ai agents
17 TopicsIntegrate Custom Azure AI Agents with CoPilot Studio and M365 CoPilot
Integrating Custom Agents with Copilot Studio and M365 Copilot In today's fast-paced digital world, integrating custom agents with Copilot Studio and M365 Copilot can significantly enhance your company's digital presence and extend your CoPilot platform to your enterprise applications and data. This blog will guide you through the integration steps of bringing your custom Azure AI Agent Service within an Azure Function App, into a Copilot Studio solution and publishing it to M365 and Teams Applications. When Might This Be Necessary: Integrating custom agents with Copilot Studio and M365 Copilot is necessary when you want to extend customization to automate tasks, streamline processes, and provide better user experience for your end-users. This integration is particularly useful for organizations looking to streamline their AI Platform, extend out-of-the-box functionality, and leverage existing enterprise data and applications to optimize their operations. Custom agents built on Azure allow you to achieve greater customization and flexibility than using Copilot Studio agents alone. What You Will Need: To get started, you will need the following: Azure AI Foundry Azure OpenAI Service Copilot Studio Developer License Microsoft Teams Enterprise License M365 Copilot License Steps to Integrate Custom Agents: Create a Project in Azure AI Foundry: Navigate to Azure AI Foundry and create a project. Select 'Agents' from the 'Build and Customize' menu pane on the left side of the screen and click the blue button to create a new agent. Customize Your Agent: Your agent will automatically be assigned an Agent ID. Give your agent a name and assign the model your agent will use. Customize your agent with instructions: Add your knowledge source: You can connect to Azure AI Search, load files directly to your agent, link to Microsoft Fabric, or connect to third-party sources like Tripadvisor. In our example, we are only testing the CoPilot integration steps of the AI Agent, so we did not build out additional options of providing grounding knowledge or function calling here. Test Your Agent: Once you have created your agent, test it in the playground. If you are happy with it, you are ready to call the agent in an Azure Function. Create and Publish an Azure Function: Use the sample function code from the GitHub repository to call the Azure AI Project and Agent. Publish your Azure Function to make it available for integration. azure-ai-foundry-agent/function_app.py at main · azure-data-ai-hub/azure-ai-foundry-agent Build a Flow in Power Platform: Move into the Power Platform (https://make.powerapps.com) to build out a flow that connects your Copilot Studio solution to your Azure Function App. When creating a new flow, select 'Build an instant cloud flow' and trigger the flow using 'Run a flow from Copilot'. Add an HTTP action to call the Function using the URL and pass the message prompt from the end user with your URL. The output of your function is plain text, so you can pass the response from your Azure AI Agent directly to your Copilot Studio solution. Create Your Copilot Studio Agent: Navigate to Microsoft Copilot Studio and select 'Agents', then 'New Agent'. Now select ‘Create’ button at the top of the screen From the top menu, navigate to ‘Topics’ and ‘System’. We will open up the ‘Conversation boosting’ topic. When you first open the Conversation boosting topic, you will see a template of connected nodes. Delete all but the initial ‘Trigger’ node. Now we will rebuild the conversation boosting agent to call the Flow you built in the previous step. Select 'Add an Action' and then select the option for existing Power Automate flow. Pass the response from your Custom Agent to the end user and end the current topic. Make Agent Available in M365 Copilot: Navigate to the 'Channels' menu and select 'Teams + Microsoft 365'. Be sure to select the box to 'Make agent available in M365 Copilot'. Save and re-publish your Copilot Agent. It may take up to 24 hours for the Copilot Agent to appear in M365 Teams agents list. Once it has loaded, select the 'Get Agents' option from the side menu of Copilot and pin your Copilot Studio Agent to your featured agent list Now, you can chat with your custom Azure AI Agent, directly from M365 Copilot! Conclusion: By following these steps, you can successfully integrate custom Azure AI Agents with Copilot Studio and M365 Copilot, enhancing you’re the utility of your existing platform and improving operational efficiency. This integration allows you to automate tasks, streamline processes, and provide better user experience for your end-users. Give it a try! Curious of how to bring custom models from your AI Foundry to your CoPilot Studio solutions? Check out this blog684Views1like2CommentsUnlock Multi-Modal Embed 4 and Multilingual Agentic RAG with Command A on Azure
Developers and enterprises now have immediate access to state-of-the-art generative and semantic models purpose-built for RAG (Retrieval-Augmented Generation) and agentic AI workflows on Azure AI Foundry to: Deploy high-performance LLMs and semantic search engines directly into production Build faster, more scalable, and multilingual RAG pipelines Leverage models that are optimized for enterprise workloads in finance, healthcare, government, and manufacturing Cohere Embed 4: High-Performance Embeddings for Search & RAG Accompanying Command A is Cohere’s Embed 4, a cutting-edge embedding model ideal for retrieval-augmented generation pipelines and semantic search. Embed 4 (the latest evolution of Cohere’s Embed series) converts text – and even images – into high-dimensional vector representations that capture semantic meaning. It’s a multi-modal, multilingual embedding model designed to provide recall and relevance in vector search, text classification, and clustering tasks. What makes Embed 4 stand out? 100+ Language Support: This model is truly global – it supports well over 100 languages for text embeddings. You can encode queries and documents in many languages (Arabic, Chinese, French, Hindi, etc.) into the same vector space, enabling cross-lingual search out of the box. For example, a question in Spanish can retrieve a relevant document originally in English if their ideas align semantically. Multi-Modal Embeddings: Embed 4 is capable of embedding not only text but also images. This means you can use it for multimodal search scenarios – e.g. indexing both textual content and images and allowing queries across them. Under the hood, the model has an image encoder; the Azure AI Foundry SDK provides an ImageEmbeddingsClient to generate embeddings from images. With this, you could embed a diagram or a screenshot and find text documents that are semantically related to that image’s content. Matryoshka Embeddings (Scalable Dimensions): A novel feature in Cohere’s Embed 4 is Matryoshka Representation Learning, which produces embeddings that can be truncated to smaller sizes with minimal loss in fidelity. In practice, the model can output a high-dimensional vector (e.g. 768 or 1024 dims) but you have the flexibility to use just the first 64, 128, 256, etc. dimensions if needed. These “nested” embeddings mean you can choose a vector size that balances accuracy vs. storage/query speed – smaller vectors save memory and compute while still preserving most of the semantic signal. This is great for enterprise deployments where vector database size and latency are critical. Enterprise Optimizations: Cohere has optimized Embed 4 for production use. It supports int8 quantization and binary embedding output natively, which can drastically reduce storage footprint and speed up similarity search with only minor impact on accuracy (useful for very large indexes). The model is also trained on massive datasets (including domain-specific data) to ensure robust performance on noisy enterprise text. It achieves state-of-the-art results on benchmark evaluations like MTEB, meaning you get retrieval quality on par with or better than other leading embeddings models (OpenAI, Google, etc.). For instance, Cohere’s previous embed model was top-tier on cross-language retrieval tasks and Embed4 further improves on that foundation. Cohere Command A: Generative Model for Enterprise AI Command A is Cohere’s latest flagship large language model, designed for high-performance text generation in demanding enterprise scenarios. It’s an instruction-tuned, conversational LLM that excels at complex tasks like multi-step reasoning, tool use (function calling), and retrieval-augmented generation. Command A features a massive 111B parameter Transformer architecture with 256K token context length – enabling it to handle extremely large inputs (hundreds of pages of text) in a single prompt without losing coherence. Source for above benchmarks : Introducing Command A: Max performance, minimal compute Some key capabilities of Command A include: Long Context (256K tokens): Using an innovative attention architecture (sliding window + global attention), Command A can ingest up to 256,000 tokens of text in one go. This enables use cases like analyzing lengthy financial reports or entire knowledge bases in a single prompt. Enterprise-Tuned Generation: Command A is optimized for business applications – it’s excellent at instructions, summarization, and especially RAG workflows where it integrates retrieved context and even cites sources to mitigate hallucinations. It supports tool calling (function calling) out-of-the-box so it can interact with external APIs or data sources as part of an Azure AI Agent. Multilingual Proficiency: Command A is good at multilingual use cases (covering all major business languages, with near leading performance in Japanese, Korean, and German). Efficient Deployment: Despite its size, Command A is engineered for efficiency – it delivers 150% higher throughput than its predecessor (Command R+ 08-2024) and requires only 2× A100/H100 GPUs to run. In practice this means lower latency. It also supports streaming token output, so applications can start receiving the response as it’s generated, keeping interaction latency low. Real-World Use Cases for Command A + Embed 4 With both a powerful generative model and a state-of-the-art embedding model at your fingertips, developers can build advanced AI solutions. Here are some real-world use cases unlocked by Command A and Embed 4 on Azure: Financial Report Summarization (RAG): Imagine ingesting thousands of pages of financial filings, earnings call transcripts, and market research into a vector store. Using Embed 4, you can embed and index all this text. When an analyst asks “What were the key revenue drivers mentioned in ACME Corp’s Q1 2025 report?”, you use the query embedding to retrieve the most relevant passages. Command A (with its 256K context) can then take those passages and generate a concise summary or answer with cited evidence. The model’s long context window means it can consider all retrieved chunks at once, and its enterprise tuning ensures factual, business-appropriate summaries. Legal Research Agent (Tool Use + Multilingual): For example a multinational law firm handling cross-border mergers and acquisitions. They have a vast repository of legal documents in multiple languages. Using Embed 4, they index these documents, creating multilingual embeddings. When a lawyer researches a specific legal precedent related to a merger in Germany, they can query in English. Embed 4 retrieves relevant German documents, and Command A summarizes key points, translates excerpts, and compares legal arguments across jurisdictions. Furthermore, Command A leverages tool calling (utilizing agentic capabilities) to retrieve additional information from external databases, such as company registration details and regulatory filings, integrating this data into its analysis to provide a comprehensive report. Technician Knowledge Assistant (RAG + Multilingual): Think of a utilities company committed to operational excellence, managing a vast network of critical equipment, including power generators, transformers, and distribution lines. They can leverage Command A, integrated with Embed 4, to index a comprehensive repository of equipment manuals, maintenance records, and sensor data in multiple languages. This enables technicians and engineers to access critical knowledge instantly. Technicians can ask questions in their native language about specific equipment issues, and Command A retrieves relevant manuals, troubleshooting guides, and past repair reports. It also guides technicians through complex maintenance procedures step-by-step, ensuring consistency and adherence to best practices. This empowers the company to optimize maintenance processes, improve overall equipment reliability, and enhance communication, ultimately achieving operational excellence. Multimodal Search & Indexing: With Embed 4’s image embedding capability, you can build search systems that go beyond text. For instance, a media company could index their image library by generating embeddings for each image (using Azure’s Image Embeddings client) and also index captions/descriptions. A user could then supply a query image (or a textual description) and retrieve both images and articles that are semantically similar to the query. This is useful for scenarios like finding slides similar to a given diagram, searching scanned invoices by content, or matching user-uploaded photos to reference documents. Getting Started: Deploying via Azure AI Foundry In Azure AI Foundry, Embed 4 can be used via the Embeddings API to encode text or images into vectors. Each text input is turned into a numeric vector (e.g. 1024-dimension float array) that you can store in a vector database or use for similarity comparisons. The embeddings are normalized for cosine similarity by default. You can also take advantage of Azure’s vector index or Azure Cognitive Search to directly build vector search on top of these model outputs. Image Source : Introducing Embed 4: Multimodal search for business One of the biggest benefits of using Azure AI Foundry is the ease of deployment for these models. Cohere’s Command A and Embed 4 are available in the model catalog – you can find their model cards and deploy them in just a few clicks. Azure Foundry supports serverless API endpoints for these models, meaning Microsoft hosts the inference infrastructure and scales it for you (with pay-as-you-go billing). Integration with Azure AI Agent Service: If you’re building an AI agent (a system that can orchestrate models and tools to perform tasks), Azure AI Agent Service makes it easy to incorporate these models. In the Agent Service, you can simply reference the deployed model by name as the agent’s reasoning LLM. For example, you could specify an agent that uses CohereCommandA as its model, and add tools like Azure Cognitive Search. The agent can then handle user requests by, say, using a Search tool (powered by Embed 4 vector index) and then passing the results to Command A for answer formulation – all managed by the Azure Agent framework. This lets you build production-grade agentic AI workflows that leverage Cohere’s models with minimal plumbing. In short, Azure provides the glue to connect Command A + Embed 4 + Tools into a coherent solution. Try Command A and Embed 4 today on Azure AI Foundry The availability of Cohere’s Command A and Embed 4 on Azure AI Foundry empowers developers to build the next generation of intelligent apps on a fully managed platform. You can now easily deploy a 256K-context LLM that rivals the best in the industry, alongside a high-performance embedding model that plugs into your search and retrieval pipelines. Whether it’s summarizing lengthy documents with cited facts, powering a multilingual enterprise assistant, enabling multimodal search experiences, or orchestrating complex tool-using agents – these models open up a world of possibilities. Azure AI Foundry makes it simple to integrate these capabilities into your solutions, with the security, compliance, and scalability of Azure’s cloud. We encourage you to try out Command A and Embed 4 in your own projects. Spin them up from the Azure model catalog, use the provided SDK examples to get started, and explore how they can elevate your applications’ intelligence. With Cohere’s models on Azure, you have cutting-edge AI at your fingertips, ready to deploy in production. We’re excited to see what you build with them!997Views0likes0CommentsAI Avatars: Redefining Human-Digital Interaction in the Enterprise Era
In today’s AI-driven world, businesses are constantly seeking innovative ways to humanize digital experiences. AI Avatars are emerging as a powerful solution—bridging the gap between intelligent automation and authentic, human-like engagement. With advancements in speech synthesis, large language models, and avatar rendering technologies, organizations can now deploy AI-powered digital assistants that not only understand and respond but also interact with a lifelike presence. The Rise of AI Avatars in Enterprise Applications AI Avatars go beyond traditional chatbots or voice assistants. These virtual beings offer multimodal interaction—combining voice, visual cues, and conversational intelligence into a seamless user experience. Built on enterprise-grade platforms like Azure AI, these avatars can be integrated into customer support portals, digital kiosks, internal knowledge hubs, and more. Their utility spans a range of industries: Retail: Personalized shopping assistants that guide consumers through products. Healthcare: Virtual health concierges that help patients navigate care. Education: Interactive tutors that deliver lessons with empathy and responsiveness. HR and Training: Onboarding avatars that answer employee questions, onboard new hires, or provide compliance updates. One of our key partners, Cloudforce, has integrated AI Avatar technology directly into their flagship platform nebulaONE®. This integration enables enterprises to deploy digital assistants that are deeply embedded in business processes, offering contextualized support and real-time engagement. From training and onboarding to employee self-service, nebulaONE's agentic AI Avatars act as a digital bridge between users and systems—driving efficiency, engagement, and satisfaction. Partner Spotlight: Cloudforce’s Avatar Initiative To operationalize and productize AI Avatars, Microsoft collaborates with a growing ecosystem of partners. Cloudforce is one of the early pioneers in this space. Their work in embedding avatars into nebulaONE demonstrates what’s possible when advanced AI meets real-world enterprise needs. With a vision to transform user interaction across industries, Cloudforce built a production-grade AI Avatar module designed to support customer Q&A, knowledge discovery, and live guided walkthroughs. Leveraging Azure OpenAI, Azure AI Speech, and privately-deployed secure cloud infrastructure, they have brought conversational intelligence to life—with both a face and a voice. Looking ahead, Cloudforce’s broader vision is to bring AI Avatar capabilities to millions of students—delivering immersive learning experiences that blend interactivity, personalization, and scale. Their education-focused roadmap enhancements highlight the potential of avatars not just as productivity agents, but as accessible and empathetic digital educators, delivering equitable access to knowledge previously reserved for a fortunate few. This kind of partner innovation illustrates how AI Avatars can be customized and scaled to deliver tangible business value across multiple domains. Partner Contribution "Students are already embracing generative AI at a pace and proficiency that far exceeds many professional audiences. With Azure's AI Avatar technology, educators and institutions can tailor unique GenAI interactions that promote reasoning and learning over simply receiving answers the way they would with common public bots." says Husein Sharaf, Founder and CEO at Cloudforce. "We understand the concerns and hesitation that our education partners are currently grappling with, however we believe they can and should take an active role in shaping how this transformative technology is leveraged across their campuses, or risk being left behind as students choose their own adventure." "Microsoft's enterprise AI capabilities are enabling partners like us to deliver secure, cost-efficient, and responsible AI experiences at scale. With the Azure AI Foundry and key innovations like AI Avatars as our building blocks, the nebulaONE platform is poised to serve as the GenAI gateway to tens of thousands of business users, and millions of students at leading educational institutions globally. Our customers are seeking unique differentiators that will enable them to compete and win in the age of AI, and our collaboration with Microsoft is empowering us to deliver just that." Summary AI Avatars represent the next frontier in digital interaction. By combining conversational AI, expressive voice synthesis, and realistic visual rendering, these intelligent agents deliver truly human-like experiences—at scale. They are not just tools, but digital extensions of your brand. Partners like Cloudforce are leading the way with innovative platforms like nebulaONE, showing how this technology can be embedded into enterprise solutions and educational experiences to drive efficiency with a human touch. While Cloudforce is among the first to productize AI Avatars using Azure AI, they are part of a growing movement—helping to shape the future of AI-powered experiences across industries. As AI continues to evolve, avatars will become a standard interface—transforming the way we learn, work, and engage with digital systems.842Views6likes2CommentsThe Future of AI: Computer Use Agents Have Arrived
Discover the groundbreaking advancements in AI with Computer Use Agents (CUAs). In this blog, Marco Casalaina shares how to use the Responses API from Azure OpenAI Service, showcasing how CUAs can launch apps, navigate websites, and reason through tasks. Learn how CUAs utilize multimodal models for computer vision and AI frameworks to enhance automation. Explore the differences between CUAs and traditional Robotic Process Automation (RPA), and understand how CUAs can complement RPA systems. Dive into the future of automation and see how CUAs are set to revolutionize the way we interact with technology.1.3KViews2likes0CommentsThe Future of AI: Harnessing AI for E-commerce - personalized shopping agents
Explore the development of personalized shopping agents that enhance user experience by providing tailored product recommendations based on uploaded images. Leveraging Azure AI Foundry, these agents analyze images for apparel recognition and generate intelligent product recommendations, creating a seamless and intuitive shopping experience for retail customers.670Views5likes3CommentsThe Future of AI: Unleashing the Potential of AI Translation
The Co-op Translator automates the translation of markdown files and text within images using Azure AI Foundry. This open-source tool leverages advanced Large Language Model (LLM) technology through Azure OpenAI Services and Azure AI Vision to provide high-quality translations. Designed to break language barriers, the Co-op Translator features an easy-to-use command line interface and Python package, making technical content globally accessible with minimal manual effort.401Views0likes0CommentsProject Maria: Bringing Speech and Avatars Together for Next-Generation Customer Experiences
In an age where digital transformation influences nearly every aspect of business, companies are actively seeking innovative ways to differentiate their customer interactions. Traditional text-based chatbots, while helpful, often leave users wanting a more natural, personalized, and efficient experience. Imagine hosting a virtual brand ambassador—a digital twin of yourself or your organization’s spokesperson—capable of answering customer queries in real time with a lifelike voice and expressive 2D or 3D face. This is where Project Maria comes in. Project Maria is an internal Microsoft initiative that integrates cutting-edge speech-to-text (STT), text-to-speech (TTS), large language model and avatar technologies. Using Azure AI speech and custom neural voice models, it seeks to create immersive, personalized interactions for customers—reducing friction, increasing brand loyalty, and opening new business opportunities in areas such as customer support, product briefings, digital twins, live marketing events, safety briefings, and beyond. In this blog post, we will dive into: The Problem and Rationale for evolving beyond basic text-based solutions. Speech-to-Text (STT), Text-to-Speech (TTS) Pipelines, Azure OpenAI GPT-4o Real-Time API that power natural conversations. Avatar Models in Azure, including off-the-shelf 2D avatars and fully customized custom avatar Neural Voice Model Creation, from data gathering to training and deployment on Azure. Security and Compliance considerations for handling sensitive voice assets and data. Use Cases from customer support to digital brand ambassadors and safety briefings. Real-World Debut of Project Maria, showcased at the AI Leaders’ Summit in Seattle. Future Outlook on how custom avatar will reshape business interactions, scale presence, and streamline time-consuming tasks. If you’re developing or considering a neural (custom) voice + avatar models for your product or enterprise, this post will guide you through both conceptual and technical details to help you get started—and highlight where the field is heading next. 1. The Problem: Limitations of Text-Based Chatbots 1.1 Boredom and Fatigue in Text Interactions Text-based chatbots have come a long way, especially with the advent of powerful Large Language Models (LLMs) and Small Large Models (SLMs). Despite these innovations, interactions can still become tedious—often requiring users to spend significant personal time crafting the right questions. Many of us have experienced chatbots that respond with excessively verbose or repetitive messages, leading to boredom or even frustration. In industries that demand immediacy—like healthcare, finance, or real-time consumer support—purely text-based exchanges can feel slow and cumbersome. Moreover, text chat requires a user’s full attention to read and type, whether in a busy contact center environment or an internal knowledge base where employees juggle multiple tasks. 1.2 Desire for More Engaging and Efficient Modalities Today’s users expect something closer to human conversation. Devices ranging from smartphones to smart speakers and in-car infotainment systems have normalized voice-based interfaces. Adding an avatar—whether a 2D or 3D representation—deepens engagement by combining speech with a friendly visual persona. This can elevate brand identity: an avatar that looks, talks, and gestures like your company’s brand ambassador or a well-known subject-matter expert. 1.3 The Need for Scalability In a busy customer support environment, human representatives simply can’t handle an infinite volume of conversations or offer 24/7 coverage across multiple channels. Automation is essential, yet providing high-quality automated interactions remains challenging. While a text-based chatbot might handle routine queries, a voice-based, avatar-enabled agent can manage more complex requests with greater dynamism and personality. By giving your digital support assistant both a “face” and a voice aligned with your brand, you can foster deeper emotional connections and provide a more genuine, empathetic experience. This blend of automation and personalization scales your support operations, ensuring higher customer satisfaction while freeing human agents to focus on critical or specialized tasks. 2. The Vision: Project Maria’s Approach Project Maria addresses these challenges by creating a unified pipeline that supports: Speech-to-Text (STT) for recognizing user queries quickly and accurately. Natural Language Understanding (NLU) layers (potentially leveraging Azure OpenAI or other large language models) for comprehensive query interpretation. Text-to-Speech (TTS) that returns highly natural-sounding responses, possibly in multiple languages, with customized prosody and style. Avatar Rendering, which can be a 2D animated avatar or a more advanced 3D digital twin, bringing personality and facial expressions to the conversation. By using Azure AI Services—particularly the Speech and Custom Neural Voice offerings—can deliver brand-specific voices. This ensures that each brand or individual user’s avatar can match (or approximate) a signature voice, turning a run-of-the-mill voice assistant into a truly personal digital replicas 3. Technical Foundations 3.1 Speech-to-Text (STT) At the heart of the system is Azure AI Services for Speech, which provides: Real-time transcription capabilities with a variety of languages and dialects. Noise suppression, ensuring robust performance in busy environments. Streaming APIs, critical for real-time or near-real-time interactions. When a user speaks, audio data is captured (for example, via a web microphone feed or a phone line) and streamed to the Azure service. The recognized text is returned in segments, which the NLU or conversation manager can interpret. 3.1.1 Audio Pipeline Capture: The user’s microphone audio is captured by a front-end (e.g., a web app, mobile app, or IoT device). Pre-processing: Noise reduction or volume normalization might be applied locally or in the cloud, ensuring consistent input. Azure STT Ingestion: Data is sent to the Speech service endpoint, authenticated via subscription keys or tokens (more on security later). Result Handling: The recognized text arrives in partial hypotheses (partial transcripts) and final recognized segments. Project Maria (Custom Avatar) processes these results to understand user intent 3.2 Text-to-Speech (TTS) Once an intent is identified and a response is formulated, the system needs to deliver speech output. Standard Neural Voices: Microsoft provides a wide range of prebuilt voices in multiple languages. Custom Neural Voice: For an even more personalized experience, you can train a voice model that matches a brand spokesperson or a distinct voice identity. This is done using your custom datasets, ensuring the final system speaks exactly like the recorded persona. 3.2.1 Voice Font Selection and Configuration In a typical architecture: The conversation manager (which could be an orchestrator or a custom microservice) provides the text output to the TTS service. The TTS service uses a configured voice font—like en-US-JennyNeural or a custom neural voice ID (like Maria Neural Voice) if you have a specialized voice model. The synthesized audio is returned as an audio stream (e.g., PCM or MP3). You can play this in a webpage directly or in a native app environment. Azure OpenAI GPT-4o Real-Time API integrates with Azure's Speech Services to enable seamless interactions. First, your speech is transcribed in near real time. GPT-4o then processes this text to generate context-aware responses, which are converted to natural-sounding audio via Azure TTS. This audio is synchronized with avatar models to create a lifelike, engaging interface 3.3 Real-Time Conversational Loop Maria is designed for real-time or text to speech conversations. The user’s speech is continuously streamed to Azure STT. The recognized text triggers a real-time inference step for the next best action or response. The response is generated by Azure OpenAI model (like GPT-4o) or other LLM/SLM The text is then synthesized to speech, which the user hears with minimal latency. 3.4 Avatars: 2D and Beyond 3.4.1 Prebuilt Azure 2D Avatars Azure AI Speech Services includes an Avatar capability that can be activated to display a talking head or a 2D animated character. Developers can: Choose from prebuilt characters or import basic custom animations. Synchronize lip movements to the TTS output. Overlay brand-specific backgrounds or adopt transparency for embedding in various UIs. 3.4.2 Fully Custom Avatars (Customer Support Agent Like Maria) For organizations wanting a customer support agent, subject-matter expert, or brand ambassador: Capture: Record high-fidelity audio and video of the person you want to replicate. The more data, the better the outcome (though privacy and licensing must be considered). Modeling: Use advanced 3D or specialized 2D animation software (or partner with Microsoft’s custom avatar creation solutions) to generate a rigged model that matches the real person’s facial geometry and expressions. Integration: Once the model is rigged, it can be integrated with the TTS engine. As text is converted to speech, the avatar automatically animates lip shapes and facial expressions in near real time. 3.5 Latency and Bandwidth Considerations When building an interactive system, keep an eye on: Network latency: Real-time STT and TTS require stable, fast connections. Compute resources: If hosting advanced ML or high concurrency, scaling containers (e.g., via Docker and Kubernetes) is critical. Avatars: Real-time animation might require sending frames or instructions to a client’s browser or device. 4. Building the Model: Neural Voice Model Creation 4.1 Data Gathering To train a custom neural voice, you typically need: High-quality audio clips: Ideally recorded in a professional studio to minimize background noise, with the same microphone setup throughout. Matching transcripts for each clip. Minimum data duration: Microsoft recommends a certain threshold (e.g., 300+ utterances, typically around 30 minutes to a few hours of recorded speech, depending on the complexity of the final voice needed). 4.2 Training Process Data Upload: Use the Azure Speech portal or APIs to upload your curated dataset. Model Training: Azure runs training jobs that often require a few hours (or more). This step includes: Acoustic feature extraction (spectrogram analysis). Language or phoneme modeling for the relevant language and accent. Prosody tuning, ensuring the voice can handle various styles (cheerful, empathetic, urgent, etc.). Quality Checks: After training, you receive an initial voice model. You can generate test phrases to assess clarity, intonation, and overall quality. Iteration: If the voice quality is not satisfactory, you gather more data or refine the existing data (removing noisy segments or inaccurate transcripts). 4.3 Deployment Once satisfied with the custom neural voice: Deploy the model to an Azure endpoint within your subscription. Configure your TTS engine to use the custom endpoint ID instead of a standard voice. 5. Securing Avatar and Voice Models Security is paramount when personal data, brand identity, or intellectual property is on the line. 5.1 API Keys and Endpoints Azure AI Services requires an API key or an OAuth token to access STT/TTS features. Store keys in Azure Key Vault or as secure environment variables. Avoid hard-coding them in the front-end or source control. 5.2 Access Control Role-Based Access Control (RBAC) at both Azure subscription level and container (e.g., Docker or Kubernetes) level ensures only authorized personnel can deploy or manage the containers running these services. Network Security: Use private endpoints if you want to limit exposure to the public internet. 5.3 Intellectual Property Concerns Avatar and Voice Imitation: A avatar model and custom neural voice that mimics a specific individual must be authorized by that individual. Azure has a verification process in place to ensure consent. Data Storage: The training audio data and transcripts must be securely stored, often with encryption at rest and in transit. 6. Use Cases: Bringing It All Together 6.1 Customer Support A digital avatar that greets users on a website or mobile app can handle first-level queries: “Where can I find my billing information?” “What is your return policy?” By speaking these answers aloud with a friendly face and voice, the experience is more memorable and can reduce queue times for human agents. If the question is too complex, the avatar can seamlessly hand off to a live agent. Meanwhile, transcripts of the entire conversation are stored (e.g., in Azure Cosmos DB), enabling data analytics and further improvements to the system. 6.2 Safety Briefings and Public Announcements Industries like manufacturing, aviation, or construction must repeatedly deliver consistent safety messages. A personal avatar can recite crucial safety protocols in multiple languages, ensuring nothing is lost in translation. Because the TTS voice is consistent, workers become accustomed to the avatar’s instructions. Over time, you could even create a brand or site-specific “Safety Officer” avatar that fosters familiarity. 6.3 Digital Twins at Live Events Suppose you want your company’s spokesperson to simultaneously appear at multiple events across the globe. With a digital twin: The spokesperson’s avatar and voice “present” in real time, responding to local audience questions. This can be done in multiple languages, bridging communication barriers instantaneously. Attendees get a sense of personal interaction, while the real spokesperson can focus on core tasks, or appear physically at another event entirely. 6.4 AI Training and Education In e-learning platforms, a digital tutor can guide students through lessons, answer questions in real time, and adapt the tone of voice based on the difficulty of the topic or the student’s performance. By offering a face and voice, the tutor becomes more engaging than a text-only system. 7. Debut: Maria at the AI Leaders Summit in Seattle Project Maria had its first major showcase at the AI Leaders Summit in Seattle last week. We set up a live demonstration: Live Conversations: Attendees approached a large screen that displayed Maria’s 2D avatar. On-the-Fly: Maria recognized queries with STT, generated text responses from an internal knowledge base (powered by GPT-4o or domain-specific models), then spoke them back with a custom Azure neural voice. Interactive: The avatar lip-synced to the output speech, included animated gestures for emphasis, and even displayed text-based subtitles for clarity. The response was overwhelmingly positive. Customers praised the fluid voice quality and the lifelike nature of Maria’s avatar. Many commented that they felt they were interacting with a real brand ambassador, especially because the chosen custom neural voice had just the right inflections and emotional range. 8. Technical Implementation Details Below is a high-level architecture of how Project Maria might be deployed using containers and Azure resources. Front-End Web App: Built with a modern JavaScript framework (React, Vue, Angular, etc.). Captures user audio through the browser’s WebRTC or MediaStream APIs. Connects via WebSockets or RESTful endpoints for STT requests. Renders the avatar in a <canvas> element or using a specialized avatar library. Backend: Containerized with Docker. Exposes endpoints for STT streaming (optionally passing data directly to Azure for transcription). Integrates with the TTS service, retrieving synthesized audio buffers. Returns the audio back to the front-end in a continuous stream for immediate playback. Avatar Integration: The back-end or a specialized service handles lip-sync generation (e.g., via phoneme mapping from the TTS output). The front-end renders the 2D or 3D avatar in sync with the audio playback. This can be done by streaming timing markers that indicate which phoneme is currently active. Data and Conversation Storage: Use an Azure Cosmos DB or a similar NoSQL solution to store transcripts, user IDs, timestamps, and optional metadata (e.g., conversation sentiment). This data can later be used to improve the conversation model, evaluate performance, or train advanced analytics solutions. Security: All sensitive environment variables (like Azure API keys) are loaded securely, either through Azure Key Vault or container orchestration secrets. The system enforces user authentication if needed. For instance, an internal HR system might restrict the avatar-based service to employees only. Scaling: Deploy containers in Azure Kubernetes Service (AKS), setting up auto-scaling to handle peak loads. Monitor CPU/memory usage, as well as TTS quota usage. For STT, ensure the service tier can handle simultaneous requests from multiple users. 9. Securing Avatar Models and Voice Data 9.1 Identity Management Each avatar or custom neural voice is tied to a specific subscription. Using Azure Active Directory (Azure AD), you can give fine-grained permissions so that only authorized DevOps or AI specialists can alter or redeploy the voice. 9.2 API Gateways and Firewalls For enterprise contexts, you might place an API Gateway in front of your containerized services. This central gateway can: Inspect requests for anomalies, Enforce rate-limits, Log traffic to meet compliance or auditing requirements. 9.3 Key Rotation and Secrets Management Frequently rotates keys to minimize the risk of compromised credentials. Tools like Azure Key Vault or GitHub’s secret storage features can automate the rotation process, ensuring minimal downtime. 10. The Path Forward: Scaling Custom Avatar 10.1 Extended Personalization While Project Maria currently focuses on voice and basic facial expressions, future expansions include: Emotion Synthesis: Beyond standard TTS expressions (friendly, sad, excited), we can integrate emotional AI to dynamically adjust the avatar’s tone based on user sentiment. Gesture Libraries: 2D or 3D avatars can incorporate hand gestures, posture changes, or background movements to mimic a real person in conversation. This reduces the “uncanny valley” effect. 10.2 Multilingual, Multimodal As businesses operate globally, multilingual interactions become paramount. We have seen many use cases to: Auto-detect language from a user’s speech and respond in kind. Offer real-time translation, bridging non-English speakers to brand content. 10.3 Agent Autonomy Systems like Maria won’t just respond to direct questions; they can initiate proactivity: Send voice-based notifications or warnings when critical events happen. Manage long-running tasks such as scheduling or triaging user requests, akin to an “executive assistant” for multiple users simultaneously. 10.4 Ethical and Social Considerations With near-perfect replicas of voices, there is a growing concern about identity theft, misinformation, and deepfakes. Companies implementing digital twins must: Secure explicit consent from individuals. Implement watermarking or authentication for voice data. Educate customers and employees on usage boundaries and disclaimers 11. Conclusion Project Maria represents a significant leap in how businesses and organizations can scale their presence, offering a humanized, voice-enabled digital experience. By merging speech-to-text, text-to-speech, and avatar technologies, you can: Boost Engagement: A friendly face and familiar voice can reduce user fatigue and build emotional resonance. Extend Brand Reach: Appear in many locations at once via digital twins, creating personalized interactions at scale. Streamline Operations: Automate repetitive queries while maintaining a human touch, freeing up valuable employee time. Ensure Security and Compliance: By using Azure’s robust ecosystem of services and best practices for voice data. As demonstrated at the AI Leaders Summit in Seattle, Maria is already reshaping how businesses think about communication. The synergy of avatars, neural voices, and secure, cloud-based AI is paving the way for the next frontier in customer interaction. Looking ahead, we anticipate that digital twins—like Maria—will become ubiquitous, automating not just chat responses but a wide range of tasks that once demanded human presence. From personalized marketing to advanced training scenarios, the possibilities are vast. In short, the fusion of STT, TTS, and avatar technologies is more than a novel gimmick; it is an evolution in human-computer interaction. By investing in robust pipelines, custom neural voice training, and carefully orchestrated containerized deployments, businesses can unlock extraordinary potential. Project Maria is our blueprint for how to do it right—secure, customizable, and scalable—helping organizations around the world transform user experiences in ways that are both convenient and captivating. If you’re looking to scale your brand, innovate in human-machine dialogues, or harness the power of digital twins, we encourage you to explore Azure AI Services’ STT, TTS, and Avatar solutions. Together, these advancements promise a future where your digital self (or brand persona) can meaningfully interact with users anytime, anywhere. Detailed Technical Implementation:- https://learn.microsoft.com/en-us/azure/ai-services/speech-service/text-to-speech-avatar/what-is-custom-text-to-speech-avatar Text to Speech with Multi-Agent Orchestration Framework:- https://github.com/ganachan/Project_Maria_Accelerator_tts Contoso_Maria_Greetings.mp4674Views1like1CommentThe Future of AI: Customizing AI agents with the Semantic Kernel agent framework
The blog post Customizing AI agents with the Semantic Kernel agent framework discusses the capabilities of the Semantic Kernel SDK, an open-source tool developed by Microsoft for creating AI agents and multi-agent systems. It highlights the benefits of using single-purpose agents within a multi-agent system to achieve more complex workflows with improved efficiency. The Semantic Kernel SDK offers features like telemetry, hooks, and filters to ensure secure and responsible AI solutions, making it a versatile tool for both simple and complex AI projects.1.4KViews3likes0CommentsThe Future of AI: Power Your Agents with Azure Logic Apps
Building intelligent applications no longer requires complex coding. With advancements in technology, you can now create agents using cloud-based tools to automate workflows, connect to various services, and integrate business processes across hybrid environments without writing any code.2.4KViews2likes1CommentAnnouncing Model Fine-Tuning Collaborations: Weights & Biases, Scale AI, Gretel and Statsig
As AI continues to transform industries, the ability to fine-tune models and customize them for specific use cases has become more critical than ever. Fine-tuning can enable companies to align models with their unique business goals, ensuring that AI solutions deliver results with greater precision However, organizations face several hurdles in their model customization journey: Lack of end-to-end tooling: Organizations struggle with fine-tuning foundation models due to complex processes, and the absence of tracking and evaluation tools for modifications. Data scarcity and quality: Limited access to large, high-quality datasets, along with privacy issues and high costs, complicate model training and fine-tuning. Shortage of fine-tuning expertise and pre-trained models: Many companies lack specialized knowledge and access to refined models for fine-tuning. Insufficient experimentation tools: A lack of tools for ongoing experimentation in production limits optimization of key variables like model diversity and operational efficiency. To address these challenges, Azure AI Foundry is pleased to announce new collaborations with Weights & Biases, Scale AI, Gretel and Statsig to streamline the process of model fine-tuning and experimentation through advanced tools, synthetic data and specialized expertise. Weights & Biases integration with Azure OpenAI Service: Making end-to-end fine-tuning accessible with tooling The integration of Weights & Biases with Azure OpenAI Service offers a comprehensive end-to-end solution for enterprises aiming to fine-tune foundation models such as GPT-4, GPT-4o, and GPT-4o mini. This collaboration provides a seamless connection between Azure OpenAI Service and Weights and Biases Models which offers powerful capabilities for experiment tracking, visualization, model management, and collaboration. With the integration, users can also utilize Weights and Biases Weave to evaluate, monitor, and iterate on the performance of their fine-tuned models powered AI applications in real-time. Azure's scalable infrastructure allows organizations to handle the computational demands of fine-tuning, while Weights and Biases offers robust capabilities for fine-tuning experimentation and evaluation of LLM-powered applications. Whether optimizing GPT-4o for complex reasoning tasks or using the lightweight GPT-4o mini for real-time applications, the integration simplifies the customization of models to meet enterprise-specific needs. This collaboration addresses the growing demand for tailored AI models in industries such as retail and finance, where fine-tuning can significantly improve customer service chatbots or complex financial analysis. Azure Open AI Service and Weights & Biases integration is now available in public preview. For further details on Azure OpenAI Service and Weights & Biases integration including real-world use-cases and a demo, refer to the blog here. Scale AI and Azure Collaboration: Confidently Implement Agentic GenAI Solutions in Production Scale AI collaborates with Azure AI Foundry to offer advanced fine-tuning and model customization for enterprise use cases. It enhances the performance of Azure AI Foundry models by providing high-quality data transformation, fine-tuning and customization services, end-to-end solution development and specialized Generative AI expertise. This collaboration helps improve the performance of AI-driven applications and Azure AI services such as Azure AI Agent in Azure AI Foundry, while reducing production time and driving business impact. "Scale is excited to partner with Azure to help our customers transform their proprietary data into real business value with end-to-end GenAI Solutions, including model fine-tuning and customization in Azure." Vijay Karunamurthy, Field CTO, Scale AI Checkout a demo in BRK116 session showcasing how Scale AI’s fine-tuned models can improve agents in Azure AI Foundry and Copilot Studio. In the coming months, Scale AI will offer fine-tuning services for Azure AI Agents in Azure AI Foundry. For more details, please refer to this blog and start transforming your AI initiatives by exploring Scale AI on the Azure Marketplace. Gretel and Azure OpenAI Service Collaboration: Revolutionizing data pipeline for custom AI models Azure AI Foundry is collaborating with Gretel, a pioneer in synthetic data and privacy technology, to remove data bottlenecks and bring advanced AI development capabilities to our customers. Gretel's platform enables Azure users to generate high-quality datasets for ML and AI through multiple approaches - from prompts and seed examples to differential privacy-preserved synthetic data. This technology helps organizations overcome key challenges in AI development including data availability, privacy requirements, and high development costs with support for structured, unstructured, and hybrid text data formats. Through this collaboration, customers can seamlessly generate datasets tailored to their specific use cases and industry needs using Gretel, then use them directly in Azure OpenAI Service for fine-tuning. This integration greatly reduces both costs and time compared to traditional data labeling methods, while maintaining strong privacy and compliance standards. The collaboration enables new use cases for Azure AI Foundry customers who can now easily use synthetic data generated by Gretel for training and fine-tuning models. Some of the new use cases include cost-effective improvements for Small Language Models (SLMs), improved reasoning abilities of Large Language Models (LLMs), and scalable data generation from limited real-world examples. This value is already being realized by leading enterprises. “EY is leveraging the privacy-protected synthetic data to fine-tune Azure OpenAI Service models in the financial domain," said John Thompson, Global Client Technology AI Lead at EY. "Using this technology with differential privacy guarantees, we generate highly accurate synthetic datasets—within 1% of real data accuracy—that safeguard sensitive financial information and prevent PII exposure. This approach ensures model safety through privacy attack simulations and robust data quality reporting. With this integration, we can safely fine-tune models for our specific financial use cases while upholding the highest compliance and regulatory standards.” The Gretel integration with Azure OpenAI Service is available now through Gretel SDK. Explore this blog describing a finance industry case study and checkout details in technical documentation for fine-tuning Azure OpenAI Service models with synthetic data from Gretel. Visit this page to learn more Statsig and Azure Collaboration: Enabling Experimentation in AI Applications Statsig is a platform for feature management and experimentation that helps teams manage releases, run powerful experiments, and measure the performance of their products. Statsig and Azure AI Foundry are collaborating to enable customers to easily configure and run experiments (A/B tests) in Azure AI-powered applications, using Statsig SDKs in Python, NodeJS and .NET. With these Statsig SDKs, customers can manage the configuration of their AI applications, manage the release of new configurations, run A/B tests to optimize model and application performance, and automatically collect metrics at the model and application level. Please check out this page to learn more about the collaboration and get detailed documentation here. Conclusion The new collaborations between Azure and Weights & Biases, Scale AI, Gretel and Statsig represent a significant step forward in simplifying the process of AI model customization. These collaborations aim to address the common pain points associated with fine-tuning models, including lack of end-to-end tooling, data scarcity and privacy concerns, lack of expertise and experimentation tooling. Through these collaborations, Azure AI Foundry will empower organizations to fine-tune and customize models more efficiently, ultimately enabling faster, more accurate AI deployments. Whether it’s through better model tracking, access to synthetic data, or scalable data preparation services, these collaborations will help businesses unlock the full potential of AI.2.9KViews3likes1Comment