agentic
4 TopicsMicrosoft’s A-Grade Azure AI Stack: From Dissertation Prototype to Smart Campus Pilot
This post isn't just about the Student Support Agent (SSA) I built, which earned me a Distinction. It's about how Microsoft's tools made it possible to go from a rough concept to a robust pilot, proving their developer stack is one of the most convenient and powerful options for building intelligent, ethical, and scalable educational systems. The Vision: Cutting Through Campus Complexity University life is full of fragmented systems. Students constantly juggle multiple logins, websites, and interfaces just to check a timetable, book a room, or find a policy. My goal was simple: reduce that cognitive load by creating a unified assistant that could manage all these tasks through a single, intelligent conversation. The Stack That Made It Possible The core of the system relied on a few key, interconnected technologies: Technology Core Function Impact Azure AI Search Hybrid Data Retrieval Anchored responses in official documents. Azure OpenAI Natural Language Generation Created human-like, accurate answers. Semantic Kernel (SK) Multi-Agent Orchestration Managed complex workflows and memory. Azure Speech SDK Multimodal Interface Enabled accessible voice input and output. The foundation was built using Streamlit and FastAPI for rapid prototyping. Building a system that's context-aware, accessible, and extensible is a huge challenge, but it's exactly where the Microsoft AI stack shined. From Simple Chatbot to Multi-Agent Powerhouse Early campus chatbots are often single-agent models, great for basic FAQs, but they quickly fail when tasks span multiple services. I used Semantic Kernel (SK) Microsoft's powerful, open-source framework to build a modular, hub-and-spoke multi-agent system. A central orchestrator routes a request (like "book a study room") to a specialist agent (the Booking Agent), which knows exactly how to handle that task. This modularity was a game-changer: I could add new features (like an Events Agent) without breaking the core system, ensuring the architecture stayed clean and ready for expansion. Agentic Retrieval-Augmented Generation (Agentic RAG): Trust and Transparency To ensure the assistant was trustworthy, I used Agentic RAG to ground responses in real campus (Imperial College London) documentation. This included everything from admission fee payments to campus shuttle time. Azure AI Search indexed all handbooks and policies, allowing the assistant to pull relevant chunks of data and then cite the sources directly in its response. Result: The system avoids common hallucinations by refusing to answer when confidence is low. Students can verify every piece of advice, dramatically improving trust and transparency. Results: A Foundation for Scalable Support A pilot study with 15 students was highly successful: 100% positive feedback on the ease of use and perceived benefit. 93% satisfaction with the voice features. High trust was established due to transparent citations. The SSA proved it could save students time by centralising tasks like booking rooms, checking policies and offering study tips! Final Thoughts Microsoft’s AI ecosystem didn’t just support my dissertation; it shaped it. The tools were reliable, well-documented, and flexible enough to handle real-world complexity. More importantly, they allowed me to focus on student experience, ethics, and pedagogy, rather than wrestling with infrastructure. If you’re a student, educator, or developer looking to build intelligent systems that are transparent, inclusive, and scalable, Microsoft’s AI stack is a great place to start! 🙋🏽♀️ About Me I’m Tyana Tshiota, a postgraduate student in Applied Computational Science and Engineering at Imperial College London. Leveraging Microsoft’s AI stack and the extensive documentation on Microsoft Learn played a key role in achieving a Distinction in my dissertation. Moving forward, I’m excited to deepen my expertise by pursuing Azure certifications. I’d like to extend my sincere gratitude to my supervisor, Lee_Stott , for his invaluable mentorship and support throughout this project. If you haven’t already, check out his insightful posts on the Educator Developer Blog, or try building your own agent with the AI Agents for Beginners curriculum developed by Lee and his team! You can reach out via my LinkedIn if you’re interested in smart campus systems, AI in education, collaborative development, or would like to discuss opportunities.71Views0likes0CommentsAI Agents in Production: From Prototype to Reality - Part 10
This blog post, the tenth and final installment in a series on AI agents, focuses on deploying AI agents to production. It covers evaluating agent performance, addressing common issues, and managing costs. The post emphasizes the importance of a robust evaluation system, providing potential solutions for performance issues, and outlining cost management strategies such as response caching, using smaller models, and implementing router models.1KViews2likes1CommentAI Agents: Building Trustworthy Agents- Part 6
This blog post, Part 6 in a series on AI agents, focuses on building trustworthy AI agents. It emphasizes the importance of safety and security in agent design and deployment. The post details a system message framework for creating robust and scalable prompts, outlining a four-step process from meta prompt to iterative refinement. It then explores various threats to AI agents, including task manipulation, unauthorized access, resource overloading, knowledge base poisoning, and cascading errors, providing mitigation strategies for each. The post also highlights the human-in-the-loop approach for enhanced trust and control, providing a code example using AutoGen. Finally, it links to further resources on responsible AI, model evaluation, and risk assessment, along with the previous posts in the series.638Views3likes0CommentsAI Agents: Mastering Agentic RAG - Part 5
This blog post, Part 5 of a series on AI agents, explores Agentic RAG (Retrieval-Augmented Generation), a paradigm shift in how LLMs interact with external data. Unlike traditional RAG, Agentic RAG allows LLMs to autonomously plan their information retrieval process through an iterative loop of actions and evaluations. The post highlights the importance of the LLM "owning" the reasoning process, dynamically selecting tools and refining queries. It covers key implementation details, including iterative loops, tool integration, memory management, and handling failure modes. Practical use cases, governance considerations, and code examples demonstrating Agentic RAG with AutoGen, Semantic Kernel, and Azure AI Agent Service are provided. The post concludes by emphasizing the transformative potential of Agentic RAG and encourages further exploration through linked resources and previous blog posts in the series.2.6KViews1like0Comments