Open Source
75 TopicsSubgenAI makes AI practical, scalable, and sustainable with Azure Database for PostgreSQL
Authors: Abe Omorogbe, Senior Program Manager at Microsoft and Julia Schröder Langhaeuser, VP of Product Serenity Star at SubgenAI AI agents are thriving in pilots and prototypes. However, scaling them across organizations is more difficult. A recent MIT report shows that 95 percent of projects fail to reach production. Long development cycles, lack of observability, and compliance hurdles leave enterprises struggling to deliver production-ready agents. SubgenAI, a European generative AI company that focuses on democratizing AI for businesses and governments, saw an opportunity to change this. Its flagship platform, Serenity Star, transforms AI agent development from a code-heavy, fragmented process into a streamlined, no-code experience. Built on Microsoft Azure Database for PostgreSQL, Semantic Kernel, and Microsoft Foundry, Serenity Star empowers organizations to deploy production-grade AI agents in minutes, not months. SubgenAI’s mission is to make generative AI accessible, scalable, and secure for every organization. Whether you're a startup or a multinational, Serenity Star offers the tools to build intelligent agents tailored to your business logic, with full control over data and deployment. “Many things must happen around it in the coming years. Serenity Star is designed to solve problems like data control, compliance, and decision ethics—so companies can unleash the full potential of generative AI without compromising trust or profitability” - Lorenzo Serratosa Simplifying complex AI agent development Technical and operational challenges are inherent in enterprise-wide AI agent deployments. Examples include time-consuming iteration cycles, lack of observability and cost control, security concerns, and data sovereignty requirements. Serenity Star addresses these pain points by handling the entire AI agent lifecycle while providing enterprise-grade security and compliance features. Users can focus on defining their agent's purpose and behavior rather than wrestling with technical implementation details. Its framework focuses on four essentials for AI agents: the brain (underlying model), knowledge (accessible information), behavior (programmed responses), and tools (external system integrations). This framework directly influenced the technology stack choices for Serenity Star, with Azure Database for PostgreSQL powering the knowledge retrieval and Semantic Kernel enabling flexible model orchestration. Real-world architecture in action When a user query comes in, Serenity Star uses the vector capabilities of Azure Database for PostgreSQL to retrieve the most relevant knowledge. That context, combined with the user’s input, forms a complete prompt. Semantic Kernel then routes the request to the right large language model, ensuring the agent delivers accurate and context-aware responses. Serenity Star’s native connectors to platforms such as Microsoft Teams, WhatsApp, and Google Tag Manager are also part of this architecture, delivering answers directly in the collaboration and communication tools enterprises already use every day. Figure 1: Serenity Star Architecture This routing and orchestration architecture applies to the multi-tenant SaaS deployments and dedicated customer instances offered by Serenity Star. Azure Database for PostgreSQL provides native Row-Level Security (RLS) capabilities, a key advantage for securely managing multi-tenant environments. Multi-tenant deployments allow organizations to get started quickly with lower overhead, while dedicated instances meet the needs of enterprises with strict compliance and data sovereignty requirements. Optimizing for scale The same architecture that powers retrieval, routing, and multi-channel delivery also provides a foundation for performance at scale. As adoption grows, the team continuously monitors query volume, response times, and resource efficiency across both multi-tenant and dedicated environments. To stay ahead of demand, SubgenAI actively experiments with new Azure Database for PostgreSQL features such as DiskANN for faster vector search. These optimizations keep latency low even as more users and connectors are added. The result is a platform that maintains sub-60-second response times for 99 percent of chart generations, regardless of deployment model or integration point. With this systematic approach to scaling, organizations can deploy fully functional AI agents that are connected to their preferred communication platforms in just 15 minutes instead of hours. For enterprises that have struggled with failed AI projects, Serenity Star offers not only a secure and compliant solution but also one proven to grow with their needs. Why Azure Database for PostgreSQL is a cornerstone The knowledge component of AI agents relies heavily on retrieval-augmented generation (RAG) systems that perform similarity searches against embedded content. This requires a database capable of handling efficient vector search while maintaining enterprise-grade reliability and security. SubgenAI evaluated multiple vector database options. However, Azure Database for PostgreSQL with PGVector emerged as the clear winner. There were several compelling reasons for this. One is its mature technology, which provides immediate credibility with enterprise customers. Two, the ability to scale GenAI use cases with features like DiskANN for accurate and scalable vector search. There, the flexibility and appeal of using an open-source database with a vibrant and fast-moving community. As CPO Leandro Harillo explains: “When we tell them their data runs on Azure Database for PostgreSQL, it’s a relief. It's a well-known technology versus other options that were born with this new AI revolution.” As an open-source relational database management system, Azure Database for PostgreSQL offers extensibility and seamless integration with Microsoft’s enterprise ecosystem. It has a trusted reputation that appeals to organizations with strict data sovereignty and compliance requirements such as those in healthcare and insurance where reliability and governance are non-negotiable. The integration with Azure's broader ecosystem also simplified implementation. With Serenity Star built entirely on Azure infrastructure, Azure Database for PostgreSQL provided seamless connectivity and consistent performance characteristics. The fast response times necessary for real-time agent interactions are the result, along with maintaining the reliability demanded by enterprise customers. Semantic Kernel: Enabling model flexibility at scale Enterprise AI success requires the ability to experiment with different models and adapt quickly as technology evolves. Semantic Kernel makes this possible, supporting over 300 LLMs and embedding models through a unified interface. With Serenity Star, organizations can make genuine choices about their AI implementations without vendor lock-in. Companies can use embedding models from OpenAI through Azure deployments, ensuring their information remains in their own infrastructure while accessing cutting-edge capabilities. If business requirements change or new models emerge, switching becomes a configuration change rather than a development project. Semantic Kernel's comprehensive connector ecosystem also accelerated SubgenAI's own development process. Interfaces for different vector databases enabled rapid prototyping and comparison during the evaluation phase. “Semantic Kernel helped us to be able to try the different ones and choose the one that fit better for us,” notes Julia Schroder, VP of Product. The SubgenAI team has also extended Semantic Kernel to support more features in Azure Database for PostgreSQL, which is easier because of how well-known and popular PostgreSQL is. SubgenAI has also contributed improvements back to the community. This collaborative approach ensures the platform benefits from the latest developments while helping advance the broader ecosystem. Proven impact of Azure Database for PostgreSQL across industries Because organizations struggle to deliver production-ready agents because of long development cycles, lack of observability, and compliance, the effectiveness of Azure Database for PostgreSQL and other Azure services is reflected in deployment metrics and customer feedback. Production-ready agents typically require around 30 iterations for basic implementations. Complex use cases demand significantly more refinement. One GenAI customer in medical education required over 200 iterations to perfect an agent that evaluates medical students through complex case analysis. Azure PostgreSQL and other Azure services support hour-long iteration cycles rather than week-long sprints, which made this level of refinement economically feasible. Cost efficiency is another significant advantage. SubgenAI provisions and configures models in Microsoft Foundry, which eliminates idling GPU resources while providing detailed cost breakdowns. Users can see exactly how tokens are consumed across prompt text, RAG context, and tool usage, enabling data-driven optimization decisions. Consulting partnerships validate the platform's market position. One consulting firm with 50,000 employees is delighted with the easier implementation, faster deployment, and reliable production performance. Conclusion The combination of Azure Database for PostgreSQL and Semantic Kernel has enabled SubgenAI to address the fundamental challenges that cause 95 percent of enterprise AI projects to fail. Organizations using Serenity Star bypass the traditional barriers of lengthy development cycles, limited observability, and compliance hurdles that typically derail AI initiatives. The platform's architecture delivers measurable results, including a 50 percent reduction in coding time, support for complex agents requiring 200+ iterations, and deployment capabilities that compress months-long projects into 15-minute implementations. Azure Database for PostgreSQL provides the enterprise-grade foundation that customers in regulated industries require, while Semantic Kernel ensures organizations retain flexibility as AI technology evolves. This technological partnership creates a reliable pathway for companies to deploy production-ready AI agents without sacrificing data sovereignty or operational control. Through the reliability of Azure Database for PostgreSQL and the flexibility of Semantic Kernel, Serenity Star delivers an enterprise-ready foundation that makes AI practical, scalable, and sustainable.61Views0likes0CommentsAnnouncing Azure HorizonDB
Affan Dar, Vice President of Engineering, PostgreSQL at Microsoft Charles Feddersen, Partner Director of Program Management, PostgreSQL at Microsoft Today at Microsoft Ignite, we’re excited to unveil the preview of Azure HorizonDB, a fully managed Postgres-compatible database service designed to meet the needs of modern enterprise workloads. The cloud native architecture of Azure HorizonDB delivers highly scalable shared storage, elastic scale-out compute, and a tiered cache optimized for running cloud applications of any scale. Postgres is transforming industries worldwide and is emerging as the foundation of modern data solutions across all sectors at an unprecedented pace. For developers, it is the database of choice for building new applications with its rich set of extensions, open-source API, and expansive ecosystems of tools and libraries. At the same time, but at the opposite end of the workload spectrum, enterprises around the world are also increasingly turning to Postgres to modernize their existing applications. Azure HorizonDB is designed to support applications across the entire workload spectrum from the first line of code in a new app to the migration of large-scale, mission-critical solutions. Developers benefit from the robust Postgres ecosystem and seamless integration with Azure’s advanced AI capabilities, while enterprises can gain a secure, highly available, and performant cloud database to host their business applications. Whether you’re building from scratch or transforming legacy infrastructure, Azure HorizonDB empowers you to innovate and scale with confidence, today and into the future. Azure HorizonDB introduces new levels of performance and scalability to PostgreSQL. The scale-out compute architecture supports up to 3,072 vCores across primary and replica nodes, and the auto-scaling shared storage supports up to 128TB databases while providing sub-millisecond multi-zone commit latencies. This storage innovation enables Azure HorizonDB to deliver up to 3x more throughput when compared with open-source Postgres for transactional workloads. Azure HorizonDB is enterprise ready on day one. With native support for Entra ID, Private Endpoints, and data encryption, it provides compliance and security for sensitive data stored in the cloud. All data is replicated across availability zones by default and maintenance operations are transparent with near-zero downtime. Backups are fully automated, and integration with Azure Defender for Cloud provides additional protection for highly sensitive data. All up, Azure HorizonDB offers enterprise-grade security, compliance, and reliability, making it ready for business use today. Since the launch of ChatGPT, there has been an explosion of new AI apps being built, and Postgres has become the database of choice due in large part to its vector index support. Azure HorizonDB extends the AI capabilities of Postgres further with two key features. We are introducing advanced filtering capabilities to the DiskANN vector index which enable query predicate pushdowns directly into the vector similarity search. This provides significant performance and scalability improvements over pgvector HNSW while maintaining accuracy and is ideal for similarity search over transactional data in Postgres. The second feature is built-in AI model management that seamlessly integrates generative, embedding, and reranking models from Microsoft Foundry for developers to use in the database with zero configuration. In addition to enhanced vector indexing and simplified model management to build powerful new AI apps, we’re also pleased to announce the general availability of Microsoft’s PostgreSQL Extension for VS Code that provides the tooling for Postgres developers to maximize their productivity. Using this extension, GitHub Copilot is context aware of the Postgres database which means less prompting and higher quality answers, and in the Ignite release, we’ve added live monitoring with one-click GitHub Copilot debugging where Agent mode can launch directly from the performance monitoring dashboard to diagnose Postgres performance issues and guide users to a fix. Alpha Life Sciences are an existing Azure customers “I’m truly excited about how Azure HorizonDB empowers our AI development. Its seamless support for Vector DB, RAG, and Agentic AI allows us to build intelligent features directly on a reliable Postgres foundation. With Azure HorizonDB, I can focus on advancing AI capabilities instead of managing infrastructure complexities. It’s a smart, forward-looking solution that perfectly aligns with how we design and deliver AI-powered applications.” Pengcheng Xu, CTO Alpha Life Sciences For enterprises that are modernizing their applications to Postgres in the cloud, the security and availability of Azure HorizonDB make it an ideal platform. However, these migrations are often complex and time consuming for large legacy codebase conversions. To simplify this and reduce the risk, we’re pleased to announce the preview of GitHub Copilot powered Oracle migration built into the PostgreSQL Extension for VS Code. Built into VS Code, teams of engineers can work with GitHub Copilot to automate the end-to-end conversion of complex database code using rich code editing, version control, text authoring, and deployment in an integrated development environment. Azure HorizonDB is the next generation of fully managed, cloud native PostgreSQL database service. Built on the latest Azure infrastructure with state-of-the-art cloud architecture, Azure HorizonDB is ready to for the most demanding application workloads. In addition to our portfolio of managed Postgres services in Azure, Microsoft is deeply invested into the open source Postgres project and is one of the top corporate upstream contributors and sponsors for the PostgreSQL project, with 19 Postgres project contributors employed by Microsoft. As a hyperscale Postgres vendor, it’s critical to actively participate in the open-source project. It enables us to better support our customers down to the metal in Azure, and to contribute our learnings from running Postgres at scale back to the community. We’re committed to continuing our investment to push the Postgres project forward, and the team is already active in making contributions to Postgres 19 to be released in 2026. Ready to explore Azure HorizonDB? Azure HorizonDB is initially available in Central US, West US3, UK South and Australia East regions. Customers are invited to apply for early preview access to Azure HorizonDB and get hands-on experience with this new service. Participation is limited, apply now at aka.ms/PreviewHorizonDBExciting things on the horizon for PostgreSQL fans @ Ignite 2025
If you’re passionate about PostgreSQL or just curious about what’s new, you’ll want to join us at Microsoft Ignite 2025. We have a packed lineup, including sessions exploring cutting-edge features and exclusive giveaways at the PostgreSQL on Azure booth. Haven’t registered yet? Now’s the time – sign up for Microsoft Ignite and start building your schedule. Below are the must-see PostgreSQL on Azure activities, with highlights of what you’ll learn at each. Add these to your agenda today. Sessions can fill up fast! Theater sessions: get a first look, fast I know from experience that attention spans can start to wane after hours-long keynotes, content-rich sessions, and conference socializing. Luckily, we have a couple of theater sessions that offer snackable but substantial information in less time than it will take to grab lunch. And they’re located conveniently on the main conference floor. PostgreSQL on Azure: Your launchpad for intelligent apps and agents (THR705) - See how we’re making PostgreSQL AI-aware for developers to drive app and agent innovation. Includes a demo of vector similarity search, semantic operators baked into Postgres, and more! Simplifying scale-out of PostgreSQL for performant multi-tenant apps (THR706) - Discover a smarter, simpler way to scale PostgreSQL using the new Elastic Clusters feature. If your app or service is growing fast (or you want it to!), add this breakout to learn how Azure makes it easier to scale Postgres and keep it reliable. These talks are a great way to sample what’s new and decide where to dive deeper. Plus, they’re fun and demo-heavy, and who doesn’t love a good demo? Breakout sessions: a deep dive into Postgres innovations Led by Azure product leaders and executives from organizations driving innovation backed by PostgreSQL, these breakout sessions will dive into the coolest new capabilities and real-world use cases. If you want rich, technical content and more live demos, these are for you. Build mission-critical apps that scale with PostgreSQL on Azure (BRK127) - Get a closer look at the next generation of PostgreSQL on Azure. Add this session, if you’re curious about how we’re taking Postgres to the next level to support your mission-critical AI workloads. Modern data, modern apps: Innovation with Microsoft Databases (BRK134) - Gain insider knowledge on the latest innovations across open-source, SQL, and NoSQL databases, and understand how Microsoft’s integrated database portfolio supports next-gen innovation. Nasdaq Boardvantage: AI-driven governance on PostgreSQL and AI Foundry (BRK137) - Discover how a Fortune 100 merges trust with cutting-edge AI leveraging Azure’s AI-enriched and enterprise-ready solutions, including Azure Database for PostgreSQL, Azure Database for MySQL, Azure AI Foundry, Azure Kubernetes Service (AKS), and API Management. AI-assisted migration: The path to powerful performance on PostgreSQL (BRK123) - A before and after migration journey from Oracle to Azure Database for PostgreSQL. See how the new AI-assisted migration experience delivers conversion in a few clicks and minimal downtime. The blueprint for intelligent AI agents backed by PostgreSQL (BRK130) - If you’re into AI development, this session will spark ideas on bridging the gap between raw data and AI reasoning. You’ll leave with practical tips to turbocharge your AI agents with PostgreSQL. Each breakout session is 45 minutes with live demos and Q&A, so you’ll get plenty of detail and interaction with Postgres experts. Hands-on lab: experience coding with Azure superpowers Do you learn best by doing? Then our guided workshop, Build advanced AI agents with PostgreSQL (Lab515), is for you. In each 75-minute session, you’ll get to create a fully functional AI-powered application backed by PostgreSQL on Azure with step-by-step guidance and expert insight on the latest innovations enabling intelligent app development. All the tools and instructions you’ll need are provided. Labs have limited capacity, so be sure to reserve your seat for any of the four labs in advance. This lab is a great way to understand how all the pieces come together on Azure. And you’ll gain practical skills you can apply to your own projects, whether it’s customer support bots, intelligent search in your app, or any scenario where PostgreSQL + AI collide. Expert meet-up booth: meet the team, grab some swag If you still want more Postgres (or a little Postgres souvenir), you can stop by the PostgreSQL on Azure Expert Meetup booth in the Ignite Hub. This will be our homebase on the show floor, where you can: Meet the team: I’ll be there in person, along with engineers, program managers, cloud solution architects, and advocates from our team. Whether you have a burning technical question, want to share feedback, or need guidance for your specific use case, come chat with us. Get a quick demo re-run: Sometimes a 5-minute demo is worth a thousand words, especially after you’ve sat through all those words already in a keynote. The booth will have a monitor and a live environment so we can walk you through select use cases if you have questions - no appointment needed. Swag and giveaways: Ah yes, the goodies! We know conference swag is part of the fun, so we’ve got some special PostgreSQL-themed giveaways at the booth. I won’t spoil all the surprises, but rumor has it there are some limited-edition items up for grabs. Network with peers: The expert meet-up area is also a magnet for PostgreSQL enthusiasts. You might bump into other attendees at the booth who are tackling similar projects or challenges. Ignite is about community as much as content, so come by and spark up a conversation. Meet you there? Ignite is our largest event of the year. We love sharing what we’ve been working on and, most of all, hearing from you, the community. So, on behalf of the Azure for PostgreSQL team, thank you for your interest and support. We can’t wait to show you what’s new and to help you continue to succeed with Postgres. See you in San Francisco!426Views2likes0CommentsPostgreSQL and the Power of Community
PGConf NYC 2025 is the premier event for the global PostgreSQL community, and Microsoft is proud to be a Platinum sponsor this year. The conference will also feature a keynote from Claire Giordano, Principal PM for PostgreSQL at Microsoft, who will share our vision for Postgres along with lessons from ten PostgreSQL hacker journeys.318Views3likes1CommentArchitecting Secure PostgreSQL on Azure: Insights from Mercedes-Benz
Authors: Johannes Schuetzner, Software Engineer at Mercedes-Benz & Nacho Alonso Portillo, Principal Program Manager at Microsoft When you think of Mercedes-Benz, you think of innovation, precision, and trust. But behind every iconic vehicle and digital experience is a relentless drive for security and operational excellence. At Mercedes-Benz R&D in Sindelfingen, Germany, Johannes Schuetzner and the team faced a challenge familiar to many PostgreSQL users: how to build a secure, scalable, and flexible database architecture in the cloud—without sacrificing agility or developer productivity. This article shares insights from Mercedes-Benz about how Azure Database for PostgreSQL can be leveraged to enhance your security posture, streamline access management, and empower teams to innovate with confidence. The Challenge: Security Without Compromise “OK, let’s stop intrusions in their tracks,” Schuetzner began his POSETTE talk, setting the tone for a deep dive into network security and access management. Many organizations need to protect sensitive data, ensure compliance, and enable secure collaboration across distributed teams. The typical priorities are clear: Encrypt data in transit and at rest Implement row-level security for granular access Integrate with Microsoft Defender for Cloud for threat protection Focus on network security and access management—where configuration can make the biggest impact Building a Secure Network: Private vs. Public Access Mercedes-Benz explored two fundamental ways to set up their network for Azure Database for PostgreSQL: private access and public access. “With private access, your PostgreSQL server is integrated in a virtual network. With public access, it is accessible by everybody on the public internet,” explained Schuetzner. Public Access: Public endpoint, resolvable via DNS Firewall rules control allowed IP ranges Vulnerable to external attacks; traffic travels over public internet Private Access: Server injected into an Azure VNET Traffic travels securely over the Azure backbone Requires delegated subnet and private DNS VNET peering enables cross-region connectivity “One big benefit of private access is that the network traffic travels over the Azure backbone, so not the public internet,” said Schuetzner. This ensures that sensitive data remain protected, even as applications scaled across regions. An Azure VNET is restricted to an Azure region though and peering them may be complex. Embracing Flexibility: The Power of Private Endpoints Last year, Azure introduced private endpoints for PostgreSQL, a significant milestone in Mercedes-Benz’s database connectivity strategy. It adds a network interface to the resource that can also be reached from other Azure regions. This provides the resources in the VNET associated with the private endpoint to connect to the Postgres server. The network traffic travels securely over the Azure backbone. Private endpoints allow Mercedes-Benz to: Dynamically enable and disable public access during migrations Flexibly provision multiple endpoints for different VNETs and regions Have explicit control over the allowed network accesses Have in-built protection from data exfiltration Automate setup with Terraform and infrastructure-as-code This flexibility can be crucial for supporting large architectures and migration scenarios, all while maintaining robust security. Passwordless Authentication: Simplicity Meets Security Managing database passwords is a pain point for every developer. Mercedes-Benz embraced Azure Entra Authentication (formerly Azure Active Directory) to enable passwordless connections. Passwordless connections do not rely on traditional passwords but are based on more secure authentication methods of Azure Entra. They require less administrational efforts and prevent security breaches. Benefits include: Uniform user management across Azure resources Group-based access control Passwordless authentication for applications and CI/CD pipelines For developers, this means less manual overhead and fewer risks of password leaks. “Once you have set it up, then Azure takes good care of all the details, you don’t have to manage your passwords anymore, also they cannot be leaked anymore accidentally because you don’t have a password,” Schuetzner emphasized. Principle of Least Privilege: Granular Authorization Mercedes-Benz appreciates the principle of least privilege, ensuring applications have only the permissions they need—nothing more. By correlating managed identities with specific roles in PostgreSQL, teams can grant only necessary Data Manipulation Language (DML) permissions (select, insert, update), while restricting Data Definition Language (DDL) operations. This approach minimizes risk and simplifies compliance. Operational Excellence: Automation and Troubleshooting Automation is key to Mercedes-Benz’s success. Using Terraform and integrated in CI/CD pipelines, the team can provision identities, configure endpoints, and manage permissions—all as code. For troubleshooting, tools like Azure Bastion enable secure, temporary access to the database for diagnostics, without exposing sensitive endpoints. The Impact: Security, Agility, and Developer Empowerment By leveraging Azure Database for PostgreSQL, Mercedes-Benz can achieve: Stronger security through private networking and passwordless authentication Flexible, scalable architecture for global operations Streamlined access management and compliance Empowered developers to focus on innovation, not infrastructure Schuetzner concluded, “Private endpoints provide a new network opportunity for Postgres on Azure. There are additional costs, but it’s more flexible and more dynamic. Azure takes good care of all the details, so you don’t have to manage your passwords anymore. It’s basically the ultimate solution for password management.” Mercedes-Benz’s story shows that with the right tools and mindset, you can build secure and scalable solutions on Azure Database for PostgreSQL. For more details, refer to the full POSETTE session.