Azure AI Foundry portal
2 TopicsConfigure Embedding Models on Azure AI Foundry with Open Web UI
Introduction Let’s take a closer look at an exciting development in the AI space. Embedding models are the key to transforming complex data into usable insights, driving innovations like smarter chatbots and tailored recommendations. With Azure AI Foundry, Microsoft’s powerful platform, you’ve got the tools to build and scale these models effortlessly. Add in Open Web UI, a intuitive interface for engaging with AI systems, and you’ve got a winning combo that’s hard to beat. In this article, we’ll explore how embedding models on Azure AI Foundry, paired with Open Web UI, are paving the way for accessible and impactful AI solutions for developers and businesses. Let’s dive in! To proceed with configuring the embedding model from Azure AI Foundry on Open Web UI, please firstly configure the requirements below. Requirements: Setup Azure AI Foundry Hub/Projects Deploy Open Web UI – refer to my previous article on how you can deploy Open Web UI on Azure VM. Optional: Deploy LiteLLM with Azure AI Foundry models to work on Open Web UI - refer to my previous article on how you can do this as well. Deploying Embedding Models on Azure AI Foundry Navigate to the Azure AI Foundry site and deploy an embedding model from the “Model + Endpoint” section. For the purpose of this demonstration, we will deploy the “text-embedding-3-large” model by OpenAI. You should be receiving a URL endpoint and API Key to the embedding model deployed just now. Take note of that credential because we will be using it in Open Web UI. Configuring the embedding models on Open Web UI Now head to the Open Web UI Admin Setting Page > Documents and Select Azure Open AI as the Embedding Model Engine. Copy and Paste the Base URL, API Key, the Embedding Model deployed on Azure AI Foundry and the API version (not the model version) into the fields below: Click “Save” to reflect the changes. Expected Output Now let us look into the scenario for when the embedding model configured on Open Web UI and when it is not. Without Embedding Models configured. With Azure Open AI Embedding models configured. Conclusion And there you have it! Embedding models on Azure AI Foundry, combined with the seamless interaction offered by Open Web UI, are truly revolutionizing how we approach AI solutions. This powerful duo not only simplifies the process of building and deploying intelligent systems but also makes cutting-edge technology more accessible to developers and businesses of all sizes. As we move forward, it’s clear that such integrations will continue to drive innovation, breaking down barriers and unlocking new possibilities in the AI landscape. So, whether you’re a seasoned developer or just stepping into this exciting field, now’s the time to explore what Azure AI Foundry and Open Web UI can do for you. Let’s keep pushing the boundaries of what’s possible!1.2KViews0likes0CommentsDemystifying Gen AI Models - Transformers Architecture : 'Attention Is All You Need'
The Transformer architecture demonstrated that carefully designed attention mechanisms — without the need for sequential recurrence — could model language and sequences more effectively and efficiently. 1. Transformers Replace Recurrence Traditional models such as RNNs and LSTMs processed data sequentially. Transformers use self-attention mechanisms to process all tokens simultaneously, enabling parallelisation, faster training, and better handling of long-range dependencies. 2. Self-Attention is Central Each token considers (attends to) all other tokens to gather contextual information. Attention scores are calculated between every pair of input tokens, capturing relationships irrespective of their position. 3. Multi-Head Attention Enhances Learning Rather than relying on a single attention mechanism, the model utilises multiple attention heads. Each head independently learns different aspects of relationships (such as syntax or meaning). The outputs from all heads are then combined to produce richer representations. 4. Positional Encoding Introduced As there is no recurrence, positional information must be introduced manually. Positional encodings (using sine and cosine functions of varying frequencies) are added to input embeddings to maintain the order of the sequence. 5. Encoder-Decoder Structure The model is composed of two main parts: Encoder: A stack of layers that processes the input sequence. Decoder: A stack of layers that generates the output, one token at a time (whilst attending to the encoder outputs). 6. Layer Composition Each encoder and decoder layer includes: Multi-Head Self-Attention Feed-Forward Neural Network (applied to each token independently) Residual Connections and Layer Normalisation to stabilise training. 7. Scaled Dot-Product Attention Attention scores are calculated using dot products between queries and keys, scaled by the square root of the dimension to prevent excessively large values, before being passed through a softmax. 8. Simpler, Yet More Powerful Despite removing recurrence, the Transformer outperformed more complex architectures such as stacked LSTMs on translation tasks (for instance, English-German). Training is considerably quicker (thanks to parallelism), particularly on long sequences. 9. Key Achievement Transformers became the state-of-the-art model for many natural language processing tasks — paving the way for later innovations such as BERT, GPT, T5, and others. The latest breakthrough in generative AI models is owed to the development of the Transformer architecture. Transformers were introduced in the Attention is all you need paper by Vaswani, et al. from 2017.241Views0likes0Comments