ITPro
4 TopicsMicrosoft Copilot in Azure Series - Copilot Access Management
Hello folks! Today, we’re diving into Microsoft Copilot in Azure. It’s like having a super-smart assistant in the cloud! It’s an AI-powered tool that’s all about making your life easier when you’re working with Azure, when you’re navigating the Azure portal, or using the Azure mobile app. And today we'll cover how to manage access to it.4.5KViews0likes3CommentsAzure File Sync with ARC... Better together.
Hello Folks! Managing file servers across on-premises datacenters and cloud environments can be challenging for IT professionals. Azure File Sync (AFS) has been a game-changer by centralizing file shares in Azure while keeping your on-premises Windows servers in play. With AFS, a lightweight agent on a Windows file server keeps its files synced to an Azure file share, effectively turning the server into a cache for the cloud copy. This enables classic file server performance and compatibility, cloud tiering of cold data to save local storage costs, and capabilities like multi-site file access, backups, and disaster recovery using Azure’s infrastructure. Now, with the introduction of Azure Arc integration for Azure File Sync, it gets even better. Azure Arc, which allows you to project on-prem and multi-cloud servers into Azure for unified management, now offers an Azure File Sync agent extension that dramatically simplifies deployment and management of AFS on your hybrid servers. In this post, I’ll explain how this new integration works and how you can leverage it to streamline hybrid file server management, enable cloud tiering, and improve performance and cost efficiency. You can see the E2E 10-Minute Drill - Azure File sync with ARC, better together episode on YouTube below. Azure File Sync + Azure Arc: Better Together Azure File Sync has already enabled a hybrid cloud file system for many organizations. You install the AFS agent on a Windows Server (2016 or later) and register it with an Azure Storage Sync Service. From that point, the server’s designated folders continuously sync to an Azure file share. AFS’s hallmark feature is cloud tiering, older, infrequently used files can be transparently offloaded to Azure storage, while your active files stay on the local server cache. Users and applications continue to see all files in their usual paths; if someone opens a file that’s tiered, Azure File Sync pulls it down on-demand. This means IT pros can drastically reduce expensive on-premises storage usage without limiting users’ access to files. You also get multi-site synchronization (multiple servers in different locations can sync to the same Azure share), which is great for branch offices sharing data, and cloud backup/DR by virtue of having the data in Azure. In short, Azure File Sync transforms your traditional file server into a cloud-connected cache that combines the performance of local storage with the scalability and durability of Azure. Azure Arc comes into play to solve the management side of hybrid IT. Arc lets you project non-Azure machines (whether on-prem or even in other Clouds) into Azure and manage them alongside Azure VMs. An Arc-enabled server appears in the Azure portal and can have Extensions installed, which are components or agents that Azure can remotely deploy to the machine. Prior to now, installing or updating the Azure File Sync agent on a bunch of file servers meant handling each machine individually (via Remote Desktop, scripting, or System Center). This is where the Azure File Sync Agent Extension for Windows changes the game. Using the new Arc extension, deploying Azure File Sync is as easy as a few clicks. In the Azure Portal, if your Windows server is Arc-connected (i.e. the Azure Arc agent is installed and the server is registered in Azure), you can navigate to that server resource and simply Add the “Azure File Sync Agent for Windows” extension. The extension will automatically download and install the latest Azure File Sync agent (MSI) on the server. In other words, Azure Arc acts like a central deployment tool: you no longer need to manually log on or run separate install scripts on each server to set up or update AFS. If you have 10, 50, or 100 Arc-connected file servers, you can push Azure File Sync to all of them in a standardized way from Azure – a huge time saver for large environments. The extension also supports configuration options (like proxy settings or automatic update preferences) that you can set during deployment, ensuring the agent is installed with the right settings for your environment Note: The Azure File Sync Arc extension is currently Windows-only. Azure Arc supports Linux servers too, but the AFS agent (and thus this extension) works only on Windows Server 2016 or newer. So, you’ll need a Windows file server to take advantage of this feature (which is usually the case, since AFS relies on NTFS/Windows currently). Once the extension installs the agent, the remaining steps to fully enable sync are the same as a traditional Azure File Sync deployment: you register the server with your Storage Sync Service (if not done automatically) and then create a sync group linking a local folder (server endpoint) to an Azure file share (cloud endpoint). This can be done through the Azure portal, PowerShell, or CLI. The key point is that Azure Arc now handles the heavy lifting of agent deployment, and in the future, we may see even tighter integration where more of the configuration can be done centrally. For now, IT pros get a much simpler installation process – and once configured, all the hybrid benefits of Azure File Sync are in effect for your Arc-managed servers. Key Benefits for IT Pros: Azure File Sync + Azure Arc Centralized Management Azure Arc provides a single control plane in Azure to manage file services across multiple servers and locations. You can deploy updates or new agents at scale and monitor status from the cloud—reducing overhead and ensuring consistency. Simplified Deployment No manual installs. Azure Arc automates Azure File Sync setup by fetching and installing the agent remotely. Ideal for distributed environments, and easily integrated with automation tools like Azure CLI or PowerShell. Cost Optimization with Cloud Tiering Offload rarely accessed files to Azure storage to free local disk space and extend hardware life. Cache only hot data (10–20%) locally while leveraging Azure’s storage tiers for lower TCO. Improved Performance Cloud tiering keeps frequently used files local for LAN-speed access, reducing WAN latency. Active data stays on-site; inactive data moves to the cloud—delivering a smoother experience for distributed teams. Built-In Backup & DR Azure Files offers redundancy and point-in-time recovery via Azure Backup. If a server fails, you can quickly restore from Azure. Multi-site sync ensures continued access, supporting business continuity and cloud migration strategies. Getting Started with Azure File Sync via Arc Prepare Azure Arc and Servers Connect Windows file servers (Windows Server 2016+) to Azure Arc by installing the Connected Machine agent and onboarding them. Refer to Azure Arc documentation for setup. Deploy Azure File Sync Agent Extension Install the Azure File Sync agent extension on Arc-enabled servers using the Azure portal, PowerShell, or CLI. Verify the Azure Storage Sync Agent is installed on the server. See Microsoft Learn for detailed steps. Complete Azure File Sync Setup In the Azure portal, create or open a Storage Sync Service. Register the server and create a Sync Group to link a local folder (Server Endpoint) with an Azure File Share (Cloud Endpoint). Configure cloud tiering and free space settings as needed. Test and Monitor Allow time for initial sync. Test file access (including tiered files) and monitor sync status in the Azure portal. Use Azure Monitor for health alerts. Explore Advanced Features Enable options like cloud change enumeration, NTFS ACL sync, and Azure Backup for file shares to enhance functionality. Resources and Next Steps For more info and step-by-step guidance, check out these resources: Microsoft Learn – Azure File Sync Agent Extension on Azure Arc: Official documentation on installing and managing the AFS agent via Azure Arc. Azure File Sync Documentation: Comprehensive docs for Azure File Sync, including deployment guides, best practices, and troubleshooting. Azure Arc Documentation: Learn how to connect servers to Azure Arc and manage extensions. This is useful if you’re new to Arc or need to meet prerequisites for using the AFS extension. You, as an IT Pro, can provide your organization with the benefits of cloud storage – scalability, reliability, pay-as-you-go economics – while retaining the performance and control of on-premises file servers. All of this can be achieved with minimal overhead, thanks to the new Arc-delivered agent deployment and the powerful features of Azure File Sync. Check it out if you have not done so before. I highly recommend exploring this integration to modernize your file services. Cheers! Pierre Roman360Views1like0CommentsSupercharging NVAs in Azure with Accelerated Connections
Hello folks, If you run firewalls, routers, or SD‑WAN NVAs in Azure and your pain is connection scale rather than raw Mbps, there is a feature you should look at: Accelerated Connections. It shifts connection processing to dedicated hardware in the Azure fleet and lets you size connection capacity per NIC, which translates into higher connections‑per‑second and more total active sessions for your virtual appliances and VMs. This article distills a recent E2E chat I hosted with the Technical Product Manager working on Accelerated Connections and shows you how to enable and operate it safely in production. The demo and guidance below are based on that conversation and the current public documentation. What Accelerated Connections is (and what it is not) Accelerated Connections is configured at the NIC level of your NVAs or VMs. You can choose which NICs participate. That means you might enable it only on your high‑throughput ingress and egress NICs and leave the management NIC alone. It improves two things that matter to infrastructure workloads: Connections per second (CPS). New flows are established much faster. Total active connections. Each NIC can hold far more simultaneous sessions before you hit limits. It does not increase your nominal throughput number. The benefit is stability under high connection pressure, which helps reduce drops and flapping during surges. There is a small latency bump because you introduce another “bump in the wire,” but in application terms it is typically negligible compared to the stability you gain. How it works under the hood In the traditional path, host CPUs evaluate SDN policies for flows that traverse your virtual network. That becomes a bottleneck for connection scale. Accelerated Connections offloads that policy work onto specialized data processing hardware in the Azure fleet so your NVAs and VMs are not capped by host CPU and flow‑table memory constraints. Industry partners have described this as decoupling the SDN stack from the server and shifting the fast‑path onto DPUs residing in purpose‑built appliances, delivered to you as a capability you attach at the vNIC. The result is much higher CPS and active connection scale for virtual firewalls, load balancers, and switches. Sizing the feature per NIC with Auxiliary SKUs You pick a performance tier per NIC using Auxiliary SKU values. Today the tiers are A1, A2, A4, and A8. These map to increasing capacity for total simultaneous connections and CPS, so you can right‑size cost and performance to the NIC’s role. As discussed in my chat with Yusef, the mnemonic is simple: A1 ≈ 1 million connections, A2 ≈ 2 million, A4 ≈ 4 million, A8 ≈ 8 million per NIC, along with increasing CPS ceilings. Choose the smallest tier that clears your peak, then monitor and adjust. Pricing is per hour for the auxiliary capability. Tip: Start with A1 or A2 on ingress and egress NICs of your NVAs, observe CPS and active session counters during peak events, then scale up only if needed. Where to enable it You can enable Accelerated Connections through the Azure portal, CLI, PowerShell, Terraform, or templates. The setting is applied on the network interface. In the portal, export the NIC’s template and you will see two properties you care about: auxiliaryMode and auxiliarySku. Set auxiliaryMode to AcceleratedConnections and choose an auxiliarySku tier (A1, A2, A4, A8). Note: Accelerated Connections is currently a limited GA capability. You may need to sign up before you can configure it in your subscription. Enablement and change windows Standalone VMs. You can enable Accelerated Connections with a stop then start of the VM after updating the NIC properties. Plan a short outage. Virtual Machine Scale Sets. As of now, moving existing scale sets onto Accelerated Connections requires re‑deployment. Parity with the standalone flow is planned, but do not bank on it for current rollouts. Changing SKUs later. Moving from A1 to A2 or similar also implies a downtime window. Treat it as an in‑place maintenance event. Operationally, approach this iteratively. Update a lower‑traffic region first, validate, then roll out broadly. Use active‑active NVAs behind a load balancer so one instance can drain while you update the other. Operating guidance for IT Pros Pick the right NICs. Do not enable on the management NIC. Focus on the interfaces carrying high connection volume. Baseline and monitor. Before enabling, capture CPS and active session metrics from your NVAs. After enabling, verify reductions in connection drops at peak. The point is stability under pressure. Capacity planning. Start at A1 or A2. Move up only if you see sustained saturation at peak. The tiers are designed so you do not pay for headroom you do not need. Expect a tiny latency increase. There is another hop in the path. In real application flows the benefit in fewer drops and higher CPS outweighs the added microseconds. Validate with your own A/B tests. Plan change windows. Enabling on existing VMs and resizing the Auxiliary SKU both involve downtime. Use active‑active pairs behind a load balancer and drain one side while you flip the other Why this matters Customers in regulated and high‑traffic industries like health care often found that connection scale forced them to horizontally expand NVAs, which inflated both cloud spend and licensing, and complicated operations. Offloading the SDN policy work to dedicated hardware allows you to process many more connections on fewer instances, and to do so more predictably. Resources Azure Accelerated Networking overview: https://learn.microsoft.com/azure/virtual-network/accelerated-networking-overview Accelerated connections on NVAs or other VMs (Limited GA): https://learn.microsoft.com/azure/networking/nva-accelerated-connections Manage accelerated networking for Azure Virtual Machines: https://learn.microsoft.com/azure/virtual-network/manage-accelerated-networking Network optimized virtual machine connection acceleration (Preview): https://learn.microsoft.com/azure/virtual-network/network-optimized-vm-network-connection-acceleration Create an Azure Virtual Machine with Accelerated Networking: https://docs.azure.cn/virtual-network/create-virtual-machine-accelerated-networking Next steps Validate eligibility. Confirm your subscription is enabled for Accelerated Connections and that your target regions and VM families are supported. Learn article Select candidate workloads. Prioritize NVAs or VMs that hit CPS or flow‑table limits at peak. Use existing telemetry to pick the first region and appliance pair. 31 Pilot on one NIC per appliance. Enable on the data‑path NIC, start with A1 or A2, then stop/start the VM during a short maintenance window. Measure before and after. 32 Roll out iteratively. Expand to additional regions and appliances using active‑active patterns behind a load balancer to minimize downtime. 33 Right‑size the SKU. If you observe sustained headroom, stay put. If you approach limits, step up a tier during a planned window. 34181Views0likes0CommentsUnlocking Private IP for Azure Application Gateway: Security, Compliance, and Practical Deployment
If you’re responsible for securing, scaling, and optimizing cloud infrastructure, this update is for you. Based on my recent conversation with Vyshnavi Namani, Product Manager on the Azure Networking team, I’ll break down what private IP means for your environment, why it matters, and how to get started. Why Private IP for Application Gateway? Application Gateway has long been the go-to Layer 7 load balancer for web traffic in Azure. It manages, routes, and secures requests to your backend resources, offering SSL offloading and integrated Web Application Firewall (WAF) capabilities. But until now, public IPs were the norm, meaning exposure to the internet and the need for extra security layers. With Private IP, your Application Gateway can be deployed entirely within your virtual network (VNet), isolated from public internet access. This is a huge win for organizations with strict security, compliance, or policy requirements. Now, your traffic stays internal, protected by Azure’s security layers, and only accessible to authorized entities within your ecosystem. Key Benefits for ITPRO 🔒 No Public Exposure With a private-only Application Gateway, no public IP is assigned. The gateway is accessible only via internal networks, eliminating any direct exposure to the public internet. This removes a major attack vector by keeping traffic entirely within your trusted network boundaries. 📌 Granular Network Control Private IP mode grants full control over network policies. Strict NSG rules can be applied (no special exceptions needed for Azure management traffic) and custom route tables can be used (including a 0.0.0.0/0 route to force outbound traffic through on-premises or appliance-based security checkpoints). ☑️ Compliance Alignment Internal-only gateways help meet enterprise compliance and data governance requirements. Sensitive applications remain isolated within private networks, aiding data residency and preventing unintended data exfiltration. Organizations with “no internet exposure” policies can now include Application Gateway without exception. Architectural Considerations and Deployment Prerequisites To deploy Azure Application Gateway with Private IP, you should plan for the following: SKU & Feature Enablement: Use the v2 SKU (Standard_v2 or WAF_v2). The Private IP feature is GA but may require opt-in via the EnableApplicationGatewayNetworkIsolation flag in Azure Portal, CLI, or PowerShell. Dedicated Subnet: Deploy the gateway in a dedicated subnet (no other resources allowed). Recommended size: /24 for v2. This enables clean NSG and route table configurations. NSG Configuration: Inbound: Allow AzureLoadBalancer for health probes and internal client IPs on required ports. Outbound: Allow only necessary internal destinations; apply a DenyAll rule to block internet egress. User-Defined Routes (UDRs): Optional but recommended for forced tunneling. Set 0.0.0.0/0 to route traffic through an NVA, Azure Firewall, or ExpressRoute gateway. Client Connectivity: Ensure internal clients (VMs, App Services, on-prem users via VPN/ExpressRoute) can reach the gateway’s private IP. Use Private DNS or custom DNS zones for name resolution. Outbound Dependencies: For services like Key Vault or telemetry, use Private Link or NAT Gateway if internet access is required. Plan NSG and UDRs accordingly. Management Access: Admins must be on the VNet or connected network to test or manage the gateway. Azure handles control-plane traffic internally via a management NIC. Migration Notes: Existing gateways may require redeployment to switch to private-only mode. Feature registration must be active before provisioning. Practical Scenarios Here are several practical scenarios where deploying Azure Application Gateway with Private IP is especially beneficial: 🔐 Internal-Only Web Applications Organizations hosting intranet portals, HR systems, or internal dashboards can use Private IP to ensure these apps are only accessible from within the corporate network—via VPN, ExpressRoute, or peered VNets. 🏥 Regulated Industries (Healthcare, Finance, Government) Workloads that handle sensitive data (e.g., patient records, financial transactions) often require strict network isolation. Private IP ensures traffic never touches the public internet, supporting compliance with HIPAA, PCI-DSS, or government data residency mandates. 🧪 Dev/Test Environments Development teams can deploy isolated environments for testing without exposing them externally. This reduces risk and avoids accidental data leaks during early-stage development. 🌐 Hybrid Network Architectures In hybrid setups where on-prem systems interact with Azure-hosted services, Private IP gateways can route traffic securely through ExpressRoute or VPN, maintaining internal-only access and enabling centralized inspection via NVAs. 🛡️ Zero Trust Architectures Private IP supports zero trust principles by enforcing least-privilege access, denying internet egress, and requiring explicit NSG rules for all traffic—ideal for organizations implementing segmented, policy-driven networks. Resources https://docs.microsoft.com/azure/application-gateway/ https://learn.microsoft.com/azure/application-gateway/configuration-overview https://learn.microsoft.com/azure/virtual-network/network-security-groups-overview https://learn.microsoft.com/azure/virtual-network/virtual-network-peering-overview Next Steps Evaluate Your Workloads: Identify apps and services that require internal-only access. Plan Migration: Map out your VNets, subnets, and NSGs for a smooth transition. Enable Private IP Feature: Register and deploy in your Azure subscription. Test Security: Validate that only intended traffic flows through your gateway. Final Thoughts Private IP for Azure Application Gateway is an improvement for secure, compliant, and efficient cloud networking. If you’re an ITPRO managing infrastructure, now’s the time check out this feature and level up your Azure architecture. Have questions or want to share your experience? Drop a comment below. Cheers! Pierre304Views1like0Comments