PostgreSQL
148 TopicsSeptember 2025 Recap: Azure Database for PostgreSQL
Hello Azure Community, We are back with another round of updates for Azure Database for PostgreSQL! September is packed with powerful enhancements, from the public preview of PostgreSQL 18 to the general availability of Azure Confidential Computing, plus several new capabilities designed to boost performance, security, and developer experience. Stay tuned as we dive deeper into each of these feature updates. Before we dive into the feature highlights, let’s take a look at PGConf NYC 2025 highlights. PGConf NYC 2025 Highlights Our Postgres team was glad to be part of PGConf NYC 2025! As a Platinum sponsor, Microsoft joined the global PostgreSQL community for three days of sessions covering performance, extensibility, cloud, and AI, highlighted by Claire Giordano’s keynote, “What Microsoft is Building for Postgres—2025 in Review,” along with deep dives from core contributors and engineers. If you missed it, you can catch up here: Keynote slides: What Microsoft is Building for Postgres—2025 in Review by Claire Giordano at PGConf NYC 2025 Day 3 wrap-up: Key takeaways, highlights, and insights from the Azure Database for PostgreSQL team. Feature Highlights Near Zero Downtime scaling for High Availability (HA) enabled servers - Generally Available Azure Confidential Computing for Azure Database for PostgreSQL - Generally Available PostgreSQL 18 on Azure Database for PostgreSQL - Public Preview PostgreSQL Discovery & Assessment in Azure Migrate - Public Preview LlamaIndex Integration with Azure Postgres Latest Minor Versions GitHub Samples: Entra ID Token Refresh for PostgreSQL VS Code Extension for PostgreSQL enhancements Near Zero Downtime scaling for High Availability (HA) enabled servers – Generally Available Scaling compute for high availability (HA) enabled Azure Database for PostgreSQL servers just got faster. With Near Zero Downtime (NZD) scaling, compute changes such as vCore or tier modifications are now complete with minimal interruption, typically under 30 seconds using HA failover which maintains the connection string. The service provisions a new primary and standby instance with the updated configuration, synchronizes them with the existing setup, and performs a quick failover. This significantly reduces downtime compared to traditional scaling (which could take 2–10 minutes), improving overall availability. Visit our documentation for full details on how Near Zero Downtime scaling works. Azure Confidential Computing for Azure Database for PostgreSQL - Generally Available Azure Confidential Computing (ACC) Confidential Virtual Machines (CVMs) are now generally available for Azure Database for PostgreSQL. This capability brings hardware-based protection for data in use, ensuring your most sensitive information remains secure, even while being processed. With CVMs, your PostgreSQL flexible server instance runs inside a Trusted Execution Environment (TEE), a secure, hardware-backed enclave that encrypts memory and isolates it from the host OS, hypervisor, and even Azure operators. This means your data enjoys end-to-end protection: at rest, in transit, and in use. Key Benefits: End-to-End Security: Data protected at rest, in transit, and in use Enhanced Privacy: Blocks unauthorized access during processing Compliance Ready: Meets strict security standards for regulated workloads Confidence in Cloud: Hardware-backed isolation for critical data Discover how Azure Confidential Computing enhances PostgreSQL check out the blog announcement. PostgreSQL 18 on Azure Database for PostgreSQL – Public Preview PostgreSQL 18 is now available in public preview on Azure Database for PostgreSQL, launched the same day as the PostgreSQL community release. PostgreSQL 18 introduces new performance, scalability, and developer productivity improvements. With this preview, you get early access to the latest community release on a fully managed Azure service. By running PostgreSQL 18 on flexible server, you can test application compatibility, explore new SQL and performance features, and prepare for upgrades well before general availability. This preview release gives you the opportunity to validate your workloads, extensions, and development pipelines in a dedicated preview environment while taking advantage of the security, high availability, and management capabilities in Azure. With PostgreSQL 18 in preview, you are among the first to experience the next generation of PostgreSQL on Azure, ensuring your applications are ready to adopt it when it reaches full general availability. To learn more about preview, read https://aka.ms/pg18 PostgreSQL Discovery & Assessment in Azure Migrate – Public Preview The PostgreSQL Discovery & Assessment feature is now available in public preview on Azure Migrate, making it easier to plan your migration journey to Azure. Migrating PostgreSQL workloads can be challenging without clear visibility into your existing environment. This feature solves that problem by delivering deep insights into on-premises PostgreSQL deployments, making migration planning easier and more informed. With this feature, you can discover PostgreSQL instances across your infrastructure, assess migration readiness and identify potential blockers, receive configuration-based SKU recommendations for Azure Database for PostgreSQL, and estimate costs for running your workloads in Azure all in one unified experience. Key Benefits: Comprehensive Visibility: Understand your on-prem PostgreSQL landscape Risk Reduction: Identify blockers before migration Optimized Planning: Get tailored SKU and cost insights Faster Migration: Streamlined assessment for a smooth transition Learn more in our blog: PostgreSQL Discovery and Assessment in Azure Migrate LlamaIndex Integration with Azure Postgres The support for native LlamaIndex integration is now available for Azure Database for PostgreSQL! This enhancement brings seamless connectivity between Azure Database for PostgreSQL and LlamaIndex, allowing developers to leverage Azure PostgreSQL as a secure and high-performance vector store for their AI agents and applications. Specifically, this package adds support for: Microsoft Entra ID (formerly Azure AD) authentication when connecting to your Azure Database for PostgreSQL instances, and, DiskANN indexing algorithm when indexing your (semantic) vectors. This package makes it easy to connect LlamaIndex to your Azure PostgreSQL instances whether you're building intelligent agents, semantic search, or retrieval-augmented generation (RAG) systems. Explore the full guide here: https://aka.ms/azpg-llamaindex Latest Postgres minor versions: 17.6, 16.9, 15.13, 14.18 and 13.21 PostgreSQL minor versions 17.6, 16.9, 15.13, 14.18 and 13.21 are now supported by Azure Database for PostgreSQL. These minor version upgrades are automatically performed as part of the monthly planned maintenance in Azure Database for PostgreSQL. The upgrade automation ensures that your databases are always running the latest optimized versions without requiring manual intervention. This release fixes 3 security vulnerabilities and more than 55 bugs reported over the last several months. PostgreSQL minor versions are backward-compatible, so updates won’t affect your applications. For details about the release, see PostgreSQL community announcement. GitHub Samples: Entra ID Token Refresh for PostgreSQL We have introduced code samples for Entra ID token refresh, built specifically for Azure Database for PostgreSQL. These samples simplify implementing automatic token acquisition and refresh, helping you maintain secure, uninterrupted connectivity without manual intervention. By using these examples, you can keep sessions secure, prevent connection drops from expired tokens, and streamline integration with Azure Identity libraries for PostgreSQL workloads. What’s Included: Ready-to-use code snippets for token acquisition and refresh for Python and .NET Guidance for integrating with Azure Identity libraries Explore the samples repository on https://aka.ms/pg-access-token-refresh and start implementing it today. VS Code Extension for PostgreSQL enhancements A new version for VS Code Extension for PostgreSQL is out! This update introduces a Server Dashboard that provides high-level metadata and real-time performance metrics, along with historical insights for Azure Database for PostgreSQL Flexible Server. You can even use GitHub Copilot Chat to ask performance questions in natural language and receive diagnostic SQL queries in response. Additional enhancements include: A new keybinding for “Run Current Statement” in the Query Editor Support for dragging Object Explorer entities into the editor with properly quoted identifiers Ability to connect to databases via socket file paths Key fixes: Preserves the state of the Explain Analyze toolbar toggle Removes inadvertent logging of sensitive information from extension logs Stabilizes memory usage during long-running dashboard sessions Don’t forget to update to the latest version in the marketplace to take advantage of these enhancements and visit our GitHub repository to learn more about this month’s release. We’d love your feedback! Help us improve the Server Dashboard and other features by sharing your thoughts on GitHub . Azure Postgres Learning Bytes 🎓 Setting up logical replication between two servers This section will walk through setting up logical replication between two Azure Database for PostgreSQL flexible server instances. Logical replication replicates data changes from a source (publisher) server to a target (subscriber) server. Prerequisites PostgreSQL versions supported by logical replication (publisher/subscriber compatible). Network connectivity: subscriber must be able to connect to the publisher (VNet/NSG/firewall rules). A replication role on the publisher (or a role with REPLICATION privilege). Step 1: Configure Server Parameters on both publisher and subscriber: On Publisher: wal_level=logical max_worker_processes=16 max_replication_slots=10 max_wal_senders=10 track_commit_timestamp=on On Subscriber: wal_level=logical max_worker_processes=16 max_replication_slots=10 max_wal_senders=10 track_commit_timestamp=on max_worker_processes = 16 max_sync_workers_per_subscription = 6 autovacuum = OFF (during initial copy) max_wal_size = 64GB checkpoint_timeout = 3600 Step 2: Create Publication (Publisher) and alter role with replication privilege ALTER ROLE <replication_user> WITH REPLICATION; CREATE PUBLICATION pub FOR ALL TABLES; Step 3: Create Subscription (Subscriber) CREATE SUBSCRIPTION <subscription-name> CONNECTION 'host=<publisher_host> dbname=<db> user=<user> password=<pwd>' PUBLICATION <publication-name>;</publication-name></pwd></user></db></publisher_host></subscription-name> Step 4: Monitor Publisher: This shows active processes on the publisher, including replication workers. SELECT application_name, wait_event_type, wait_event, query, backend_type FROM pg_stat_activity WHERE state = 'active'; Subscriber: The ‘pg_stat_progress_copy’ table tracks the progress of the initial data copy for each table. SELECT * FROM pg_stat_progress_copy; To explore more details on how to get started with logical replication, visit our blog on Tuning logical replication for Azure Database for PostgreSQL. Conclusion That’s all for the September 2025 feature highlights! We remain committed to making Azure Database for PostgreSQL more powerful and secure with every release. Stay up to date on the latest enhancements by visiting our Azure Database for PostgreSQL blog updates link. Your feedback matters and helps us shape the future of PostgreSQL on Azure. If you have suggestions, ideas, or questions, we’d love to hear from you: https://aka.ms/pgfeedback. We look forward to sharing even more exciting capabilities in the coming months. Stay tuned!PgBouncer Best Practices in Azure Database for PostgreSQL – Part 1
Introduction Connection pooling is critical for scaling PostgreSQL workloads efficiently, especially in managed environments like Azure Database for PostgreSQL. PgBouncer, a lightweight connection pooler, helps manage thousands of client connections without overwhelming the database. Connection pooling is very important when managing multiple concurrent database requests, as PostgreSQL uses a process-per-connection model, which means too many active connections can: Increase context switching overhead Consume excessive CPU/memory Degrade performance under load PgBouncer addresses this by limiting active server connections and queuing the additional client requests. However, misconfiguring key settings such as default_pool_size can still lead to CPU/memory pressure, connection bottlenecks, and degraded performance. Careful planning and tuning are essential to avoid these pitfalls. Understanding connection pools Before diving into tuning, it’s important to understand how PgBouncer organizes connections: PgBouncer creates a separate pool for each unique (database, user) combination. For example: If you have 2 application roles/users connecting to 2 databases. In this scenario, PgBouncer will allocate 4 pools. Each pool maintains its own number of connections, determined by default_pool_size. So, the total number of potential server connections is: number_of_pools × default_pool_size This is why sizing default_pool_size correctly is critical. Azure PgBouncer defaults Azure Database for PostgreSQL comes with preconfigured PgBouncer settings optimized for most workloads. Understanding these defaults is essential before making any tuning changes: pool_mode: TRANSACTION (default in Azure; best for most workloads) default_pool_size: 50 (range: 1–4950) max_client_conn: 5000 (range: 1–50000) Transaction mode support for prepared statements PgBouncer now enables support for PostgreSQL PREPARED STATEMENTS when combined together with TRANSACTION mode pooling. Previously, in transaction mode cached plans were difficult to manage, as there was no way for PgBouncer to confirm whether a new connection allocated from the pool would benefit from any cached plans generated from prior PREPARED STATEMENT operations. To work around this scenario, PgBouncer now provides a parameter which controls how many globally cached plan statements remain in memory for any pooled connection to leverage. max_prepared_statements: 200 (range: 0-5000) PostgreSQL connection limits For large tiers (e.g., 96 vCores), the default max_connections is 5000, with 15 reserved for system use. That means 4985 user connections are available. For more details, see maximum connection. Sizing best practices Proper sizing ensures optimal performance and resource utilization. Here’s how to approach it: 1. Use transaction pooling Start by confirming that pool_mode = TRANSACTION is enabled. This is already the Azure default and provides the best pooling efficiency for most web applications. If your application is using prepared statements, ensure you configure max_prepared_statements accordingly. 2. Determine your maximum active concurrent database operations (max_concurrent_ops) Next, you need to estimate how many total concurrent active PostgreSQL backends your instance can maintain: For CPU-bound OLTP workloads: keep max_concurrent_ops near 1.5x -2x the number of CPU vCores. For I/O-heavy workloads: stay slightly higher than vCore count. Rule of thumb for 96 vCores: max_concurrent_ops ≈ 144–192. 3. Divide across pools Once you’ve estimated your max_concurrent_ops value, the next step is to distribute your capacity across all connection pools. default_pool_size ≈ max_concurrent_ops / number_of_pools Example: max_concurrent_ops = 144 number_of_pools = 4 default_pool_size = 144 / 4 = 36 Sample configuration To illustrate how these calculations translate into real-world settings, here’s a sample PgBouncer configuration tuned for a scenario with four pools and an Active_Backend_Target of 144. pool_mode = transaction default_pool_size = 36 ; tuned for 4 pools max_client_conn = 5000 Quick reference table For quick planning, the following table provides starting recommendations based on common Azure Database for PostgreSQL SKU sizes. Use these as a baseline and adjust according to your workload metrics. SKU Size Memory Default max_connections Pools Suggested max_concurrent_ops Starting default_pool_size 8 vCores 32 GiB 3437 2 12–16 6–12 16 vCores 64 GiB 5000 2 24–32 12–20 32 vCores 128 GiB 5000 2 48–64 30–40 48 vCores 192 GiB 5000 2 72–92 40–60 64 vCores 256 GiB 5000 2 96–128 50–70 96 vCores 384–672 GiB 5000 2 144–192 60–80 For all tiers ≥16 vCores, max_connections is capped at 5000 (with 15 reserved for system use). Notes: default_pool_size = max_concurrent_ops / number_of_pools These values are starting recommendations. You should validate them against actual workload metrics and adjust gradually. Always ensure: (number_of_pools × default_pool_size) < max_connections − 15 (reserved system slots) Monitoring and tuning After applying your configuration, continuous monitoring is key. Here’s how: Use PgBouncer metrics in Azure Monitor to track active, idle, and waiting connections. Run SHOW POOLS; for real-time stats; watch cl_waiting vs sv_idle. For detailed monitoring and management, visit the Admin Console. Recommended Alerts: Alert if waiting client connections > 0 while idle server connections = 0 (indicates pool exhaustion—consider increasing default_pool_size). Alert if active server connections approach the configured default_pool_size (may indicate need for tuning). Alert if max_client_conn utilization exceeds 80% (risk of client-side connection errors). Tip: If waiting client connections grow while idle server connections are zero, increase default_pool_size cautiously. Review performance regularly and adjust gradually. Common pitfalls Avoid these mistakes when configuring PgBouncer: Changing pool mode to SESSION by default: transaction pooling is better for most apps. Session mode will not release connections until the session is ended. Ignoring pool count: multiplying a large default_pool_size by many pools can exhaust connections. Confusing max_client_conn with Postgres capacity: PgBouncer can accept many more clients than the server concurrent processes can support, any client connections not being processed will be waiting for resources. Tuning without data: always review metrics before changes. Conclusion Choosing the right default_pool_size in Azure Database for PostgreSQL with PgBouncer is about balancing performance and resource efficiency. With built-in PgBouncer in Flexible Server, you can enable connection pooling with a single parameter making it easy to get started quickly. The default settings are optimized for most workloads, and as your requirements grow, you can further tune parameters like default_pool_size and max_connections to suit your needs. By understanding your workload, estimating an active concurrent operations, dividing it across pools while respecting PostgreSQL limits, and continuously monitoring and adjusting based on real data, you can achieve a stable, scalable, and cost-effective environment. Further reading For more in-depth guidance and real-world scenarios on PgBouncer configuration and tuning in Azure Database for PostgreSQL, explore the following resources: Leverage built-in PgBouncer in Flexible Server Monitoring PgBouncer in Azure PostgreSQL Flexible Server Identify and solve connection performance in Azure Postgres Not all Postgres connection pooling is equal Connection handling best practice with PostgreSQLPostgreSQL and the Power of Community
PGConf NYC 2025 is the premier event for the global PostgreSQL community, and Microsoft is proud to be a Platinum sponsor this year. The conference will also feature a keynote from Claire Giordano, Principal PM for PostgreSQL at Microsoft, who will share our vision for Postgres along with lessons from ten PostgreSQL hacker journeys.Architecting Secure PostgreSQL on Azure: Insights from Mercedes-Benz
Authors: Johannes Schuetzner, Software Engineer at Mercedes-Benz & Nacho Alonso Portillo, Principal Program Manager at Microsoft When you think of Mercedes-Benz, you think of innovation, precision, and trust. But behind every iconic vehicle and digital experience is a relentless drive for security and operational excellence. At Mercedes-Benz R&D in Sindelfingen, Germany, Johannes Schuetzner and the team faced a challenge familiar to many PostgreSQL users: how to build a secure, scalable, and flexible database architecture in the cloud—without sacrificing agility or developer productivity. This article shares insights from Mercedes-Benz about how Azure Database for PostgreSQL can be leveraged to enhance your security posture, streamline access management, and empower teams to innovate with confidence. The Challenge: Security Without Compromise “OK, let’s stop intrusions in their tracks,” Schuetzner began his POSETTE talk, setting the tone for a deep dive into network security and access management. Many organizations need to protect sensitive data, ensure compliance, and enable secure collaboration across distributed teams. The typical priorities are clear: Encrypt data in transit and at rest Implement row-level security for granular access Integrate with Microsoft Defender for Cloud for threat protection Focus on network security and access management—where configuration can make the biggest impact Building a Secure Network: Private vs. Public Access Mercedes-Benz explored two fundamental ways to set up their network for Azure Database for PostgreSQL: private access and public access. “With private access, your PostgreSQL server is integrated in a virtual network. With public access, it is accessible by everybody on the public internet,” explained Schuetzner. Public Access: Public endpoint, resolvable via DNS Firewall rules control allowed IP ranges Vulnerable to external attacks; traffic travels over public internet Private Access: Server injected into an Azure VNET Traffic travels securely over the Azure backbone Requires delegated subnet and private DNS VNET peering enables cross-region connectivity “One big benefit of private access is that the network traffic travels over the Azure backbone, so not the public internet,” said Schuetzner. This ensures that sensitive data remain protected, even as applications scaled across regions. An Azure VNET is restricted to an Azure region though and peering them may be complex. Embracing Flexibility: The Power of Private Endpoints Last year, Azure introduced private endpoints for PostgreSQL, a significant milestone in Mercedes-Benz’s database connectivity strategy. It adds a network interface to the resource that can also be reached from other Azure regions. This provides the resources in the VNET associated with the private endpoint to connect to the Postgres server. The network traffic travels securely over the Azure backbone. Private endpoints allow Mercedes-Benz to: Dynamically enable and disable public access during migrations Flexibly provision multiple endpoints for different VNETs and regions Have explicit control over the allowed network accesses Have in-built protection from data exfiltration Automate setup with Terraform and infrastructure-as-code This flexibility can be crucial for supporting large architectures and migration scenarios, all while maintaining robust security. Passwordless Authentication: Simplicity Meets Security Managing database passwords is a pain point for every developer. Mercedes-Benz embraced Azure Entra Authentication (formerly Azure Active Directory) to enable passwordless connections. Passwordless connections do not rely on traditional passwords but are based on more secure authentication methods of Azure Entra. They require less administrational efforts and prevent security breaches. Benefits include: Uniform user management across Azure resources Group-based access control Passwordless authentication for applications and CI/CD pipelines For developers, this means less manual overhead and fewer risks of password leaks. “Once you have set it up, then Azure takes good care of all the details, you don’t have to manage your passwords anymore, also they cannot be leaked anymore accidentally because you don’t have a password,” Schuetzner emphasized. Principle of Least Privilege: Granular Authorization Mercedes-Benz appreciates the principle of least privilege, ensuring applications have only the permissions they need—nothing more. By correlating managed identities with specific roles in PostgreSQL, teams can grant only necessary Data Manipulation Language (DML) permissions (select, insert, update), while restricting Data Definition Language (DDL) operations. This approach minimizes risk and simplifies compliance. Operational Excellence: Automation and Troubleshooting Automation is key to Mercedes-Benz’s success. Using Terraform and integrated in CI/CD pipelines, the team can provision identities, configure endpoints, and manage permissions—all as code. For troubleshooting, tools like Azure Bastion enable secure, temporary access to the database for diagnostics, without exposing sensitive endpoints. The Impact: Security, Agility, and Developer Empowerment By leveraging Azure Database for PostgreSQL, Mercedes-Benz can achieve: Stronger security through private networking and passwordless authentication Flexible, scalable architecture for global operations Streamlined access management and compliance Empowered developers to focus on innovation, not infrastructure Schuetzner concluded, “Private endpoints provide a new network opportunity for Postgres on Azure. There are additional costs, but it’s more flexible and more dynamic. Azure takes good care of all the details, so you don’t have to manage your passwords anymore. It’s basically the ultimate solution for password management.” Mercedes-Benz’s story shows that with the right tools and mindset, you can build secure and scalable solutions on Azure Database for PostgreSQL. For more details, refer to the full POSETTE session.Introducing support for Graph data in Azure Database for PostgreSQL (Preview)
We are excited to announce the addition of Apache AGE extension in Azure Database for PostgreSQL, a significant advancement that provides graph processing capabilities within the PostgreSQL ecosystem. This new extension brings a powerful toolset for developers looking to leverage a graph database with the robust enterprise features of Azure Database for PostgreSQL.8.3KViews6likes7CommentsAnnouncing Mirroring for Azure Database for PostgreSQL in Microsoft Fabric for Public Preview
Back at the first European Microsoft Fabric Community Conference in September 2024 we announced our Private Preview program for Mirroring for Azure Database for PostgreSQL in Microsoft Fabric. Today, in conjunction with 2025 edition of Microsoft Fabric Community Conference in Las Vegas, we're thrilled to announce our Public Preview milestone, giving customers the ability to leverage friction-free near-real time replication from Azure Database for PostgreSQL flexible server to Fabric OneLake in Delta tables, providing a solid foundation for reporting, advanced analytics, AI, and data science on operational data with minimal effort and impact on transactional workloads. Mirroring is setup from Fabric Data Warehousing experience by providing the Azure Database for PostgreSQL flexible server and database connection details, provide selections on what needs to be mirrored into Fabric, either all data or user selected eligible mirrored tables. And, just like that, mirroring is ready to go. Mirroring Azure Database for PostgreSQL flexible server creates an initial snapshot in Fabric OneLake, after which data is kept in sync in near-real time with every transaction. How mirroring to Fabric works in Azure Database for PostgreSQL flexible server Fabric mirroring in Azure Database for PostgreSQL flexible server is based on principles such as logical replication and the Change Data Capture (CDC) design pattern. Once Fabric mirroring is established for a database in Azure Database for PostgreSQL flexible server, an initial snapshot is created by a background process for selected tables to be mirrored. That snapshot is shipped to a Fabric OneLake's landing zone in Parquet format. A process running in Fabric, known as replicator, takes these initial snapshot files and creates tables in Delta format in the Mirrored database artifact. Subsequent changes applied to selected tables are also captured in the source database and shipped to the OneLake landing zone in batches. Those batches of changes are finally applied to the respective Delta tables in the Mirrored database artifact. For Fabric mirroring, the CDC pattern is implemented in a proprietary PostgreSQL extension called azure_cdc, which is installed and registered in source databases during Fabric mirroring enablement workflow. This guided process has a new dedicated page in Azure Portal and is setting up all required pre-requisites and is offering a simplified experience where you just need to select which databases you want to replicate to Fabric OneLake (default is up to 3). You can read additional details regarding the server enablement process and other critical configuration and monitoring options on a dedicated page in Azure Database for PostgreSQL flexible server product documentation. Explore advanced analytics and data engineering for PostgreSQL in Microsoft Fabric Once data is on OneLake, mirrored data in the delta format is ready for immediate consumption across all Fabric experiences and features, such as Power BI with new Direct Lake mode, Data Warehouse, Data Engineering, Lakehouse, KQL Database, Notebooks and Copilot, which work instantly. Direct Lake mode is a fast path to load the data from the lake with groundbreaking semantic model capability for analyzing very large data volumes in Power BI. As Direct Lake mode also supports reading Delta tables right from OneLake, the Mirrored PostgreSQL database is Power BI ready along with Copilot capabilities. Data across any mirrored database (either Azure Database for PostgreSQL, Azure SQL DB, Azure Cosmos DB or Snowflake) can be cross-joined as well, enabling querying across any database, warehouse or Lakehouse (either as a shortcut to AWS S3 or ADLS Gen 2 etc.). With the same approach, you can also have multiple PosgreSQL databases from multiple servers mirrored to OneLake like in a typical SaaS provider scenario, where each database belongs to a different tenant, and execute cross-database queries to aggregate and analyze critical business metrics. Data scientists and data engineers can work with the mirrored Azure Database for PostgreSQL data joined with other sources (see this example with CosmosDB data) that are created as shortcuts in Lakehouse. Read about endless possibilities when loading operational databases in OneLake and Microsoft Fabric in related section of our product documentation here. Getting started with Mirroring for Azure Database for PostgreSQL in Fabric To summarize, Mirroring Azure Database for PostgreSQL in Microsoft Fabric plays a crucial role in enabling analytics and driving insights from operational data by ensuring that the most recent data is available for analysis. This allows businesses to make decisions based on the most current situation, rather than relying on outdated information. Improving accuracy also reduces the risk of discrepancies between the source and the replicated data, leading to more accurate analytics and reliable insights. In addition, is essential for predictive analytics and AI models provide the most recent data to make accurate predictions and decisions. To get started and learn more about Mirroring Azure Database for PostgreSQL flexible server in Microsoft Fabric, its pre-requisites, setup, FAQ’s, current limitations, and tutorial, please click here to read all about it and stay tuned for more updates and new features coming soon. To get more updates also on overall Mirroring capabilities in Fabric, please read this other blog post where you will get the latest news.1.3KViews3likes4Comments