application modernization
93 TopicsAn AI led SDLC: Building an End-to-End Agentic Software Development Lifecycle with Azure and GitHub.
This is due to the inevitable move towards fully agentic, end-to-end SDLCs. We may not yet be at a point where software engineers are managing fleets of agents creating the billion-dollar AI abstraction layer, but (as I will evidence in this article) we are certainly on the precipice of such a world. Before we dive into the reality of agentic development today, let me examine two very different modules from university and their relevance in an AI-first development environment. Manual Requirements Translation. At university I dedicated two whole years to a unit called “Systems Design”. This was one of my favourite units, primarily focused on requirements translation. Often, I would receive a scenario between “The Proprietor” and “The Proprietor’s wife”, who seemed to be in a never-ending cycle of new product ideas. These tasks would be analysed, broken down, manually refined, and then mapped to some kind of early-stage application architecture (potentially some pseudo-code and a UML diagram or two). The big intellectual effort in this exercise was taking human intention and turning it into something tangible to build from (BA’s). Today, by the time I have opened Notepad and started to decipher requirements, an agent can already have created a comprehensive list, a service blueprint, and a code scaffold to start the process (*cough* spec-kit *cough*). Manual debugging. Need I say any more? Old-school debugging with print()’s and breakpoints is dead. I spent countless hours learning to debug in a classroom and then later with my own software, stepping through execution line by line, reading through logs, and understanding what to look for; where correlation did and didn’t mean causation. I think back to my year at IBM as a fresh-faced intern in a cloud engineering team, where around 50% of my time was debugging different issues until it was sufficiently “narrowed down”, and then reading countless Stack Overflow posts figuring out the actual change I would need to make to a PowerShell script or Jenkins pipeline. Already in Azure, with the emergence of SRE agents, that debug process looks entirely different. The debug process for software even more so… #terminallastcommand WHY IS THIS NOT RUNNING? #terminallastcommand Review these logs and surface errors relating to XYZ. As I said: breakpoints are dead, for now at least. Caveat – Is this a good thing? One more deviation from the main core of the article if you would be so kind (if you are not as kind skip to the implementation walkthrough below). Is this actually a good thing? Is a software engineering degree now worthless? What if I love printf()? I don’t know is my answer today, at the start of 2026. Two things worry me: one theoretical and one very real. To start with the theoretical: today AI takes a significant amount of the “donkey work” away from developers. How does this impact cognitive load at both ends of the spectrum? The list that “donkey work” encapsulates is certainly growing. As a result, on one end of the spectrum humans are left with the complicated parts yet to be within an agent’s remit. This could have quite an impact on our ability to perform tasks. If we are constantly dealing with the complex and advanced, when do we have time to re-root ourselves in the foundations? Will we see an increase in developer burnout? How do technical people perform without the mundane or routine tasks? I often hear people who have been in the industry for years discuss how simple infrastructure, computing, development, etc. were 20 years ago, almost with a longing to return to a world where today’s zero trust, globally replicated architectures are a twinkle in an architect’s eye. Is constantly working on only the most complex problems a good thing? At the other end of the spectrum, what if the performance of AI tooling and agents outperforms our wildest expectations? Suddenly, AI tools and agents are picking up more and more of today’s complicated and advanced tasks. Will developers, architects, and organisations lose some ability to innovate? Fundamentally, we are not talking about artificial general intelligence when we say AI; we are talking about incredibly complex predictive models that can augment the existing ideas they are built upon but are not, in themselves, innovators. Put simply, in the words of Scott Hanselman: “Spicy auto-complete”. Does increased reliance on these agents in more and more of our business processes remove the opportunity for innovative ideas? For example, if agents were football managers, would we ever have graduated from Neil Warnock and Mick McCarthy football to Pep? Would every agent just augment a ‘lump it long and hope’ approach? We hear about learning loops, but can these learning loops evolve into “innovation loops?” Past the theoretical and the game of 20 questions, the very real concern I have is off the back of some data shared recently on Stack Overflow traffic. We can see in the diagram below that Stack Overflow traffic has dipped significantly since the release of GitHub Copilot in October 2021, and as the product has matured that trend has only accelerated. Data from 12 months ago suggests that Stack Overflow has lost 77% of new questions compared to 2022… Stack Overflow democratises access to problem-solving (I have to be careful not to talk in past tense here), but I will admit I cannot remember the last time I was reviewing Stack Overflow or furiously searching through solutions that are vaguely similar to my own issue. This causes some concern over the data available in the future to train models. Today, models can be grounded in real, tested scenarios built by developers in anger. What happens with this question drop when API schemas change, when the technology built for today is old and deprecated, and the dataset is stale and never returning to its peak? How do we mitigate this impact? There is potential for some closed-loop type continuous improvement in the future, but do we think this is a scalable solution? I am unsure. So, back to the question: “Is this a good thing?”. It’s great today; the long-term impacts are yet to be seen. If we think that AGI may never be achieved, or is at least a very distant horizon, then understanding the foundations of your technical discipline is still incredibly important. Developers will not only be the managers of their fleet of agents, but also the janitors mopping up the mess when there is an accident (albeit likely mopping with AI-augmented tooling). An AI First SDLC Today – The Reality Enough reflection and nostalgia (I don’t think that’s why you clicked the article), let’s start building something. For the rest of this article I will be building an AI-led, agent-powered software development lifecycle. The example I will be building is an AI-generated weather dashboard. It’s a simple example, but if agents can generate, test, deploy, observe, and evolve this application, it proves that today, and into the future, the process can likely scale to more complex domains. Let’s start with the entry point. The problem statement that we will build from. “As a user I want to view real time weather data for my city so that I can plan my day.” We will use this as the single input for our AI led SDLC. This is what we will pass to promptkit and watch our app and subsequent features built in front of our eyes. The goal is that we will: - Spec-kit to get going and move from textual idea to requirements and scaffold. - Use a coding agent to implement our plan. - A Quality agent to assess the output and quality of the code. - GitHub Actions that not only host the agents (Abstracted) but also handle the build and deployment. - An SRE agent proactively monitoring and opening issues automatically. The end to end flow that we will review through this article is the following: Step 1: Spec-driven development - Spec First, Code Second A big piece of realising an AI-led SDLC today relies on spec-driven development (SDD). One of the best summaries for SDD that I have seen is: “Version control for your thinking”. Instead of huge specs that are stale and buried in a knowledge repository somewhere, SDD looks to make them a first-class citizen within the SDLC. Architectural decisions, business logic, and intent can be captured and versioned as a product evolves; an executable artefact that evolves with the project. In 2025, GitHub released the open-source Spec Kit: a tool that enables the goal of placing a specification at the centre of the engineering process. Specs drive the implementation, checklists, and task breakdowns, steering an agent towards the end goal. This article from GitHub does a great job explaining the basics, so if you’d like to learn more it’s a great place to start (https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/). In short, Spec Kit generates requirements, a plan, and tasks to guide a coding agent through an iterative, structured development process. Through the Spec Kit constitution, organisational standards and tech-stack preferences are adhered to throughout each change. I did notice one (likely intentional) gap in functionality that would cement Spec Kit’s role in an autonomous SDLC. That gap is that the implement stage is designed to run within an IDE or client coding agent. You can now, in the IDE, toggle between task implementation locally or with an agent in the cloud. That is great but again it still requires you to drive through the IDE. Thinking about this in the context of an AI-led SDLC (where we are pushing tasks from Spec Kit to a coding agent outside of my own desktop), it was clear that a bridge was needed. As a result, I used Spec Kit to create the Spec-to-issue tool. This allows us to take the tasks and plan generated by Spec Kit, parse the important parts, and automatically create a GitHub issue, with the option to auto-assign the coding agent. From the perspective of an autonomous AI-led SDLC, Speckit really is the entry point that triggers the flow. How Speckit is surfaced to users will vary depending on the organisation and the context of the users. For the rest of this demo I use Spec Kit to create a weather app calling out to the OpenWeather API, and then add additional features with new specs. With one simple prompt of “/promptkit.specify “Application feature/idea/change” I suddenly had a really clear breakdown of the tasks and plan required to get to my desired end state while respecting the context and preferences I had previously set in my Spec Kit constitution. I had mentioned a desire for test driven development, that I required certain coverage and that all solutions were to be Azure Native. The real benefit here compared to prompting directly into the coding agent is that the breakdown of one large task into individual measurable small components that are clear and methodical improves the coding agents ability to perform them by a considerable degree. We can see an example below of not just creating a whole application but another spec to iterate on an existing application and add a feature. We can see the result of the spec creation, the issue in our github repo and most importantly for the next step, our coding agent, GitHub CoPilot has been assigned automatically. Step 2: GitHub Coding Agent - Iterative, autonomous software creation Talking of coding agents, GitHub Copilot’s coding agent is an autonom ous agent in GitHub that can take a scoped development task and work on it in the background using the repository’s context. It can make code changes and produce concrete outputs like commits and pull requests for a developer to review. The developer stays in control by reviewing, requesting changes, or taking over at any point. This does the heavy lifting in our AI-led SDLC. We have already seen great success with customers who have adopted the coding agent when it comes to carrying out menial tasks to save developers time. These coding agents can work in parallel to human developers and with each other. In our example we see that the coding agent creates a new branch for its changes, and creates a PR which it starts working on as it ticks off the various tasks generated in our spec. One huge positive of the coding agent that sets it apart from other similar solutions is the transparency in decision-making and actions taken. The monitoring and observability built directly into the feature means that the agent’s “thinking” is easily visible: the iterations and steps being taken can be viewed in full sequence in the Agents tab. Furthermore, the action that the agent is running is also transparently available to view in the Actions tab, meaning problems can be assessed very quickly. Once the coding agent is finished, it has run the required tests and, even in the case of a UI change, goes as far as calling the Playwright MCP server and screenshotting the change to showcase in the PR. We are then asked to review the change. In this demo, I also created a GitHub Action that is triggered when a PR review is requested: it creates the required resources in Azure and surfaces the (in this case) Azure Container Apps revision URL, making it even smoother for the human in the loop to evaluate the changes. Just like any normal PR, if changes are required comments can be left; when they are, the coding agent can pick them up and action what is needed. It’s also worth noting that for any manual intervention here, use of GitHub Codespaces would work very well to make minor changes or perform testing on an agent’s branch. We can even see the unit tests that have been specified in our spec how been executed by our coding agent. The pattern used here (Spec Kit -> coding agent) overcomes one of the biggest challenges we see with the coding agent. Unlike an IDE-based coding agent, the GitHub.com coding agent is left to its own iterations and implementation without input until the PR review. This can lead to subpar performance, especially compared to IDE agents which have constant input and interruption. The concise and considered breakdown generated from Spec Kit provides the structure and foundation for the agent to execute on; very little is left to interpretation for the coding agent. Step 3: GitHub Code Quality Review (Human in the loop with agent assistance.) GitHub Code Quality is a feature (currently in preview) that proactively identifies code quality risks and opportunities for enhancement both in PRs and through repository scans. These are surfaced within a PR and also in repo-level scoreboards. This means that PRs can now extend existing static code analysis: Copilot can action CodeQL, PMD, and ESLint scanning on top of the new, in-context code quality findings and autofixes. Furthermore, we receive a summary of the actual changes made. This can be used to assist the human in the loop in understanding what changes have been made and whether enhancements or improvements are required. Thinking about this in the context of review coverage, one of the challenges sometimes in already-lean development teams is the time to give proper credence to PRs. Now, with AI-assisted quality scanning, we can be more confident in our overall evaluation and test coverage. I would expect that use of these tools alongside existing human review processes would increase repository code quality and reduce uncaught errors. The data points support this too. The Qodo 2025 AI Code Quality report showed that usage of AI code reviews increased quality improvements to 81% (from 55%). A similar study from Atlassian RovoDev 2026 study showed that 38.7% of comments left by AI agents in code reviews lead to additional code fixes. LLM’s in their current form are never going to achieve 100% accuracy however these are still considerable, significant gains in one of the most important (and often neglected) parts of the SDLC. With a significant number of software supply chain attacks recently it is also not a stretch to imagine that that many projects could benefit from "independently" (use this term loosely) reviewed and summarised PR's and commits. This in the future could potentially by a specialist/sub agent during a PR or merge to focus on identifying malicious code that may be hidden within otherwise normal contributions, case in point being the "near-miss" XZ Utils attack. Step 4: GitHub Actions for build and deploy - No agents here, just deterministic automation. This step will be our briefest, as the idea of CI/CD and automation needs no introduction. It is worth noting that while I am sure there are additional opportunities for using agents within a build and deploy pipeline, I have not investigated them. I often speak with customers about deterministic and non-deterministic business process automation, and the importance of distinguishing between the two. Some processes were created to be deterministic because that is all that was available at the time; the number of conditions required to deal with N possible flows just did not scale. However, now those processes can be non-deterministic. Good examples include IVR decision trees in customer service or hard-coded sales routines to retain a customer regardless of context; these would benefit from less determinism in their execution. However, some processes remain best as deterministic flows: financial transactions, policy engines, document ingestion. While all these flows may be part of an AI solution in the future (possibly as a tool an agent calls, or as part of a larger agent-based orchestration), the processes themselves are deterministic for a reason. Just because we could have dynamic decision-making doesn’t mean we should. Infrastructure deployment and CI/CD pipelines are one good example of this, in my opinion. We could have an agent decide what service best fits our codebase and which region we should deploy to, but do we really want to, and do the benefits outweigh the potential negatives? In this process flow we use a deterministic GitHub action to deploy our weather application into our “development” environment and then promote through the environments until we reach production and we want to now ensure that the application is running smoothly. We also use an action as mentioned above to deploy and surface our agents changes. In Azure Container Apps we can do this in a secure sandbox environment called a “Dynamic Session” to ensure strong isolation of what is essentially “untrusted code”. Often enterprises can view the building and development of AI applications as something that requires a completely new process to take to production, while certain additional processes are new, evaluation, model deployment etc many of our traditional SDLC principles are just as relevant as ever before, CI/CD pipelines being a great example of that. Checked in code that is predictably deployed alongside required services to run tests or promote through environments. Whether you are deploying a java calculator app or a multi agent customer service bot, CI/CD even in this new world is a non-negotiable. We can see that our geolocation feature is running on our Azure Container Apps revision and we can begin to evaluate if we agree with CoPilot that all the feature requirements have been met. In this case they have. If they hadn't we'd just jump into the PR and add a new comment with "@copilot" requesting our changes. Step 5: SRE Agent - Proactive agentic day two operations. The SRE agent service on Azure is an operations-focused agent that continuously watches a running service using telemetry such as logs, metrics, and traces. When it detects incidents or reliability risks, it can investigate signals, correlate likely causes, and propose or initiate response actions such as opening issues, creating runbook-guided fixes, or escalating to an on-call engineer. It effectively automates parts of day two operations while keeping humans in control of approval and remediation. It can be run in two different permission models: one with a reader role that can temporarily take user permissions for approved actions when identified. The other model is a privileged level that allows it to autonomously take approved actions on resources and resource types within the resource groups it is monitoring. In our example, our SRE agent could take actions to ensure our container app runs as intended: restarting pods, changing traffic allocations, and alerting for secret expiry. The SRE agent can also perform detailed debugging to save human SREs time, summarising the issue, fixes tried so far, and narrowing down potential root causes to reduce time to resolution, even across the most complex issues. My initial concern with these types of autonomous fixes (be it VPA on Kubernetes or an SRE agent across your infrastructure) is always that they can very quickly mask problems, or become an anti-pattern where you have drift between your IaC and what is actually running in Azure. One of my favourite features of SRE agents is sub-agents. Sub-agents can be created to handle very specific tasks that the primary SRE agent can leverage. Examples include alerting, report generation, and potentially other third-party integrations or tooling that require a more concise context. In my example, I created a GitHub sub-agent to be called by the primary agent after every issue that is resolved. When called, the GitHub sub-agent creates an issue summarising the origin, context, and resolution. This really brings us full circle. We can then potentially assign this to our coding agent to implement the fix before we proceed with the rest of the cycle; for example, a change where a port is incorrect in some Bicep, or min scale has been adjusted because of latency observed by the SRE agent. These are quick fixes that can be easily implemented by a coding agent, subsequently creating an autonomous feedback loop with human review. Conclusion: The journey through this AI-led SDLC demonstrates that it is possible, with today’s tooling, to improve any existing SDLC with AI assistance, evolving from simply using a chat interface in an IDE. By combining Speckit, spec-driven development, autonomous coding agents, AI-augmented quality checks, deterministic CI/CD pipelines, and proactive SRE agents, we see an emerging ecosystem where human creativity and oversight guide an increasingly capable fleet of collaborative agents. As with all AI solutions we design today, I remind myself that “this is as bad as it gets”. If the last two years are anything to go by, the rate of change in this space means this article may look very different in 12 months. I imagine Spec-to-issue will no longer be required as a bridge, as native solutions evolve to make this process even smoother. There are also some areas of an AI-led SDLC that are not included in this post, things like reviewing the inner-loop process or the use of existing enterprise patterns and blueprints. I also did not review use of third-party plugins or tools available through GitHub. These would make for an interesting expansion of the demo. We also did not look at the creation of custom coding agents, which could be hosted in Microsoft Foundry; this is especially pertinent with the recent announcement of Anthropic models now being available to deploy in Foundry. Does today’s tooling mean that developers, QAs, and engineers are no longer required? Absolutely not (and if I am honest, I can’t see that changing any time soon). However, it is evidently clear that in the next 12 months, enterprises who reshape their SDLC (and any other business process) to become one augmented by agents will innovate faster, learn faster, and deliver faster, leaving organisations who resist this shift struggling to keep up.789Views4likes0CommentsBeyond the Desktop: The Future of Development with Microsoft Dev Box and GitHub Codespaces
The modern developer platform has already moved past the desktop. We’re no longer defined by what’s installed on our laptops, instead we look at what tooling we can use to move from idea to production. An organisations developer platform strategy is no longer a nice to have, it sets the ceiling for what’s possible, an organisation can’t iterate it's way to developer nirvana if the foundation itself is brittle. A great developer platform shrinks TTFC (time to first commit), accelerates release velocity, and maybe most importantly, helps alleviate everyday frictions that lead to developer burnout. Very few platforms deliver everything an organization needs from a developer platform in one product. Modern development spans multiple dimensions, local tooling, cloud infrastructure, compliance, security, cross-platform builds, collaboration, and rapid onboarding. The options organizations face are then to either compromise on one or more of these areas or force developers into rigid environments that slow productivity and innovation. This is where Microsoft Dev Box and GitHub Codespaces come into play. On their own, each addresses critical parts of the modern developer platform: Microsoft Dev Box provides a full, managed cloud workstation. Dev Box gives developers a consistent, high-performance environment while letting central IT apply strict governance and control. Internally at Microsoft, we estimate that usage of Dev Box by our development teams delivers savings of 156 hours per year per developer purely on local environment setup and upkeep. We have also seen significant gains in other key SPACE metrics reducing context-switching friction and improving build/test cycles. Although the benefits of Dev Box are clear in the results demonstrated by our customers it is not without its challenges. The biggest challenge often faced by Dev Box customers is its lack of native Linux support. At the time of writing and for the foreseeable future Dev Box does not support native Linux developer workstations. While WSL2 provides partial parity, I know from my own engineering projects it still does not deliver the full experience. This is where GitHub Codespaces comes into this story. GitHub Codespaces delivers instant, Linux-native environments spun up directly from your repository. It’s lightweight, reproducible, and ephemeral ideal for rapid iteration, PR testing, and cross-platform development where you need Linux parity or containerized workflows. Unlike Dev Box, Codespaces can run fully in Linux, giving developers access to native tools, scripts, and runtimes without workarounds. It also removes much of the friction around onboarding: a new developer can open a repository and be coding in minutes, with the exact environment defined by the project’s devcontainer.json. That said, Codespaces isn’t a complete replacement for a full workstation. While it’s perfect for isolated project work or ephemeral testing, it doesn’t provide the persistent, policy-controlled environment that enterprise teams often require for heavier workloads or complex toolchains. Used together, they fill the gaps that neither can cover alone: Dev Box gives the enterprise-grade foundation, while Codespaces provides the agile, cross-platform sandbox. For organizations, this pairing sets a higher ceiling for developer productivity, delivering a truly hybrid, agile and well governed developer platform. Better Together: Dev Box and GitHub Codespaces in action Together, Microsoft Dev Box and GitHub Codespaces deliver a hybrid developer platform that combines consistency, speed, and flexibility. Teams can spin up full, policy-compliant Dev Box workstations preloaded with enterprise tooling, IDEs, and local testing infrastructure, while Codespaces provides ephemeral, Linux-native environments tailored to each project. One of my favourite use cases is having local testing setups like a Docker Swarm cluster, ready to go in either Dev Box or Codespaces. New developers can jump in and start running services or testing microservices immediately, without spending hours on environment setup. Anecdotally, my time to first commit and time to delivering “impact” has been significantly faster on projects where one or both technologies provide local development services out of the box. Switching between Dev Boxes and Codespaces is seamless every environment keeps its own libraries, extensions, and settings intact, so developers can jump between projects without reconfiguring or breaking dependencies. The result is a turnkey, ready-to-code experience that maximizes productivity, reduces friction, and lets teams focus entirely on building, testing, and shipping software. To showcase this value, I thought I would walk through an example scenario. In this scenario I want to simulate a typical modern developer workflow. Let's look at a day in the life of a developer on this hybrid platform building an IOT project using Python and React. Spin up a ready-to-go workstation (Dev Box) for Windows development and heavy builds. Launch a Linux-native Codespace for cross-platform services, ephemeral testing, and PR work. Run "local" testing like a Docker Swarm cluster, database, and message queue ready to go out-of-the-box. Switch seamlessly between environments without losing project-specific configurations, libraries, or extensions. 9:00 AM – Morning Kickoff on Dev Box I start my day on my Microsoft Dev Box, which gives me a fully-configured Windows environment with VS Code, design tools, and Azure integrations. I select my teams project, and the environment is pre-configured for me through the Dev Box catalogue. Fortunately for me, its already provisioned. I could always self service another one using the "New Dev Box" button if I wanted too. I'll connect through the browser but I could use the desktop app too if I wanted to. My Tasks are: Prototype a new dashboard widget for monitoring IoT device temperature. Use GUI-based tools to tweak the UI and preview changes live. Review my Visio Architecture. Join my morning stand up. Write documentation notes and plan API interactions for the backend. In a flash, I have access to my modern work tooling like Teams, I have this projects files already preloaded and all my peripherals are working without additional setup. Only down side was that I did seem to be the only person on my stand up this morning? Why Dev Box first: GUI-heavy tasks are fast and responsive. Dev Box’s environment allows me to use a full desktop. Great for early-stage design, planning, and visual work. Enterprise Apps are ready for me to use out of the box (P.S. It also supports my multi-monitor setup). I use my Dev Box to make a very complicated change to my IoT dashboard. Changing the title from "IoT Dashboard" to "Owain's IoT Dashboard". I preview this change in a browser live. (Time for a coffee after this hardwork). The rest of the dashboard isnt loading as my backend isnt running... yet. 10:30 AM – Switching to Linux Codespaces Once the UI is ready, I push the code to GitHub and spin up a Linux-native GitHub Codespace for backend development. Tasks: Implement FastAPI endpoints to support the new IoT feature. Run the service on my Codespace and debug any errors. Why Codespaces now: Linux-native tools ensure compatibility with the production server. Docker and containerized testing run natively, avoiding WSL translation overhead. The environment is fully reproducible across any device I log in from. 12:30 PM – Midday Testing & Sync I toggle between Dev Box and Codespaces to test and validate the integration. I do this in my Dev Box Edge browser viewing my codespace (I use my Codespace in a browser through this demo to highlight the difference in environments. In reality I would leverage the VSCode "Remote Explorer" extension and its GitHub Codespace integration to use my Codespace from within my own desktop VSCode but that is personal preference) and I use the same browser to view my frontend preview. I update the environment variable for my frontend that is running locally in my Dev Box and point it at the port running my API locally on my Codespace. In this case it was a web socket connection and HTTPS calls to port 8000. I can make this public by changing the port visibility in my Codespace. https://fluffy-invention-5x5wp656g4xcp6x9-8000.app.github.dev/api/devices wss://fluffy-invention-5x5wp656g4xcp6x9-8000.app.github.dev/ws This allows me to: Preview the frontend widget on Dev Box, connecting to the backend running in Codespaces. Make small frontend adjustments in Dev Box while monitoring backend logs in Codespaces. Commit changes to GitHub, keeping both environments in sync and leveraging my CI/CD for deployment to the next environment. We can see the Dev Box running local frontend and the Codespace running the API connected to each other, making requests and displaying the data in the frontend! Hybrid advantage: Dev Box handles GUI previews comfortably and allows me to live test frontend changes. Codespaces handles production-aligned backend testing and Linux-native tools. Dev Box allows me to view all of my files in one screen with potentially multiple Codespaces running in browser of VS Code Desktop. Due to all of those platform efficiencies I have completed my days goals within an hour or two and now I can spend the rest of my day learning about how to enable my developers to inner source using GitHub CoPilot and MCP (Shameless plug). The bottom line There are some additional considerations when architecting a developer platform for an enterprise such as private networking and security not covered in this post but these are implementation details to deliver the described developer experience. Architecting such a platform is a valuable investment to deliver the developer platform foundations we discussed at the top of the article. While in this demo I have quickly built I was working in a mono repository in real engineering teams it is likely (I hope) that an application is built of many different repositories. The great thing about Dev Box and Codespaces is that this wouldn’t slow down the rapid development I can achieve when using both. My Dev Box would be specific for the project or development team, pre loaded with all the tools I need and potentially some repos too! When I need too I can quickly switch over to Codespaces and work in a clean isolated environment and push my changes. In both cases any changes I want to deliver locally are pushed into GitHub (Or ADO), merged and my CI/CD ensures that my next step, potentially a staging environment or who knows perhaps *Whispering* straight into production is taken care of. Once I’m finished I delete my Codespace and potentially my Dev Box if I am done with the project, knowing I can self service either one of these anytime and be up and running again! Now is there overlap in terms of what can be developed in a Codespace vs what can be developed in Azure Dev Box? Of course, but as organisations prioritise developer experience to ensure release velocity while maintaining organisational standards and governance then providing developers a windows native and Linux native service both of which are primarily charged on the consumption of the compute* is a no brainer. There are also gaps that neither fill at the moment for example Microsoft Dev Box only provides windows compute while GitHub Codespaces only supports VS Code as your chosen IDE. It's not a question of which service do I choose for my developers, these two services are better together! *Changes have been announced to Dev Box pricing. A W365 license is already required today and dev boxes will continue to be managed through Azure. For more information please see: Microsoft Dev Box capabilities are coming to Windows 365 - Microsoft Dev Box | Microsoft Learn1.1KViews2likes0CommentsRun Playwright Tests on Cloud Browsers using Playwright Workspaces
This post walks through setting up and running Playwright UI and API tests on Azure Playwright Testing Service (Preview). It covers workspace setup, project configuration, remote browser execution, and viewing test reports and traces using Visual Studio or VS Code.1.3KViews1like0CommentsProactive Cloud Ops with SRE Agent: Scheduled Checks for Cloud Optimization
The Cloud Optimization Challenge Your cloud environment is always changing: New features ship weekly Traffic patterns shift seasonally Costs creep up quietly Security best practices evolve Teams spin up resources and forget them It's Monday morning. You open the Azure portal. Everything looks... fine. But "fine" isn't great. That VM has been at 8% CPU for weeks. A Key Vault secret expires in 12 days. Nothing's broken. But security is drifting, costs are creeping, and capacity gaps are growing silently. The question isn't "is something broken?" it's "could this be better?" Four Pillars of Cloud Optimization Pillar What Teams Want The Challenge Security Stay compliant, reduce risk Config drift, legacy settings, expiring creds Cost Spend efficiently, justify budget Hard to spot waste across 100s of resources Performance Meet SLOs, handle growth Know when to scale before demand hits Availability Maximize uptime, build resilience Hidden dependencies, single points of failure Most teams check these sometimes. SRE Agent checks them continuously. Enter SRE Agent + Scheduled tasks SRE Agent can pull data from Azure Monitor, resource configurations, metrics, logs, traces, errors, cost data and analyze it on a schedule. If you use tools outside Azure (Datadog, PagerDuty, Splunk), you can connect those via MCP servers so the agent sees your full observability stack. My setup uses Azure-native sources. Here's how I wired it up. How I Set It Up: Step by Step Step 1: Create SRE Agent with Subscription Access I created an SRE Agent without attaching it to any specific resource group. Instead, I gave it Reader access at the subscription level. This lets the agent scan across all my resource groups for optimization opportunities. No resource group configuration needed. The agent builds a knowledge graph of everything VMs, storage accounts, Key Vaults, NSGs, web apps across the subscription. Step 2: Create and Upload My Organization Practices I created an org-practices.md file that defines what "good" looks like for my team: I uploaded this to SRE Agent's knowledge base. Now the agent knows our bar, not just Azure defaults. 👉 See my full org-practices.md Source repos for this demo: security-demoapp - App with intentional security misconfigurations costoptimizationapp - App with cost optimization opportunities Step 3: Connect to Teams Channel I connected SRE Agent to my team's Teams channel so findings land where we already work. Critical findings get immediate notifications. Warnings go into a daily digest. No more logging into separate dashboards. The insights come to us. Step 4: Connect Resource Groups to GitHub Repos Add the two resource groups to the SRE Agent and link the apps to their corresponding GitHub repos: Resource Group GitHub Repository rg-security-opt-demo security-demoapp rg-cost-opt-sreademo costoptimizationapp This enables the agent to create GitHub issues for findings linking violations directly to the repo responsible for that infrastructure. Step 5: Test with Prompts Before setting up automation, I tested the agent with manual prompts to make sure it was finding the right issues. The agent ran the checks, compared against my org-practices.md, and identified the issues. Security Check: Scan resource group "rg-security-opt-demo" for any violations of our security practices defined in org-practices.md in your knowledge base. list violations with severity and remediation steps. Make sure to check against all critical requirements and send message in teams channel with your findings and create an issue in the github repo https://github.com/dm-chelupati/security-demoapp.git Cost Check: Scan resource group "rg-cost-opt-sreademo" for any violations of our costpractices defined in org-practices.md in your knowledge base. list violations with severity and remediation steps. Make sure to check against all critical requirements and send message in teams channel with your findings and create an issue in the github repo https://github.com/dm-chelupati/costoptimizationapp.git Step 6: Check Output via GitHub Issues After running prompts, I checked GitHub. The agent had created issues. Each issue has the root cause, impact, and fix ready for the team to action or for Coding Agent to pick up and create a PR. 👉 See the actual issues created: Security findings issue Cost findings issue Step 7: Set Up Scheduled Triggers This is where it gets powerful. I configured recurring schedules: Weekly Security Check (Wednesdays 8 AM): Create a scheduled trigger that performs security practices checks against the org practices in knowledge base org-practices.md, creates github issue and send teams message on a weekly basis Wednesdays at 8 am UTC Weekly Cost Review (Mondays 8 AM): Create a scheduled trigger that performs cost practices checks against the org practices in knowledge base org-practices.md, creates github issue and send teams message on a weekly basis on Mondays at 8 am UTC Now optimization runs automatically. Every week, fresh findings land in GitHub Issues and Teams. Why Context Makes the SRE Agent Powerful Think about hiring a new SRE. They're excellent at their craft—they know Kubernetes, networking, Azure inside out. But on day one, they can't solve problems in your environment yet. Why? They don't have context: What are your SLOs? What's "acceptable" latency for your app? When do you rotate secrets? Monthly? Quarterly? Before each release? Which resources are production-critical vs. dev experiments? What's your tagging policy? Who owns what? How do you deploy? GitOps? Pipelines? Manual approvals? A great engineer becomes your great engineer once they learn how your team operates. SRE Agent works the same way. Out of the box, it knows Azure resource types, networking, best practices. But it doesn't know your bar. Is 20% CPU utilization acceptable or wasteful? Should secrets expire in 30 days or 90? Are public endpoints ever okay, or never? The more context you give the agent, your SLOs, your runbooks, your policies, the more it reasons like a team member who understands your environment, not just Azure in general. That's why Step 2 matters so much. When I uploaded our standards, the agent stopped checking generic Azure best practices and started checking our best practices. Bring your existing knowledge: You don't have to start from scratch. If your team's documentation already lives in Atlassian Confluence, SharePoint, or other tools, you can connect those via MCP servers. The agent pulls context from where your team already works, no need to duplicate content. Why This Matters Before this setup, optimization was a quarterly thing. Now it happens automatically: Before After Check security when audit requests it Daily automated posture check Find waste when finance complains Weekly savings report in Teams Discover capacity issues during incidents Scheduled headroom analysis Expire credentials and debug at 2 AM 30-day warning with exact secret names Optimization isn't a project anymore. It's a practice. Try It Yourself Create an SRE Agent with access to your subscription Upload your team's standards (security policies, cost thresholds, tagging rules) Set up a scheduled trigger, start with a daily security check Watch the first report land in Teams See what you've been missing while everything looked "fine." Learn More Azure SRE Agent documentation Azure SRE Agent blogs Azure SRE Agent community Azure SRE Agent home page Azure SRE Agent pricing Azure SRE Agent is currently in preview. Get Started521Views1like0CommentsSecure Unique Default Hostnames Now GA for Functions and Logic Apps
We are pleased to announce that Secure Unique Default Hostnames are now generally available (GA) for Azure Functions and Logic Apps (Standard). This expands the security model previously available for Web Apps to the entire App Service ecosystem and provides customers with stronger, more secure, and standardized hostname behavior across all workloads. Why This Feature Matters Historically, App Service resources have used default hostname format such as: <SiteName>.azurewebsites.net While straightforward, this pattern introduced potential security risks, particularly in scenarios where DNS records were left behind after deleting a resource. In those situations, a different user could create a new resource with the same name and unintentionally receive traffic or bindings associated with the old DNS configuration, creating opportunities for issues such as subdomain takeover. Secure Unique Default Hostnames address this by assigning a unique, randomized, region‑scoped hostname to each resource, for example: <SiteName>-<Hash>.<Region>.azurewebsites.net This change ensures that: No other customer can recreate the same default hostname. Apps inherently avoid risks associated with dangling DNS entries. Customers gain a more secure, reliable baseline behavior across App Service. Adopting this model now helps organizations prepare for the long‑term direction of the platform while improving security posture today. What’s New: GA Support for Functions and Logic Apps With this release, both Azure Functions and Logic Apps (Standard) fully support the Secure Unique Default Hostname capability. This brings these services in line with Web Apps and ensures customers across all App Service workloads benefit from the same secure and consistent default hostname model. Azure CLI Support The Azure CLI for Web Apps and Function Apps now includes support for the “--domain-name-scope” parameter. This allows customers to explicitly specify the scope used when generating a unique default hostname during resource creation. Examples: az webapp create --domain-name-scope {NoReuse, ResourceGroupReuse, SubscriptionReuse, TenantReuse} az functionapp create --domain-name-scope {NoReuse, ResourceGroupReuse, SubscriptionReuse, TenantReuse} Including this parameter ensures that deployments consistently use the intended hostname scope and helps teams prepare their automation and provisioning workflows for the secure unique default hostname model. Why Customers Should Adopt This Now While existing resources will continue to function normally, customers are strongly encouraged to adopt Secure Unique Default Hostnames for all new deployments. Early adoption provides several important benefits: A significantly stronger security posture. Protection against dangling DNS and subdomain takeover scenarios. Consistent default hostname behavior as the platform evolves. Alignment with recommended deployment practices and modern DNS hygiene. This feature represents the current best practice for hostname management on App Service and adopting it now helps ensure that new deployments follow the most secure and consistent model available. Recommended Next Steps Enable Secure Unique Default Hostnames for all new Web Apps, Function Apps, and Logic Apps. Update automation and CLI scripts to include the --domain-name-scope parameter when creating new resources. Begin updating internal documentation and operational processes to reflect the new hostname pattern. Additional Resources For readers who want to explore the technical background and earlier announcements in more detail, the following articles offer deeper coverage of unique default hostnames: Public Preview: Creating Web App with a Unique Default Hostname This article introduces the foundational concepts behind unique default hostnames. It explains why the feature was created, how the hostname format works, and provides examples and guidance for enabling the feature when creating new resources. Secure Unique Default Hostnames: GA on App Service Web Apps and Public Preview on Functions This article provides the initial GA announcement for Web Apps and early preview details for Functions. It covers the security benefits, recommended usage patterns, and guidance on how to handle existing resources that were created without unique default hostnames. Conclusion Secure Unique Default Hostnames now provide a more secure and consistent default hostname model across Web Apps, Function Apps, and Logic Apps. This enhancement reduces DNS‑related risks and strengthens application security, and organizations are encouraged to adopt this feature as the standard for new deployments.493Views0likes0CommentsFrom Vibe Coding to Working App: How SRE Agent Completes the Developer Loop
The Most Common Challenge in Modern Cloud Apps There's a category of bugs that drive engineers crazy: multi-layer infrastructure issues. Your app deploys successfully. Every Azure resource shows "Succeeded." But the app fails at runtime with a vague error like Login failed for user ''. Where do you even start? You're checking the Web App, the SQL Server, the VNet, the private endpoint, the DNS zone, the identity configuration... and each one looks fine in isolation. The problem is how they connect and that's invisible in the portal. Networking issues are especially brutal. The error says "Login failed" but the actual causes could be DNS, firewall, identity, or all three. The symptom and the root causes are in completely different resources. Without deep Azure networking knowledge, you're just clicking around hoping something jumps out. Now imagine you vibe coded the infrastructure. You used AI to generate the Bicep, deployed it, and moved on. When it breaks, you're debugging code you didn't write, configuring resources you don't fully understand. This is where I wanted AI to help not just to build, but to debug. Enter SRE Agent + Coding Agent Here's what I used: Layer Tool Purpose Build VS Code Copilot Agent Mode + Claude Opus Generate code, Bicep, deploy Debug Azure SRE Agent Diagnose infrastructure issues and create developer issue with suggested fixes in source code (app code and IaC) Fix GitHub Coding Agent Create PRs with code and IaC fix from Github issue created by SRE Agent Copilot builds. SRE Agent debugs. Coding Agent fixes. What I Built I used VS Code Copilot in Agent Mode with Claude Opus to create a .NET 8 Web App connected to Azure SQL via private endpoint: Private networking (no public exposure) Entra-only authentication Managed identity (no secrets) Deployed with azd up. All green. Then I tested the health endpoint: $ curl https://app-tsdvdfdwo77hc.azurewebsites.net/health/sql {"status":"unhealthy","error":"Login failed for user ''.","errorType":"SqlException"} Deployment succeeded. App failed. One error. How I Fixed It: Step by Step Step 1: Create SRE Agent with Azure Access I created an SRE Agent with read access to my Azure subscription. You can scope it to specific resource groups. The agent builds a knowledge graph of your resources and their dependencies visible in the Resource Mapping view below. Step 2: Connect GitHub to SRE Agent using GitHub MCP server I connected the GitHub MCP server so the agent could read my repository and create issues. Step 3: Create Sub Agent to analyze source code I created a sub-agent for analyzing source code using GitHub mcp tools. this lets SRE Agent understand not just Azure resources, but also the Bicep and source code files that created them. "you are expert in analyzing source code (bicep and app code) from github repos" Step 4: Invoke Sub-Agent to Analyze the Error In the SRE Agent chat, I invoked the sub-agent to diagnose the error I received from my app end point. It correlated the runtime error with the infrastructure configuration Step 5: Watch the SRE Agent Think and Reason SRE Agent analyzed the error by tracing code in Program.cs, Bicep configurations, and Azure resource relationships Web App, SQL Server, VNet, private endpoint, DNS zone, and managed identity. Its reasoning process worked through each layer, eliminating possibilities one by one until it identified the root causes. Step 6: Agent Creates GitHub Issue Based on its analysis, SRE Agent summarized the root causes and suggested fixes in a GitHub issue: Root Causes: Private DNS Zone missing VNet link Managed identity not created as SQL user Suggested Fixes: Add virtualNetworkLinks resource to Bicep Add SQL setup script to create user with db_datareader and db_datawriter roles Step 7: Merge the PR from Coding Agent Assign the Github issue to Coding Agent which then creates a PR with the fixes. I just reviewed the fix. It made sense and I merged it. Redeployed with azd up, ran the SQL script: curl -s https://app-tsdvdfdwo77hc.azurewebsites.net/health/sql | jq . { "status": "healthy", "database": "tododb", "server": "tcp:sql-tsdvdfdwo77hc.database.windows.net,1433", "message": "Successfully connected to SQL Server" } 🎉 From error to fix in minutes without manually debugging a single Azure resource. Why This Matters If you're a developer building and deploying apps to Azure, SRE Agent changes how you work: You don't need to be a networking expert. SRE Agent understands the relationships between Azure resources private endpoints, DNS zones, VNet links, managed identities. It connects dots you didn't know existed. You don't need to guess. Instead of clicking through the portal hoping something looks wrong, the agent systematically eliminates possibilities like a senior engineer would. You don't break your workflow. SRE Agent suggests fixes in your Bicep and source code not portal changes. Everything stays version controlled. Deployed through pipelines. No hot fixes at 2 AM. You close the loop. AI helps you build fast. Now AI helps you debug fast too. Try It Yourself Do you vibe code your app, your infrastructure, or both? How do you debug when things break? Here's a challenge: Vibe code a todo app with a Web App, VNet, private endpoint, and SQL database. "Forget" to link the DNS zone to the VNet. Deploy it. Watch it fail. Then point SRE Agent at it and see how it identifies the root cause, creates a GitHub issue with the fix, and hands it off to Coding Agent for a PR. Share your experience. I'd love to hear how it goes. Learn More Azure SRE Agent documentation Azure SRE Agent blogs Azure SRE Agent community Azure SRE Agent home page Azure SRE Agent pricing850Views3likes0CommentsStop Running Runbooks at 3 am: Let Azure SRE Agent Do Your On-Call Grunt Work
Your pager goes off. It's 2:47am. Production is throwing 500 errors. You know the drill - SSH into this, query that, check these metrics, correlate those logs. Twenty minutes later, you're still piecing together what went wrong. Sound familiar? The On-Call Reality Nobody Talks About Every SRE, DevOps engineer, and developer who's carried a pager knows this pain. When incidents hit, you're not solving problems - you're executing runbooks. Copy-paste this query. Check that dashboard. Run these az commands. Connect the dots between five different tools. It's tedious. It's error-prone at 3am. And honestly? It's work that doesn't require human creativity but requires human time. What if an AI agent could do this for you? Enter Azure SRE Agent + Runbook Automation Here's what I built: I gave SRE Agent a simple markdown runbook containing the same diagnostic steps I'd run manually during an incident. The agent executes those steps, collects evidence, and sends me an email with everything I need to take action. No more bouncing between terminals. No more forgetting a step because it's 3am and your brain is foggy. What My Runbook Contains Just the basics any on-call would run: az monitor metrics – CPU, memory, request rates Log Analytics queries – Error patterns, exception details, dependency failures App Insights data – Failed requests, stack traces, correlation IDs az containerapp logs – Revision logs, app configuration That's it. Plain markdown with KQL queries and CLI commands. Nothing fancy. What the Agent Does Reads the runbook from its knowledge base Executes each diagnostic step Collects results and evidence Sends me an email with analysis and findings I wake up to an email that says: "CPU spiked to 92% at 2:45am, triggering connection pool exhaustion. Top exception: SqlException (1,832 occurrences). Errors correlate with traffic spike. Recommend scaling to 5 replicas." All the evidence. All the queries used. All the timestamps. Ready for me to act. How to Set This Up (6 Steps) Here's how you can build this yourself: Step 1: Create SRE Agent Create a new SRE Agent in the Azure portal. No Azure resource groups to configure. If your apps run on Azure, the agent pulls context from the incident itself. If your apps run elsewhere, you don't need Azure resource configuration at all. Step 2: Grant Reader Permission (Optional) If your runbooks execute against Azure resources, assign Reader role to the SRE Agent's managed identity on your subscription. This allows the agent to run az commands and query metrics. Skip this if your runbooks target non-Azure apps. Step 3: Add Your Runbook to SRE Agent's Knowledge base You already have runbooks, they're in your wiki, Confluence, or team docs. Just add them as .md files to the agent's knowledge base. To learn about other ways to link your runbooks to the agent, read this Step 4: Connect Outlook Connect the agent to your Outlook so it can send you the analysis email with findings. Step 5: Create a Subagent Create a subagent with simple instructions like: "You are an expert in triaging and diagnosing incidents. When triggered, search the knowledge base for the relevant runbook, execute the diagnostic steps, collect evidence, and send an email summary with your findings." Assign the tools the agent needs: RunAzCliReadCommands – for az monitor, az containerapp commands QueryLogAnalyticsByWorkspaceId – for KQL queries against Log Analytics QueryAppInsightsByResourceId – for App Insights data SearchMemory – to find the right runbook SendOutlookEmail – to deliver the analysis Step 6: Set Up Incident Trigger Connect your incident management tool - PagerDuty, ServiceNow, or Azure Monitor alerts and setup the incident trigger to the subagent. When an incident fires, the agent kicks off automatically. That's it. Your agentic workflow now looks like this: This Works for Any App, Not Just Azure Here's the thing: SRE Agent is platform agnostic. It's executing your runbooks, whatever they contain. On-prem databases? Add your diagnostic SQL. Custom monitoring stack? Add those API calls. The agent doesn't care where your app runs. It cares about following your runbook and getting you answers. Why This Matters Lower MTTR. By the time you're awake and coherent, the analysis is done. Consistent execution. No missed steps. No "I forgot to check the dependencies" at 4am. Evidence for postmortems. Every query, every result, timestamped and documented. Focus on what matters. Your brain should be deciding what to do not gathering data. The Bottom Line On-call runbook execution is the most common, most tedious, and most automatable part of incident response. It's grunt work that pulls engineers away from the creative problem-solving they were hired for. SRE Agent offloads that work from your plate. You write the runbook once, and the agent executes it every time, faster and more consistently than any human at 3am. Stop running runbooks. Start reviewing results. Try it yourself: Create a markdown runbook with your diagnostic queries and commands, add it to your SRE Agent's knowledge base, and let the agent handle your next incident. Your 3am self will thank you.1KViews1like0CommentsUnlocking Application Modernisation with GitHub Copilot
AI-driven modernisation is unlocking new opportunities you may not have even considered yet. It's also allowing organisations to re-evaluate previously discarded modernisation attempts that were considered too hard, complex or simply didn't have the skills or time to do. During Microsoft Build 2025, we were introduced to the concept of Agentic AI modernisation and this post from Ikenna Okeke does a great job of summarising the topic - Reimagining App Modernisation for the Era of AI | Microsoft Community Hub. This blog post however, explores the modernisation opportunities that you may not even have thought of yet, the business benefits, how to start preparing your organisation, empowering your teams, and identifying where GitHub Copilot can help. I’ve spent the last 8 months working with customers exploring usage of GitHub Copilot, and want to share what my team members and I have discovered in terms of new opportunities to modernise, transform your applications, bringing some fun back into those migrations! Let’s delve into how GitHub Copilot is helping teams update old systems, move processes to the cloud, and achieve results faster than ever before. Background: The Modernisation Challenge (Then vs Now) Modernising legacy software has always been hard. In the past, teams faced steep challenges: brittle codebases full of technical debt, outdated languages (think decades-old COBOL or VB6), sparse documentation, and original developers long gone. Integrating old systems with modern cloud services often requiring specialised skills that were in short supply – for example, check out this fantastic post from Arvi LiVigni (@arilivigni ) which talks about migrating from COBOL “the number of developers who can read and write COBOL isn’t what it used to be,” making those systems much harder to update". Common pain points included compatibility issues, data migrations, high costs, security vulnerabilities, and the constant risk that any change could break critical business functions. It’s no wonder many modernisation projects stalled or were “put off” due to their complexity and risk. So, what’s different now (circa 2025) compared to two years ago? In a word: Intelligent AI assistance. Tools like GitHub Copilot have emerged as AI pair programmers that dramatically lower the barriers to modernisation. Arvi’s post talks about how only a couple of years ago, developers had to comb through documentation and Stack Overflow for clues when deciphering old code or upgrading frameworks. Today, GitHub Copilot can act like an expert co-developer inside your IDE, ready to explain mysterious code, suggest updates, and even rewrite legacy code in modern languages. This means less time fighting old code and more time implementing improvements. As Arvi says “nine times out of 10 it gives me the right answer… That speed – and not having to break out of my flow – is really what’s so impactful.” In short, AI coding assistants have evolved from novel experiments to indispensable tools, reimagining how we approach software updates and cloud adoption. I’d also add from my own experience – the models we were using 12 months ago have already been superseded by far superior models with ability to ingest larger context and tackle even further complexity. It's easier to experiment, and fail, bringing more robust outcomes – with such speed to create those proof of concepts, experimentation and failing faster, this has also unlocked the ability to test out multiple hypothesis’ and get you to the most confident outcome in a much shorter space of time. Modernisation is easier now because AI reduces the heavy lifting. Instead of reading the 10,000-line legacy program alone, a developer can ask Copilot to explain what the code does or even propose a refactored version. Rather than manually researching how to replace an outdated library, they can get instant recommendations for modern equivalents. These advancements mean that tasks which once took weeks or months can now be done in days or hours – with more confidence and less drudgery - more fun! The following sections will dive into specific opportunities unlocked by GitHub Copilot across the modernisation journey which you may not even have thought of. Modernisation Opportunities Unlocked by Copilot Modernising an application isn’t just about updating code – it involves bringing everyone and everything up to speed with cloud-era practices. Below are several scenarios and how GitHub Copilot adds value, with the specific benefits highlighted: 1. AI-Assisted Legacy Code Refactoring and Upgrades Instant Code Comprehension: GitHub Copilot can explain complex legacy code in plain English, helping developers quickly understand decades-old logic without scouring scarce documentation. For example, you can highlight a cryptic COBOL or C++ function and ask Copilot to describe what it does – an invaluable first step before making any changes. This saves hours and reduces errors when starting a modernisation effort. Automated Refactoring Suggestions: The AI suggests modern replacements for outdated patterns and APIs, and can even translate code between languages. For instance, Copilot can help convert a COBOL program into JavaScript or C# by recognising equivalent constructs. It also uses transformation tools (like OpenRewrite for Java/.NET) to systematically apply code updates – e.g. replacing all legacy HTTP calls with a modern library in one sweep. Developers remain in control, but GitHub Copilot handles the tedious bulk edits. Bulk Code Upgrades with AI: GitHub Copilot’s App Modernisation capabilities can analyse an entire codebase and generate a detailed upgrade plan, then execute many of the code changes automatically. It can upgrade framework versions (say from .NET Framework 4.x to .NET 6, or Java 8 to Java 17) by applying known fix patterns and even fixing compilation errors after the upgrade. Teams can finally tackle those hundreds of thousand-line enterprise applications – a task that could take multiple years with GitHub Copilot handling the repetitive changes. Technical Debt Reduction: By cleaning up old code and enforcing modern best practices, GitHub Copilot helps chip away at years of technical debt. The modernised codebase is more maintainable and stable, which lowers the long-term risk hanging over critical business systems. Notably, the tool can even scan for known security vulnerabilities during refactoring as it updates your code. In short, each legacy component refreshed with GitHub Copilot comes out safer and easier to work on, instead of remaining a brittle black box. 2. Accelerating Cloud Migration and Azure Modernisation Guided Azure Migration Planning: GitHub Copilot can assess a legacy application’s cloud readiness and recommend target Azure services for each component. For instance, it might suggest migrating an on-premises database to Azure SQL, moving file storage to Azure Blob Storage, and converting background jobs to Azure Functions. This provides a clear blueprint to confidently move an app from servers to Azure PaaS. One-Click Cloud Transformations: GitHub Copilot comes with predefined migration tasksthat automate the code changes required for cloud adoption. With one click, you can have the AI apply dozens of modifications across your codebase. For example: File storage: Replace local file read/writes with Azure Blob Storage SDK calls. Email/Comms: Swap out SMTP email code for Azure Communication Services or SendGrid. Identity: Migrate authentication from Windows AD to Azure AD (Entra ID) libraries. Configuration: Remove hard-coded configurations and use Azure App Configuration or Key Vault for secrets. GitHub Copilot performs these transformations consistently, following best practices (like using connection strings from Azure settings). After applying the changes, it even fixes any compile errors automatically, so you’re not left with broken builds. What used to require reading countless Azure migration guides is now handled in minutes. Automated Validation & Deployment: Modernisation doesn’t stop at code changes. GitHub Copilot can also generate unit tests to validate that the application still behaves correctly after the migration. It helps ensure that your modernised, cloud-ready app passes all its checks before going live. When you’re ready to deploy, GitHub Copilot can produce the necessary Infrastructure-as-Code templates (e.g. Azure Resource Manager Bicep files or Terraform configs) and even set up CI/CD pipeline scripts for you. In other words, the AI can configure the Azure environment and deployment process end-to-end. This dramatically reduces manual effort and error, getting your app to the cloud faster and with greater confidence. Integrations: GitHub Copilot also helps tackle larger migration scenarios that were previously considered too complex. For example, many enterprises want to retire expensive proprietary integration platforms like MuleSoft or Apigee and use Azure-native services instead, but rewriting hundreds of integration workflows was daunting. Now, GitHub Copilot can assist in translating those workflows: for instance, converting an Apigee API proxy into an Azure API Management policy, or a MuleSoft integration into an Azure Logic App. Multi-Cloud Migrations: if you plan to consolidate from other clouds into Azure, GitHub Copilot can suggest equivalent Azure services and SDK calls to replace AWS or GCP-specific code. These AI-assisted conversions significantly cut down the time needed to reimplement functionality on Azure. The business impact can be substantial. By lowering the effort of such migrations, GitHub Copilot makes it feasible to pursue opportunities that deliver big cost savings and simplification. 3. Boosting Developer Productivity and Quality Instant Unit Tests (TDD Made Easy): Writing tests for old code can be tedious, but GitHub Copilot can generate unit test cases on the fly. Developers can highlight an existing function and ask Copilot to create tests; it will produce meaningful test methods covering typical and edge scenarios. This makes it practical to apply test-driven development practices even to legacy systems – you can quickly build a safety net of tests before refactoring. By catching bugs early through these AI-generated tests, teams gain confidence to modernise code without breaking things. It essentially injects quality into the process from the start, which is crucial for successful modernisation. DevOps Automation: GitHub Copilot helps modernise your build and deployment process as well. It can draft CI/CD pipeline configurations, Dockerfiles, Kubernetes manifests, and other DevOps scripts by leveraging its knowledge of common patterns. For example, when setting up a GitHub Actions workflow to deploy your app, GitHub Copilot will autocomplete significant parts (like build steps, test runs, deployment jobs) based on the project structure. This not only saves time but also ensures best practices (proper caching, dependency installation, etc.) are followed by default. Microsoft even provides an extension where you can describe your Azure infrastructure needs in plain language and have GitHub Copilot generate the corresponding templates and pipeline YAML. By automating these pieces, teams can move to cloud-based, automated deployments much faster. Behaviour-Driven Development Support: Teams practicing BDD write human-readable scenarios (e.g. using Gherkin syntax) describing application behaviour. GitHub Copilot’s AI is adept at interpreting such descriptions and suggesting step definition code or test implementations to match. For instance, given a scenario “When a user with no items checks out, then an error message is shown,” GitHub Copilot can draft the code for that condition or the test steps required. This helps bridge the gap between non-technical specifications and actual code. It makes BDD more efficient and accessible, because even if team members aren’t strong coders, the AI can translate their intent into working code that developers can refine. Quality and Consistency: By using AI to handle boilerplate and repetitive tasks, developers can focus more on high-value improvements. GitHub Copilot’s suggestions are based on a vast corpus of code, which often means it surfaces well-structured, idiomatic patterns. Starting from these suggestions, developers are less likely to introduce errors or reinvent the wheel, which leads to more consistent code quality across the project. The AI also often reminds you of edge cases (for example, suggesting input validation or error handling code that might be missed), contributing to a more robust application. In practice, many teams find that adopting GitHub Copilot results in fewer bugs and quicker code reviews, as the code is cleaner on the first pass. It’s like having an extra set of eyes on every pull request, ensuring standards are met. Business Benefits of AI-Powered Modernisation Bringing together the technical advantages above, what’s the payoff for the business and stakeholders? Modernising with GitHub Copilot can yield multiple tangible and intangible benefits: Accelerated Time-to-Market: Modernisation projects that might have taken a year can potentially be completed in a few months, or an upgrade that took weeks can be done in days. This speed means you can deliver new features to customers sooner and respond faster to market changes. It also reduces downtime or disruption since migrations happen more swiftly. Cost Savings: By automating repetitive work and reducing the effort required from highly paid senior engineers, GitHub Copilot can trim development costs. Faster project completion also means lower overall project cost. Additionally, running modernised apps on cloud infrastructure (with updated code) often lowers operational costs due to more efficient resource usage and easier maintenance. There’s also an opportunity cost benefit: developers freed up by Copilot can work on other value-adding projects in parallel. Improved Quality & Reliability: GitHub Copilot’s contributions to testing, bug-fixing, and even security (like patching known vulnerabilities during upgrades) result in more robust applications. Modernised systems have fewer outages and security incidents than shaky legacy ones. Stakeholders will appreciate that with GitHub Copilot, modernisation doesn’t mean “trading one set of bugs for another” – instead, you can increase quality as you modernise (GitHub’s research noted higher code quality when using Copilot, as developers are less likely to introduce errors or skip tests). Business Agility: A modernised application (especially one refactored for cloud) is typically more scalable and adaptable. New integrations or features can be added much faster once the platform is up-to-date. GitHub Copilot helps clear the modernisation hurdle, after which the business can innovate on a solid, flexible foundation (for example, once a monolith is broken into microservices or moved to Azure PaaS, you can iterate on it much faster in the future). AI-assisted modernisation thus unlocks future opportunities (like easier expansion, integrations, AI features, etc.) that were impractical on the legacy stack. Employee Satisfaction and Innovation: Developer happiness is a subtle but important benefit. When tedious work is handled by AI, developers can spend more time on creative tasks – designing new features, improving user experience, exploring new technologies. This can foster a culture of innovation. Moreover, being seen as a company that leverages modern tools (like AI Copilot) helps attract and retain top tech talent. Teams that successfully modernise critical systems with Copilot will gain confidence to tackle other ambitious projects, creating a positive feedback loop of improvement. To sum up, GitHub Copilot acts as a force-multiplier for application modernisation. It enables organisations to do more with less: convert legacy “boat anchors” into modern, cloud-enabled assets rapidly, while improving quality and developer morale. This aligns IT goals with business goals – faster delivery, greater efficiency, and readiness for the future. Call to Action: Embrace the Future of Modernisation GitHub Copilot has proven to be a catalyst for transforming how we approach legacy systems and cloud adoption. If you’re excited about the possibilities, here are next steps and what to watch for: Start Experimenting: If you haven’t already, try GitHub Copilot on a sample of your code. Use Copilot or Copilot Chat to explain a piece of old code or generate a unit test. Seeing it in action on your own project can build confidence and spark ideas for where to apply it. Identify a Pilot Project: Look at your application portfolio for a candidate that’s ripe for modernisation – maybe a small legacy service that could be moved to Azure, or a module that needs a refactor. Use GitHub Copilot to assess and estimate the effort. Often, you’ll find tasks once deemed “too hard” might now be feasible. Early successes will help win support for larger initiatives. Stay Tuned for Our Upcoming Blog Series: This post is just the beginning. In forthcoming posts, we’ll dive deeper into: Setting Up Your Organisation for Copilot Adoption: Practical tips on preparing your enterprise environment – from licensing and security considerations to training programs. We’ll discuss best practices (like running internal awareness campaigns, defining success metrics, and creating Copilot champions in your teams) to ensure a smooth rollout. Empowering Your Colleagues: How to foster a culture that embraces AI assistance. This includes enabling continuous learning, sharing prompt techniques and knowledge bases, and addressing any scepticism. We’ll cover strategies to support developers in using Copilot effectively, so that everyone from new hires to veteran engineers can amplify their productivity. Identifying High-Impact Modernisation Areas: Guidance on spotting where GitHub Copilot can add the most value. We’ll look at different domains – code, cloud, tests, data – and how to evaluate opportunities (for example, using telemetry or feedback to find repetitive tasks suited for AI, or legacy components with high ROI if modernised). Engage and Share: As you start leveraging Copilot for modernisation, share your experiences and results. Success stories (even small wins like “GitHub Copilot helped reduce our code review times” or “we migrated a component to Azure in 1 sprint”) can build momentum within your organisation and the broader community. We invite you to discuss and ask questions in the comments or in our tech community forums. Take a look at the new App Modernisation Guidance—a comprehensive, step-by-step playbook designed to help organisations: Understand what to modernise and why Migrate and rebuild apps with AI-first design Continuously optimise with built-in governance and observability Modernisation is a journey, and AI is the new compass and Copilot to guide the way. By embracing tools like GitHub Copilot, you position your organisation to break through modernisation barriers that once seemed insurmountable. The result is not just updated software, but a more agile, cloud-ready business and a happier, more productive development team. Now is the time to take that step. Empower your team with Copilot, and unlock the full potential of your applications and your developers. Stay tuned for more insights in our next posts, and let’s modernise what’s possible together!1.5KViews4likes1CommentSearch Less, Build More: Inner Sourcing with GitHub Copilot and ADO MCP Server
Developers burn cycles context‑switching: opening five repos to find a logging example, searching a wiki for a data masking rule, scrolling chat history for the latest pipeline pattern. Organisations that I speak to are often on the path of transformational platform engineering projects but always have the fear or doubt of "what if my engineers don't use these resources". While projects like Backstage still play a pivotal role in inner sourcing and discoverability I also empathise with developers who would argue "How would I even know in the first place, which modules have or haven't been created for reuse". In this blog we explore how we can ensure organisational standards and developer satisfaction without any heavy lifting on either side, no custom model training, no rewriting or relocating of repositories and no stagnant local data. Using GitHub Copilot + Azure DevOps MCP server (with the free `code_search` extension) we turn the IDE into an organizational knowledge interface. Instead of guessing or re‑implementing, engineers can start scaffolding projects or solving issues as they would normally (hopefully using Copilot) and without extra prompting. GitHub Copilot can lean into organisational standards and ensure recommendations are made with code snippets directly generated from existing examples. What Is the Azure DevOps MCP Server + code_search Extension? MCP (Model Context Protocol) is an open standard that lets agents (like GitHub Copilot) pull in structured, on-demand context from external systems. MCP servers contain natural language explanations of the tools that the agent can utilise allowing dynamic decision making of when to implement certain toolsets over others. The Azure DevOps MCP Server is the ADO Product Team's implementation of that standard. It exposes your ADO environment in a way Copilot can consume. Out of the box it gives you access to: Projects – list and navigate across projects in your organization. Repositories – browse repos, branches, and files. Work items – surface user stories, bugs, or acceptance criteria. Wiki's – pull policies, standards, and documentation. This means Copilot can ground its answers in live ADO content, instead of hallucinating or relying only on what’s in the current editor window. The ADO server runs locally from your own machine to ensure that all sensitive project information remains within your secure network boundary. This also means that existing permissions on ADO objects such as Projects or Repositories are respected. Wiki search tooling available out of the box with ADO MCP server is very useful however if I am honest I have seen these wiki's go unused with documentation being stored elsewhere either inside the repository or in a project management tool. This means any tool that needs to implement code requires the ability to accurately search the code stored in the repositories themself. That is where the code_search extension enablement in ADO is so important. Most organisations have this enabled already however it is worth noting that this pre-requisite is the real unlock of cross-repo search. This allows for Copilot to: Query for symbols, snippets, or keywords across all repos. Retrieve usage examples from code, not just docs. Locate standards (like logging wrappers or retry policies) wherever they live. Back every recommendation with specific source lines. In short: MCP connects Copilot to Azure DevOps. code_search makes that connection powerful by turning it into a discovery engine. What is the relevance of Copilot Instructions? One of the less obvious but most powerful features of GitHub Copilot is its ability to follow instructions files. Copilot automatically looks for these files and uses them as a “playbook” for how it should behave. There are different types of instructions you can provide: Organisational instructions – apply across your entire workspace, regardless of which repo you’re in. Repo-specific instructions – scoped to a particular repository, useful when one project has unique standards or patterns. Personal instructions – smaller overrides layered on top of global rules when a local exception applies. (Stored in .github/copilot-instructions.md) In this solution, I’m using a single personal instructions file. It tells Copilot: When to search (e.g., always query repos and wikis before answering a standards question). Where to look (Azure DevOps repos, wikis, and with code_search, the code itself). How to answer (responses must cite the repo/file/line or wiki page; if no source is found, say so). How to resolve conflicts (prefer dated wiki entries over older README fragments). As a small example, a section of a Copilot instruction file could look like this: # GitHub Copilot Instructions for Azure DevOps MCP Integration This project uses Azure DevOps with MCP server integration to provide organizational context awareness. Always check to see if the Azure DevOps MCP server has a tool relevant to the user's request. ## Core Principles ### 1. Azure DevOps Integration - **Always prioritize Azure DevOps MCP tools** when users ask about: - Work items, stories, bugs, tasks - Pull requests and code reviews - Build pipelines and deployments - Repository operations and branch management - Wiki pages and documentation - Test plans and test cases - Project and team information ### 2. Organizational Context Awareness - Before suggesting solutions, **check existing organizational patterns** by: - Searching code across repositories for similar implementations - Referencing established coding standards and frameworks - Looking for existing shared libraries and utilities - Checking architectural decision records (ADRs) in wikis ### 3. Cross-Repository Intelligence - When providing code suggestions: - **Search for existing patterns** in other repositories first - **Reference shared libraries** and common utilities - **Maintain consistency** with organizational standards - **Suggest reusable components** when appropriate ## Tool Usage Guidelines ### Work Items and Project Management When users mention bugs, features, tasks, or project planning: ``` ✅ Use: wit_my_work_items, wit_create_work_item, wit_update_work_item ✅ Use: wit_list_backlogs, wit_get_work_items_for_iteration ✅ Use: work_list_team_iterations, core_list_projects The result... To test this I created 3 ADO Projects each with between 1-2 repositories. The repositories were light with only ReadMe's inside containing descriptions of the "repo" and some code snippets examples for usage. I have then created a brand-new workspace with no context apart from a Copilot instructions document (which could be part of a repo scaffold or organisation wide) which tells Copilot to search code and the wikis across all ADO projects in my demo environment. It returns guidance and standards from all available repo's and starts to use it to formulate its response. In the screenshot I have highlighted some key parts with red boxes. The first being a section of the readme that Copilot has identified in its response, that part also highlighted within CoPilot chat response. I have highlighted the rather generic prompt I used to get this response at the bottom of that window too. Above I have highlighted Copilot using the MCP server tooling searching through projects, repo's and code. Finally the largest box highlights the instructions given to Copilot on how to search and how easily these could be optimised or changed depending on the requirements and organisational coding standards. How did I implement this? Implementation is actually incredibly simple. As mentioned I created multiple projects and repositories within my ADO Organisation in order to test cross-project & cross-repo discovery. I then did the following: Enable code_search - in your Azure DevOps organization (Marketplace → install extension). Login to Azure - Use the AZ CLI to authenticate to Azure with "az login". Create vscode/mcp.json file - Snippet is provided below, the organisation name should be changed to your organisations name. Start and enable your MCP server - In the mcp.json file you should see a "Start" button. Using the snippet below you will be prompted to add your organisation name. Ensure your Copilot agent has access to the server under "tools" too. View this setup guide for full setup instructions (azure-devops-mcp/docs/GETTINGSTARTED.md at main · microsoft/azure-devops-mcp) Create a Copilot Instructions file - with a search-first directive. I have inserted the full version used in this demo at the bottom of the article. Experiment with Prompts – Start generic (“How do we secure APIs?”). Review the output and tools used and then tailor your instructions. Considerations While this is a great approach I do still have some considerations when going to production. Latency - Using MCP tooling on every request will add some latency to developer requests. We can look at optimizing usage through copilot instructions to better identify when Copilot should or shouldn't use the ADO MCP server. Complex Projects and Repositories - While I have demonstrated cross project and cross repository retrieval my demo environment does not truly simulate an enterprise ADO environment. Performance should be tested and closely monitored as organisational complexity increases. Public Preview - The ADO MCP server is moving quickly but is currently still public preview. We have demonstrated in this article how quickly we can make our Azure DevOps content discoverable. While their are considerations moving forward this showcases a direction towards agentic inner sourcing. Feel free to comment below how you think this approach could be extended or augmented for other use cases! Resources MCP Server Config (/.vscode/mcp.json) { "inputs": [ { "id": "ado_org", "type": "promptString", "description": "Azure DevOps organization name (e.g. 'contoso')" } ], "servers": { "ado": { "type": "stdio", "command": "npx", "args": ["-y", "@azure-devops/mcp", "${input:ado_org}"] } } } Copilot Instructions (/.github/copilot-instructions.md) # GitHub Copilot Instructions for Azure DevOps MCP Integration This project uses Azure DevOps with MCP server integration to provide organizational context awareness. Always check to see if the Azure DevOps MCP server has a tool relevant to the user's request. ## Core Principles ### 1. Azure DevOps Integration - **Always prioritize Azure DevOps MCP tools** when users ask about: - Work items, stories, bugs, tasks - Pull requests and code reviews - Build pipelines and deployments - Repository operations and branch management - Wiki pages and documentation - Test plans and test cases - Project and team information ### 2. Organizational Context Awareness - Before suggesting solutions, **check existing organizational patterns** by: - Searching code across repositories for similar implementations - Referencing established coding standards and frameworks - Looking for existing shared libraries and utilities - Checking architectural decision records (ADRs) in wikis ### 3. Cross-Repository Intelligence - When providing code suggestions: - **Search for existing patterns** in other repositories first - **Reference shared libraries** and common utilities - **Maintain consistency** with organizational standards - **Suggest reusable components** when appropriate ## Tool Usage Guidelines ### Work Items and Project Management When users mention bugs, features, tasks, or project planning: ``` ✅ Use: wit_my_work_items, wit_create_work_item, wit_update_work_item ✅ Use: wit_list_backlogs, wit_get_work_items_for_iteration ✅ Use: work_list_team_iterations, core_list_projects ``` ### Code and Repository Operations When users ask about code, branches, or pull requests: ``` ✅ Use: repo_list_repos_by_project, repo_list_pull_requests_by_repo ✅ Use: repo_list_branches_by_repo, repo_search_commits ✅ Use: search_code for finding patterns across repositories ``` ### Documentation and Knowledge Sharing When users need documentation or want to create/update docs: ``` ✅ Use: wiki_list_wikis, wiki_get_page_content, wiki_create_or_update_page ✅ Use: search_wiki for finding existing documentation ``` ### Build and Deployment When users ask about builds, deployments, or CI/CD: ``` ✅ Use: pipelines_get_builds, pipelines_get_build_definitions ✅ Use: pipelines_run_pipeline, pipelines_get_build_status ``` ## Response Patterns ### 1. Discovery First Before providing solutions, always discover organizational context: ``` "Let me first check what patterns exist in your organization..." → Search code, check repositories, review existing work items ``` ### 2. Reference Organizational Standards When suggesting code or approaches: ``` "Based on patterns I found in your [RepositoryName] repository..." "Following your organization's standard approach seen in..." "This aligns with the pattern established in [TeamName]'s implementation..." ``` ### 3. Actionable Integration Always offer to create or update Azure DevOps artifacts: ``` "I can create a work item for this enhancement..." "Should I update the wiki page with this new pattern?" "Let me link this to the current iteration..." ``` ## Specific Scenarios ### New Feature Development 1. **Search existing repositories** for similar features 2. **Check architectural patterns** and shared libraries 3. **Review related work items** and planning documents 4. **Suggest implementation** based on organizational standards 5. **Offer to create work items** and documentation ### Bug Investigation 1. **Search for similar issues** across repositories and work items 2. **Check related builds** and recent changes 3. **Review test results** and failure patterns 4. **Provide solution** based on organizational practices 5. **Offer to create/update** bug work items and documentation ### Code Review and Standards 1. **Compare against organizational patterns** found in other repositories 2. **Reference coding standards** from wiki documentation 3. **Suggest improvements** based on established practices 4. **Check for reusable components** that could be leveraged ### Documentation Requests 1. **Search existing wikis** for related content 2. **Check for ADRs** and technical documentation 3. **Reference patterns** from similar projects 4. **Offer to create/update** wiki pages with findings ## Error Handling If Azure DevOps MCP tools are not available or fail: 1. **Inform the user** about the limitation 2. **Provide alternative approaches** using available information 3. **Suggest manual steps** for Azure DevOps integration 4. **Offer to help** with configuration if needed ## Best Practices ### Always Do: - ✅ Search organizational context before suggesting solutions - ✅ Reference existing patterns and standards - ✅ Offer to create/update Azure DevOps artifacts - ✅ Maintain consistency with organizational practices - ✅ Provide actionable next steps ### Never Do: - ❌ Suggest solutions without checking organizational context - ❌ Ignore existing patterns and implementations - ❌ Provide generic advice when specific organizational context is available - ❌ Forget to offer Azure DevOps integration opportunities --- **Remember: The goal is to provide intelligent, context-aware assistance that leverages the full organizational knowledge base available through Azure DevOps while maintaining development efficiency and consistency.**1.4KViews1like3CommentsSecurity Where It Matters: Runtime Context and AI Fixes Now Integrated in Your Dev Workflow
Security teams and developers face the same frustrating cycle: thousands of alerts, limited time, and no clear way to know which issues matter most. Applications suffer attacks as quickly as once every three minutes, 1 emphasizing the importance of proactive security that prioritizes critical, exploitable vulnerabilities. Microsoft is leading this shift with new integrations in the end-to-end solution that combines GitHub Advanced Security’s developer-first application security tool with Microsoft Defender for Cloud's runtime protection, enhanced by agentic remediation. Now available in public preview. This integration empowers organizations to secure code to cloud and accelerates tackling of security issues in their software portfolio using agentic remediation and runtime context-based vulnerability prioritization. The result: fewer distractions, faster fixes, better collaboration and more proactive security from code to cloud. The DevSecOps Dilemma— too many alerts, not enough action Over the past decade, the application security industry has made significant strides in improving detection accuracy and fostering collaboration between security teams and developers. These advances have enabled both groups to work together on real issues and drive meaningful progress. However, despite these improvements, remediation trends across the industry have remained stagnant. Quarter after quarter, year after year, vulnerability counts continue to rise with critical / high vulnerabilities constituting 17.4% of vulnerability backlogs and a mean-time-to-remediation (MTTR) of 116 days 2 Today, three big challenges slow teams down: Security teams are drowning in alert fatigue, struggling to distinguish real, exploitable risks from noise. At the same time, AI is rapidly introducing new threat vectors that defenders have little time to research or understand—leaving organizations vulnerable to missed threats and evolving attack techniques. Developers lack clear prioritization while remediation takes long, so they lose time fixing issues that may never be exploited. Remediation cycles are slow, leaving systems exposed to potential attacks while teams debate which issues matter most or search for the right person to fix them Both teams rely on separate, non-integrated tools, making collaboration slow and frustrating. Development and security teams frequently operate in silos, reducing efficiency and creating blind spots. This leads to wasted time, unresolved threats, and growing backlogs. Teams are stuck reacting to noise instead of solving real problems. DevSecOps reimagined in the era of AI Your app is live and serving thousands of customers. Defender for Cloud detects a vulnerability in an internet-facing API that handles sensitive data. In the past, this alert would age in a dashboard while developers worked on unrelated fixes because they didn’t know this was the critical one. Now, with the new integration, a security campaign can be created in GitHub filtering for runtime risk (internet exposed, sensitive data etc.) notifying the developer to prioritize this issue. The developer views the issue in their workflow, understands why it matters, and uses Copilot Autofix to apply an AI-suggested fix in minutes. The developer can then select these risks at bulk and assign the GitHub Copilot coding agent to create a draft PR for a multi merge fix ready for human review. Virtual Registry: Code-to-Runtime Mapping Code to runtime mapping is possible with the Virtual Registry which makes GitHub a trusted source for artifact metadata. Integrated with Microsoft Defender for Cloud, the Virtual Registry enables smarter risk prioritization and faster incident response. Teams can quickly answer: Is this vulnerability running in production? Is it exposed to sensitive workloads? Do I need to act now? By combining runtime and repository context, the Virtual Registry streamlines alert triage and incident response. We shipped a new set of filters to both Code Scanning and Dependabot and Security Campaigns that are based on the artifact metadata that is stored in the Virtual Registry. Faster fixes with agentic remediation The integration includes Copilot Autofix, an AI-powered tool that suggests code changes to fix security problems. It checks that the fixes work and helps developers resolve issues quickly, without switching tools. To complete the agentic work flow we can be bulk assign these autofixes to GitHub Copilot Coding agent to create a draft Pull Request awaiting human review. Why this matters Fewer alerts to sort through: Focus only on what’s exploitable in production. Faster fixes: AI-powered fix suggestions through GitHub Copilot Autofix have shown to fix 50% of alerts within the PR with a 70% reduction in mean time-to-remediation 3 Better teamwork: Developers and security teams collaborate seamlessly. With collaborative security now powered by connected context, we’ve seen 68% of alert remediated using GitHub Advanced Security’s security campaigns. 3 Try it now This feature is available in public preview and will be showcased at Microsoft Ignite. If your team builds cloud-native applications, this integration helps you protect code to cloud more effectively—without slowing down development. Customer FAQs How do I start using the integration? From Microsoft Defender for Cloud: Go to the environment section in the Defender for Cloud portal. Grant a new GitHub connector or update an existing one to provide consent to scan your source code. If you use GitHub, setup is one click. You’ll immediately see initial scan results and recommended fixes. From GitHub: You will be able to filter alerts by runtime context in addition to receiving AI-suggested fixes. How do I purchase this integration? For GitHub: GitHub Advanced Security (GHAS) is available as: Code Security SKU: $30 per committer/month (available April 2025) GHAS Bundle: $49 per committer/month (available now) GitHub Enterprise Cloud GitHub Copilot For Microsoft Defender for Cloud CSPM: Defender CSPM: $5 per billable resource/month Both can be enabled through the Azure Portal as Azure meters. [1]: Software Under Siege | AppSec Threat Report 2025 | Contrast Security [2]: Edgescan | Vulnerability Statistics Report 2025 [3]: GitHub Internal Data1.7KViews2likes1Comment