security is paramount when personal data, brand identity, or intellectual property is on the line. 5.1 API Keys and Endpoints Azure AI Services requires an API key or an OAuth token to access STT/TTS features. Store keys in Azure Key Vault or as secure environment variables. Avoid hard-coding them in the front-end or source control. 5.2 Access Control Role-Based Access Control (RBAC) at both Azure subscription level and container (e.g., Docker or Kubernetes) level ensures only authorized personnel can deploy or manage the containers running these services. Network Security: Use private endpoints if you want to limit exposure to the public internet. 5.3 Intellectual Property Concerns Avatar and Voice Imitation: A avatar model and custom neural voice that mimics a specific individual must be authorized by that individual. Azure has a verification process in place to ensure consent. Data Storage: The training audio data and transcripts must be securely stored, often with encryption at rest and in transit. 6. Use Cases: Bringing It All Together 6.1 Customer Support A digital avatar that greets users on a website or mobile app can handle first-level queries: “Where can I find my billing information?” “What is your return policy?” By speaking these answers aloud with a friendly face and voice, the experience is more memorable and can reduce queue times for human agents. If the question is too complex, the avatar can seamlessly hand off to a live agent. Meanwhile, transcripts of the entire conversation are stored (e.g., in Azure Cosmos DB), enabling data analytics and further improvements to the system. 6.2 Safety Briefings and Public Announcements Industries like manufacturing, aviation, or construction must repeatedly deliver consistent safety messages. A personal avatar can recite crucial safety protocols in multiple languages, ensuring nothing is lost in translation. Because the TTS voice is consistent, workers become accustomed to the avatar’s instructions. Over time, you could even create a brand or site-specific “Safety Officer” avatar that fosters familiarity. 6.3 Digital Twins at Live Events Suppose you want your company’s spokesperson to simultaneously appear at multiple events across the globe. With a digital twin: The spokesperson’s avatar and voice “present” in real time, responding to local audience questions. This can be done in multiple languages, bridging communication barriers instantaneously. Attendees get a sense of personal interaction, while the real spokesperson can focus on core tasks, or appear physically at another event entirely. 6.4 AI Training and Education In e-learning platforms, a digital tutor can guide students through lessons, answer questions in real time, and adapt the tone of voice based on the difficulty of the topic or the student’s performance. By offering a face and voice, the tutor becomes more engaging than a text-only system. 7. Debut: Maria at the AI Leaders Summit in Seattle Project Maria had its first major showcase at the AI Leaders Summit in Seattle last week. We set up a live demonstration: Live Conversations: Attendees approached a large screen that displayed Maria’s 2D avatar. On-the-Fly: Maria recognized queries with STT, generated text responses from an internal knowledge base (powered by GPT-4o or domain-specific models), then spoke them back with a custom Azure neural voice. Interactive: The avatar lip-synced to the output speech, included animated gestures for emphasis, and even displayed text-based subtitles for clarity. The response was overwhelmingly positive. Customers praised the fluid voice quality and the lifelike nature of Maria’s avatar. Many commented that they felt they were interacting with a real brand ambassador, especially because the chosen custom neural voice had just the right inflections and emotional range. 8. Technical Implementation Details Below is a high-level architecture of how Project Maria might be deployed using containers and Azure resources. Front-End Web App: Built with a modern JavaScript framework (React, Vue, Angular, etc.). Captures user audio through the browser’s WebRTC or MediaStream APIs. Connects via WebSockets or RESTful endpoints for STT requests. Renders the avatar in a <canvas> element or using a specialized avatar library. Backend: Containerized with Docker. Exposes endpoints for STT streaming (optionally passing data directly to Azure for transcription). Integrates with the TTS service, retrieving synthesized audio buffers. Returns the audio back to the front-end in a continuous stream for immediate playback. Avatar Integration: The back-end or a specialized service handles lip-sync generation (e.g., via phoneme mapping from the TTS output). The front-end renders the 2D or 3D avatar in sync with the audio playback. This can be done by streaming timing markers that indicate which phoneme is currently active. Data and Conversation Storage: Use an Azure Cosmos DB or a similar NoSQL solution to store transcripts, user IDs, timestamps, and optional metadata (e.g., conversation sentiment). This data can later be used to improve the conversation model, evaluate performance, or train advanced analytics solutions. Security: All sensitive environment variables (like Azure API keys) are loaded securely, either through Azure Key Vault or container orchestration secrets. The system enforces user authentication if needed. For instance, an internal HR system might restrict the avatar-based service to employees only. Scaling: Deploy containers in Azure Kubernetes Service (AKS), setting up auto-scaling to handle peak loads. Monitor CPU/memory usage, as well as TTS quota usage. For STT, ensure the service tier can handle simultaneous requests from multiple users. 9. Securing Avatar Models and Voice Data 9.1 Identity Management Each avatar or custom neural voice is tied to a specific subscription. Using Azure Active Directory (Azure AD), you can give fine-grained permissions so that only authorized DevOps or AI specialists can alter or redeploy the voice. 9.2 API Gateways and Firewalls For enterprise contexts, you might place an API Gateway in front of your containerized services. This central gateway can: Inspect requests for anomalies, Enforce rate-limits, Log traffic to meet compliance or auditing requirements. 9.3 Key Rotation and Secrets Management Frequently rotates keys to minimize the risk of compromised credentials. Tools like Azure Key Vault or GitHub’s secret storage features can automate the rotation process, ensuring minimal downtime. 10. The Path Forward: Scaling Custom Avatar 10.1 Extended Personalization While Project Maria currently focuses on voice and basic facial expressions, future expansions include: Emotion Synthesis: Beyond standard TTS expressions (friendly, sad, excited), we can integrate emotional AI to dynamically adjust the avatar’s tone based on user sentiment. Gesture Libraries: 2D or 3D avatars can incorporate hand gestures, posture changes, or background movements to mimic a real person in conversation. This reduces the “uncanny valley” effect. 10.2 Multilingual, Multimodal As businesses operate globally, multilingual interactions become paramount. We have seen many use cases to: Auto-detect language from a user’s speech and respond in kind. Offer real-time translation, bridging non-English speakers to brand content. 10.3 Agent Autonomy Systems like Maria won’t just respond to direct questions; they can initiate proactivity: Send voice-based notifications or warnings when critical events happen. Manage long-running tasks such as scheduling or triaging user requests, akin to an “executive assistant” for multiple users simultaneously. 10.4 Ethical and Social Considerations With near-perfect replicas of voices, there is a growing concern about identity theft, misinformation, and deepfakes. Companies implementing digital twins must: Secure explicit consent from individuals. Implement watermarking or authentication for voice data. Educate customers and employees on usage boundaries and disclaimers 11. Conclusion Project Maria represents a significant leap in how businesses and organizations can scale their presence, offering a humanized, voice-enabled digital experience. By merging speech-to-text, text-to-speech, and avatar technologies, you can: Boost Engagement: A friendly face and familiar voice can reduce user fatigue and build emotional resonance. Extend Brand Reach: Appear in many locations at once via digital twins, creating personalized interactions at scale. Streamline Operations: Automate repetitive queries while maintaining a human touch, freeing up valuable employee time. Ensure Security and Compliance: By using Azure’s robust ecosystem of services and best practices for voice data. As demonstrated at the AI Leaders Summit in Seattle, Maria is already reshaping how businesses think about communication. The synergy of avatars, neural voices, and secure, cloud-based AI is paving the way for the next frontier in customer interaction. Looking ahead, we anticipate that digital twins—like Maria—will become ubiquitous, automating not just chat responses but a wide range of tasks that once demanded human presence. From personalized marketing to advanced training scenarios, the possibilities are vast. In short, the fusion of STT, TTS, and avatar technologies is more than a novel gimmick; it is an evolution in human-computer interaction. By investing in robust pipelines, custom neural voice training, and carefully orchestrated containerized deployments, businesses can unlock extraordinary potential. Project Maria is our blueprint for how to do it right—secure, customizable, and scalable—helping organizations around the world transform user experiences in ways that are both convenient and captivating. If you’re looking to scale your brand, innovate in human-machine dialogues, or harness the power of digital twins, we encourage you to explore Azure AI Services’ STT, TTS, and Avatar solutions. Together, these advancements promise a future where your digital self (or brand persona) can meaningfully interact with users anytime, anywhere. Detailed Technical Implementation:- https://learn.microsoft.com/en-us/azure/ai-services/speech-service/text-to-speech-avatar/what-is-custom-text-to-speech-avatar Text to Speech with Multi-Agent Orchestration Framework:- https://github.com/ganachan/Project_Maria_Accelerator_tts Contoso_Maria_Greetings.mp41.1KViews1like1CommentThe Future of AI: Reduce AI Provisioning Effort - Jumpstart your solutions with AI App Templates
In the previous post, we introduced Contoso Chat – an open-source RAG-based retail chat sample for Azure AI Foundry, that serves as both an AI App template (for builders) and the basis for a hands-on workshop (for learners). And we briefly talked about five stages in the developer workflow (provision, setup, ideate, evaluate, deploy) that take them from the initial prompt to a deployed product. But how can that sample help you build your app? The answer lies in developer tools and AI App templates that jumpstart productivity by giving you a fast start and a solid foundation to build on. In this post, we answer that question with a closer look at Azure AI App templates - what they are, and how we can jumpstart our productivity with a reuse-and-extend approach that builds on open-source samples for core application architectures.408Views0likes0CommentsThe Future Of AI: Deconstructing Contoso Chat - Learning GenAIOps in practice
How can AI engineers build applied knowledge for GenAIOps practices? By deconstructing working samples! In this multi-part series, we deconstruct Contoso Chat (a RAG-based retail copilot sample) and use it to learn the tools and workflows to streamline out end-to-end developer journey using Azure AI Foundry.792Views0likes0CommentsThe Future of AI: The paradigm shifts in Generative AI Operations
Dive into the transformative world of Generative AI Operations (GenAIOps) with Microsoft Azure. Discover how businesses are overcoming the challenges of deploying and scaling generative AI applications. Learn about the innovative tools and services Azure AI offers, and how they empower developers to create high-quality, scalable AI solutions. Explore the paradigm shift from MLOps to GenAIOps and see how continuous improvement practices ensure your AI applications remain cutting-edge. Join us on this journey to harness the full potential of generative AI and drive operational excellence.7KViews1like1CommentGenAI Solutions: Elevating Production Apps Performance Through Latency Optimization
As the influence of GenAI-based applications continues to expand, the critical need to enhance their performance becomes ever more apparent. In the realm of production applications, responses are expected within a range of milliseconds to seconds. The integration of Large Language Models (LLMs) has the potential to extend response times of such applications to few more seconds. This blog intricately explores diverse strategies aimed at optimizing response times in applications that harness Large Language Models on the Azure platform. In broad context, the subsequent methodologies can be employed to optimize the responsiveness of Generative Artificial Intelligence (GenAI) applications: Response Optimization of LLM models Designing an Efficient Workflow orchestration Improving Latency in Ancillary AI Services Response Optimization of LLM models The inherent complexity and size of Language Model (LLM) architectures contribute substantially to the latency observed in any application upon their integration. Therefore, prioritizing the optimization of LLM responsiveness becomes imperative. Let’s now explore various strategies aimed at enhancing the responsiveness of LLM applications, placing particular emphasis on the optimization of the Large Language Model itself. Key factors influencing the latency of LLMs are Prompt Size and Output token count A token is a unit of text that the model processes. It can be as short as one character or as long as one word, depending on the model's architecture. For example, in the sentence "ChatGPT is amazing," there are five tokens: ["Chat", "G", "PT", " is", " amazing"]. Each word or sub-word is considered a token, and the model analyses and generates text based on these units. A helpful rule of thumb is that one token corresponds to ~4 characters of text for common English text. This translates to ¾ of a word (so 100 tokens ~= 75 words). A deployment of the GPT-3.5-turbo instance on Azure comes with a rate limit of around 120,000 tokens per minute, equivalent to approximately 2,000 tokens per second ( Details of TPM limits of each Azure OpenAI model are given here . It is evident that the quantity of output tokens has a direct impact on the response of Large Language Models (LLMs), consequently influencing the application's responsiveness. To Optimize application response times, it is recommended to minimize the number of output tokens generated. Set an appropriate value for the max_tokens parameter to limit the response length. This can help in controlling the length of the generated output. The latency of LLMs is influenced not only by the output tokens but also by the input prompts. Input prompts can be categorized into two main types: Instructions, which serve as guidelines for LLMs to follow, and Information, providing a summary or context for the grounded data to be processed by LLMs. While instructions are typically of standard lengths and crucial for prompt construction, but the inclusion of multiple tasks may lead to varied instructions, and ultimately increasing the overall prompt size. It is advisable to limit prompts to a maximum of one or two tasks to manage prompt size effectively. Additionally, the information or content can be condensed or summarized to optimize the overall prompt length. Model size The size of the LLMs is typically measured in terms of its parameters. A simple neural network with just one hidden layer has a parameter for each connection between nodes (neurons) across layers and for each node’s bias. The more layers and nodes a model have, the more parameters it will contain. A larger parameter size usually translates into a more complex model that can capture intricate patterns in the data. Applications frequently utilize Large Language Models (LLMs) for various tasks such as classification, keyword extraction, reasoning, and summarization. It is crucial to choose the appropriate model for the specific task at hand. Smaller models like Davinci are well-suited for tasks like classification or key value extraction, offering enhanced accuracy and speed compared to larger models. On the other hand, large models are more suitable for complex use cases like summarization, reasoning and chat conversations. Selecting the right model tailored to the task optimizes both efficiency and performance. Leverage Azure-hosted LLM Models Azure AI Studio provides customers with cutting-edge language models like OpenAI's GPT-4, GPT-3, Codex, DALL-E, and Whisper models, and other open-source models all backed by the security, scalability, and enterprise assurances of Microsoft Azure. The OpenAI models are co-developed by Azure OpenAI and OpenAI, ensuring seamless compatibility and a smooth transition between the different models. By opting for Azure OpenAI, customers not only benefit from the security features inherent to Microsoft Azure but also run on the same models employed by OpenAI. This service offers additional advantages such as private networking, regional availability, scalability, and responsible AI content filtering, enhancing the overall experience and reliability of language AI applications. If anyone is using GenAI models from creators, the transition to Azure-hosted version of these Models has yielded notable enhancements in the response time of the models. This shift to Azure infrastructure has led to improved efficiency and performance, resulting in more responsive and timely outputs from the models. Rate Limiting, Batching, Parallelize API calls Large language models are subject to rate limits, such as RPM (requests per minute) and TPM (tokens per minute), which depend on the chosen model and platform. It is important to recognize that rate limiting can introduce latency into the application. To accommodate high traffic requirements, it is recommended to select the maximum value for the max_token parameter to prevent any occurrence of a 429 error, which can lead to subsequent latency issues. Additionally, it is advisable to implement retry logic in your application to further enhance its resilience. Effectively managing the balance between RPM and TPM allows for enhanced latency through strategies like batching or parallelizing API calls. When you find yourself reaching the upper limit of RPM but remain comfortably within TPM bounds, consolidating multiple requests into a single batch can optimize your response times. This batching approach enables more efficient utilization of the model's token capacity without violating rate limits. Moreover, if your application involves multiple calls to the LLMs API, you can achieve a notable speed boost by adopting an asynchronous programming approach that allows requests to be made in parallel. This concurrent execution minimizes idle time, enhancing overall responsiveness and making the most of available resources. If the parameters are already optimized and the application requires additional support for higher traffic and a more scalable approach, consider implementing a load balancing solution through Azure API Management layer. Stream output and use stop sequence Every LLM endpoint has a particular throughput capacity. As discussed, earlier GPT-3.5-turbo instance on Azure comes with a rate limit of 120,000 tokens per minute, equivalent to approximately 2 tokens per milliseconds. So, to get an output paragraph with 2000 tokens it takes 1 second and the time taken to get the output response increases as the number of tokens increase. The time taken for the output response (Latency) can be measured as the sum of time taken for the first token generation and the time taken per token from the first token onwards. That is Latency = (Time to first token + (Time taken per token * Total tokens)) So, to improve latency we can stream the output as every token gets generated instead of waiting for the entire paragraph to finish. Both the completions and chat Azure OpenAI APIs support a stream parameter, which when set to true, streams the response back from the model via Server Sevent Events (SSE). We can use Azure Functions with FastAPI to stream the output of OpenAI models in Azure as shown in the blog here. Designing an Efficient Workflow orchestration Incorporating GenAI solutions into applications requires the utilization of specialized frameworks like LangChain or Semantic Kernel. These frameworks play a crucial role in orchestrating multiple Large Language Model (LLM) based tasks and grounding these models on custom datasets. However, it's essential to address the latency introduced by these frameworks in the overall application response. To minimize the impact on application latency, a strategic approach is imperative. A highly effective strategy involves optimizing LLM usage through workflow consolidation, either by minimizing the frequency of calls to LLM APIs or simplifying the overall workflow steps. By streamlining the process, you not only enhance the overall efficiency but also ensure a smoother user experience. For example, when the requirement is to identify the intention of the user query and based on its context get response by grounding on data from multiple sources. Most times such requirements are executed as a 3-step process – the first step is to identify the intent using a LLM and the next step is to get the prompt content from the knowledge base relevant to the intent and then with the prompt content get the output derived from the LLMs. One simple approach could be to leverage data engineering and building a consolidated knowledge base with data from all sources and using the input user text directly as the prompt to the grounded data in knowledge base to get the final LLM response in almost a single step. Improving Latency in Ancillary AI Services The supporting AI services like Vector DB, Azure AI Search, data pipelines, and others that complement a Language Model (LLM)-based application within the overall Retrieval-Augmented Generation (RAG) pattern are often referred to as "ancillary AI services." These services play a crucial role in enhancing different aspects of the application, such as data ingestion, searching, and processing, to create a comprehensive and efficient AI ecosystem. For instance, in scenarios where data ingestion plays a substantial role, optimizing the ingestion process becomes paramount to minimize latency in the application. Similarly lets look at the improvement of few other such services – Azure AI search Here are some tips for better performance in Azure AI Search: Index size and schema: Queries run faster on smaller indexes. One best practice is to periodically revisit index composition, both schema and documents, to look for content reduction opportunities. Schema complexity can also adversely affect indexing and query performance. Excessive field attribution builds in limitations and processing requirements. Query design: Query composition and complexity are one of the most important factors for performance, and query optimization can drastically improve performance. Service capacity: A service is overburdened when queries take too long or when the service starts dropping requests. To avoid this, you can increase capacity by adding replicas or upgrading the service tier. For more information on the optimizations of Azure AI Search index please refer here . For optimizing third-party vector databases, consider exploring techniques such as vector indexing, Approximate Nearest Neighbor (ANN) search (instead of KNN), optimizing data distribution, implementing parallel processing, and incorporating load balancing strategies. These approaches enhance scalability and improve overall performance significantly. Conclusion In conclusion, these strategies contribute significantly to mitigating latency and enhancing response in large language models. However, given the inherent complexity of these models, the optimal response time can fluctuate between milliseconds and 3-4 seconds. It is crucial to recognize that comparing the response expectations of large language models to those of traditional applications, which typically operate in milliseconds, may not be entirely equitable.5.9KViews5likes1Comment