Blog Post

AI - AI Platform Blog
8 MIN READ

The Future of AI: Fine-Tuning Llama 3.1 8B on Azure AI Serverless, why it's so easy & cost efficient

cedricvidal's avatar
cedricvidal
Icon for Microsoft rankMicrosoft
Sep 19, 2024

The Future of AI: LLM Distillation just got easier

Part 2 - Fine-Tuning Llama 3.1 8B on Azure AI Serverless

How Azure AI Serverless Fine-tuning, LoRA, RAFT and the AI Python SDK are streamlining fine-tuning of domain specific models. (🚀🔥 Github recipe repo).

 

By Cedric Vidal, Principal AI Advocate, Microsoft

Part of the Future of AI đźš€ series initiated by Marco Casalaina with his Exploring Multi-Agent AI Systems blog post.

 

AI-powered engine fine-tuning setup, generated using Azure OpenAI DALL-E 3

 

In our previous blog post, we explored utilizing Llama 3.1 405B with RAFT to generate a synthetic dataset. Today, you’ll learn how to fine-tune a Llama 3.1 8B model with the dataset you generated. This post will walk you through a simplified fine-tuning process using Azure AI Fine-Tuning as a Service, highlighting its ease of use and cost efficiency. We’ll also explain what LoRA is and why combining RAFT with LoRA provides a unique advantage for efficient and affordable model customization. Finally, we’ll provide practical, step-by-step code examples to help you apply these concepts in your own projects. > The concepts and source code mentioned in this post are fully available in the Github recipe repo.

 

Azure AI takes the complexity out of the equation. Gone are the days when setting up GPU infrastructure, configuring Python frameworks, and mastering model fine-tuning techniques were necessary hurdles. Azure Serverless Fine-Tuning allows you to bypass the hassle entirely. Simply upload your dataset, adjust a few hyperparameters, and start the fine-tuning process. This ease of use democratizes AI development, making it accessible to a wider range of users and organizations.

Why Azure AI Serverless Fine-Tuning Changes the Game

Fine-tuning a model used to be a daunting task:

  1. Skill Requirements: Proficiency in Python and machine learning frameworks like TensorFlow or PyTorch was essential.
  2. Resource Intensive: Setting up and managing GPU infrastructure required significant investment.
  3. Time-Consuming: The process was often lengthy, from setup to execution.

Azure AI Fine-Tuning as a Service eliminates these barriers by providing an intuitive platform where you can fine-tune models without worrying about the underlying infrastructure. With serverless capabilities, you simply upload your dataset, specify hyperparameters, and hit the “fine-tune” button. This streamlined process allows for quick iterations and experimentation, significantly accelerating AI development cycles.

 

Llama relaxing in a workshop, generated using Azure OpenAI DALL-E 3

LoRA: A Game-Changer for Efficient Fine-Tuning

What is LoRA?

LoRA (Low-order Rank Adaptation) is an efficient method for fine-tuning large language models. Unlike traditional fine-tuning, which updates all the model’s weights, LoRA modifies only a small fraction of the weights captured in an adapter. This focused approach drastically reduces the time and cost needed for fine-tuning while maintaining the model’s performance.

LoRA in Action

LoRA fine-tunes models by selectively adjusting a small fraction of weights via an adapter, offering several advantages:

  • Selective Weight Updating: Only a fraction of the weights are fine-tuned, reducing computational requirements.
  • Cost Efficiency: Lower computational demands translate to reduced operational costs.
  • Speed: Fine-tuning is faster, enabling quicker deployments and iterations.

Illustration of LoRA Fine-tuning. This diagram shows a single attention block enhanced with LoRA. Each attention block in the model typically incorporates its own LoRA module. SVG diagram generated using Azure OpenAI GPT-4o

Combining RAFT and LoRA: Why It’s So Effective

We’ve seen how Serverless Fine-tuning on Azure AI uses LoRA, which updates only a fraction of the weights of the model and can therefore be so cheap and fast.

 

With the combination of RAFT and LORA, the model is not taught new fundamental knowledge, indeed it becomes an expert at understanding the domain, focusing its attention on the citations that are the most useful to answer a question but it doesn’t contain all the information about the domain. It is like a librarian (see RAG Hack session on RAFT), a librarian doesn’t know the content of all the books perfectly, but it knows which books contain the answers to a given question.

 

Another way to look at it is from a standpoint of information theory. Because LoRA only updates a fraction of the weights, there is only so much information you can store in those weights as opposed to full weight fine tuning which updates all the weight bottom to top of the model.

 

LoRA might look like a limitation but it’s actually perfect when used in combination with RAFT and RAG. You get the best of RAG and fine-tuning. RAG provides access to a potentially infinite amount of reference documents and RAFT with LoRA provides a model which is an expert at understanding the documents retrieved by RAG at a fraction of the cost of full weight fine-tuning.

Azure AI Fine-Tuning API and the Importance of Automating your AI Ops Pipeline

Azure AI empowers developers with serverless fine-tuning via an API, simplifying the integration of fine-tuning processes into automated AI operations (AI Ops) pipelines. Organizations can use the Azure AI Python SDK to further streamline this process, enabling seamless orchestration of model training workflows. This includes systematic data handling, model versioning, and deployment. Automating these processes is crucial as it ensures consistency, reduces human error, and accelerates the entire AI lifecycle—from data preparation, through model training, to deployment and monitoring. By leveraging Azure AI’s serverless fine-tuning API, along with the Python SDK, organizations can maintain an efficient, scalable, and agile AI Ops pipeline, ultimately driving faster innovation and more reliable AI systems.

Addressing Model Drift and Foundation Model Obsolescence

One critical aspect of machine learning, especially in fine-tuning, is ensuring that models generalize well to unseen data. This is the primary purpose of the evaluation phase.

 

However, as domains evolve and documents are added or updated, models will inevitably begin to drift. The rate of this drift depends on how quickly your domain changes; it could be a month, six months, a year, or even longer.

 

Therefore, it’s essential to periodically refresh your model and execute the distillation process anew to maintain its performance.

Moreover, the field of AI is dynamic, with new and improved foundational models being released frequently. To leverage these advancements, you should have a streamlined process to re-run distillation on the latest models, enabling you to measure improvements and deploy updates to your users efficiently.

Why Automating the Distillation Process is Essential

Automation in the distillation process is crucial. As new documents are added or existing ones are updated, your model’s alignment with the domain can drift over time. Setting up an automated, end-to-end distillation pipeline ensures that your model remains current and accurate. By regularly re-running the distillation, you can keep the model aligned with the evolving domain, maintaining its reliability and performance.

Practical Steps: Fine-Tuning Llama 3.1 8B with RAFT and LoRA

Now that we’ve explained the benefits, let’s walk through the practical steps using the raft-distillation-recipe repository on GitHub.

If you have not yet run the synthetic data generation phase using RAFT, I invite you to head over the previous article of this blog series.

 

Once you have your synthetic dataset on hand, you can head over to the finetuning notebook of the distillation recipe repository.

Here are the key snippets of code illustrating how to use the Azure AI Python SDK to upload a dataset, subscribe to the Markerplace offer, create and submit a fine-tuning job on the Azure AI Serverless platform.

Uploading the training dataset

The following code checks if the training dataset already exists in the workspace and uploads it only if needed. It incorporates the hash of the dataset into the filename, facilitating easy detection of whether the file has been previously uploaded.

 

 

 

 

from azure.ai.ml.entities import Data

dataset_version = "1"
train_dataset_name = f"{ds_name}_train_{train_hash}"
try:
    train_data_created = workspace_ml_client.data.get(train_dataset_name, version=dataset_version)
    print(f"Dataset {train_dataset_name} already exists")
except:
    print(f"Creating dataset {train_dataset_name}")
    train_data = Data(
        path=dataset_path_ft_train,
        type=AssetTypes.URI_FILE,
        description=f"{ds_name} training dataset",
        name=train_dataset_name,
        version=dataset_version,
    )
    train_data_created = workspace_ml_client.data.create_or_update(train_data)

from azure.ai.ml.entities._inputs_outputs import Input

training_data = Input(
    type=train_data_created.type, path=f"azureml://locations/{workspace.location}/workspaces/{workspace._workspace_id}/data/{train_data_created.name}/versions/{train_data_created.version}"
)

 

 

 

 

Subscribing to the Marketplace offer

This step is only necessary when fine-tuning a model from a third party vendor such as Meta or Mistral. If you’re fine-tuning a Microsoft first party model such as Phi 3 then you can skip this step.

 

 

 

 

from azure.ai.ml.entities import MarketplaceSubscription

model_id = "/".join(foundation_model.id.split("/")[:-2])
subscription_name = model_id.split("/")[-1].replace(".", "-").replace("_", "-")

print(f"Subscribing to Marketplace model: {model_id}")

from azure.core.exceptions import ResourceExistsError
marketplace_subscription = MarketplaceSubscription(
    model_id=model_id,
    name=subscription_name,
)

try:
    marketplace_subscription = workspace_ml_client.marketplace_subscriptions.begin_create_or_update(marketplace_subscription).result()
except ResourceExistsError as ex:
    print(f"Marketplace subscription {subscription_name} already exists for model {model_id}")

 

 

 

 

Create the fine tuning job using the the model and data as inputs

 

 

 

finetuning_job = CustomModelFineTuningJob(
    task=task,
    training_data=training_data,
    validation_data=validation_data,
    hyperparameters={
        "per_device_train_batch_size": "1",
        "learning_rate": str(learning_rate),
        "num_train_epochs": "1",
        "registered_model_name": registered_model_name,
    },
    model=model_to_finetune,
    display_name=job_name,
    name=job_name,
    experiment_name=experiment_name,
    outputs={"registered_model": Output(type="mlflow_model", name=f"ft-job-finetune-registered-{short_guid}")},
)

 

 

 

Submit the fine-tuning job

The following snippet will submit the previously created fine-tuning job to the Azure AI serverless platform. If the submission is successful, the job details including the Studio URL and the registered model name will be printed. Any errors encountered during the submission will be displayed as well.

 

 

 

 

try:
    print(f"Submitting job {finetuning_job.name}")
    created_job = workspace_ml_client.jobs.create_or_update(finetuning_job)
    print(f"Successfully created job {finetuning_job.name}")
    print(f"Studio URL is {created_job.studio_url}")
    print(f"Registered model name will be {registered_model_name}")
except Exception as e:
    print("Error creating job", e)
    raise e

 

 

 

 

The full runnable code is available in the previously mentioned finetuning notebook.

Join the Conversation

We invite you to join our tech community on Discord to discuss fine-tuning techniques, RAFT, LoRA, and more. Whether you’re a seasoned AI developer or just starting, our community is here to support you. Share your experiences, ask questions, and collaborate with fellow AI enthusiasts. Join us on Discord and be part of the conversation!

 

What’s next?

This concludes the second installment of our blog series on fine-tuning the Llama 3.1 8B model with RAFT and LoRA, harnessing the capabilities of Azure AI Serverless Fine-Tuning. Today, we’ve shown how these advanced technologies enable efficient and cost-effective model customization that precisely meets your domain needs.

 

By integrating RAFT and LoRA, you can transform your models into specialists that effectively navigate and interpret relevant information from extensive document repositories using RAG, all while significantly cutting down on the time and costs associated with full weight fine-tuning. This methodology accelerates the fine-tuning process and democratizes access to advanced AI capabilities.

 

With the detailed steps and code snippets provided, you now have the tools to implement serverless fine-tuning within your AI development workflow. Leveraging automation in AI Ops will help you maintain and optimize model performance over time, keeping your AI solutions competitive in an ever-changing environment.

 

Stay tuned! In two weeks, we’ll dive into the next topic: deploying our fine-tuned models.

Published Sep 19, 2024
Version 1.0
No CommentsBe the first to comment
"}},"componentScriptGroups({\"componentId\":\"custom.widget.Social_Sharing\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"component({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"Component","render({\"context\":{\"component\":{\"entities\":[],\"props\":{}},\"page\":{\"entities\":[\"board:AIPlatformBlog\",\"message:4249359\"],\"name\":\"BlogMessagePage\",\"props\":{},\"url\":\"https://techcommunity.microsoft.com/blog/aiplatformblog/the-future-of-ai-fine-tuning-llama-3-1-8b-on-azure-ai-serverless-why-its-so-easy/4249359\"}}})":{"__typename":"ComponentRenderResult","html":""}},"componentScriptGroups({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/community/NavbarDropdownToggle\"]})":[{"__ref":"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/common/QueryHandler\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCoverImage\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCoverImage-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeTitle\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTimeToRead\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageSubject\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageSubject-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserLink\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserLink-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserRank\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserRank-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTime\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTime-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageBody\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageBody-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCustomFields\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCustomFields-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageRevision\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageRevision-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageReplyButton\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageReplyButton-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageAuthorBio\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/ranks/UserRankLabel\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserRegistrationDate\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserRegistrationDate-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeDescription\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"components/tags/TagView/TagViewChip\"]})":[{"__ref":"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1743095130000"}],"cachedText({\"lastModified\":\"1743095130000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeIcon\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1743095130000"}]},"CachedAsset:pages-1743754490971":{"__typename":"CachedAsset","id":"pages-1743754490971","value":[{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"BlogViewAllPostsPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId/all-posts/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"CasePortalPage","type":"CASE_PORTAL","urlPath":"/caseportal","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"CreateGroupHubPage","type":"GROUP_HUB","urlPath":"/groups/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"CaseViewPage","type":"CASE_DETAILS","urlPath":"/case/:caseId/:caseNumber","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"InboxPage","type":"COMMUNITY","urlPath":"/inbox","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"HelpFAQPage","type":"COMMUNITY","urlPath":"/help","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"IdeaMessagePage","type":"IDEA_POST","urlPath":"/idea/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"IdeaViewAllIdeasPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/all-ideas/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"LoginPage","type":"USER","urlPath":"/signin","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"BlogPostPage","type":"BLOG","urlPath":"/category/:categoryId/blogs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"UserBlogPermissions.Page","type":"COMMUNITY","urlPath":"/c/user-blog-permissions/page","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ThemeEditorPage","type":"COMMUNITY","urlPath":"/designer/themes","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"TkbViewAllArticlesPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId/all-articles/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllEvents","type":"CUSTOM","urlPath":"/Events","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"OccasionEditPage","type":"EVENT","urlPath":"/event/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"OAuthAuthorizationAllowPage","type":"USER","urlPath":"/auth/authorize/allow","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"PageEditorPage","type":"COMMUNITY","urlPath":"/designer/pages","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"PostPage","type":"COMMUNITY","urlPath":"/category/:categoryId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ForumBoardPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"TkbBoardPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"EventPostPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"UserBadgesPage","type":"COMMUNITY","urlPath":"/users/:login/:userId/badges","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"GroupHubMembershipAction","type":"GROUP_HUB","urlPath":"/membership/join/:nodeId/:membershipType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"MaintenancePage","type":"COMMUNITY","urlPath":"/maintenance","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"IdeaReplyPage","type":"IDEA_REPLY","urlPath":"/idea/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"UserSettingsPage","type":"USER","urlPath":"/mysettings/:userSettingsTab","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"GroupHubsPage","type":"GROUP_HUB","urlPath":"/groups","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ForumPostPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"OccasionRsvpActionPage","type":"OCCASION","urlPath":"/event/:boardId/:messageSubject/:messageId/rsvp/:responseType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"VerifyUserEmailPage","type":"USER","urlPath":"/verifyemail/:userId/:verifyEmailToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"AllOccasionsPage","type":"OCCASION","urlPath":"/category/:categoryId/events/:boardId/all-events/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"EventBoardPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"TkbReplyPage","type":"TKB_REPLY","urlPath":"/kb/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"IdeaBoardPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"CommunityGuideLinesPage","type":"COMMUNITY","urlPath":"/communityguidelines","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"CaseCreatePage","type":"SALESFORCE_CASE_CREATION","urlPath":"/caseportal/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"TkbEditPage","type":"TKB","urlPath":"/kb/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ForgotPasswordPage","type":"USER","urlPath":"/forgotpassword","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"IdeaEditPage","type":"IDEA","urlPath":"/idea/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"TagPage","type":"COMMUNITY","urlPath":"/tag/:tagName","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"BlogBoardPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"OccasionMessagePage","type":"OCCASION_TOPIC","urlPath":"/event/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ManageContentPage","type":"COMMUNITY","urlPath":"/managecontent","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ClosedMembershipNodeNonMembersPage","type":"GROUP_HUB","urlPath":"/closedgroup/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"CommunityPage","type":"COMMUNITY","urlPath":"/","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ForumMessagePage","type":"FORUM_TOPIC","urlPath":"/discussions/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"IdeaPostPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"CommunityHub.Page","type":"CUSTOM","urlPath":"/Directory","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"BlogMessagePage","type":"BLOG_ARTICLE","urlPath":"/blog/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"RegistrationPage","type":"USER","urlPath":"/register","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"EditGroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ForumEditPage","type":"FORUM","urlPath":"/discussions/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ResetPasswordPage","type":"USER","urlPath":"/resetpassword/:userId/:resetPasswordToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllBlogs.Page","type":"CUSTOM","urlPath":"/blogs","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"TkbMessagePage","type":"TKB_ARTICLE","urlPath":"/kb/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"BlogEditPage","type":"BLOG","urlPath":"/blog/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ManageUsersPage","type":"USER","urlPath":"/users/manage/:tab?/:manageUsersTab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ForumReplyPage","type":"FORUM_REPLY","urlPath":"/discussions/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"PrivacyPolicyPage","type":"COMMUNITY","urlPath":"/privacypolicy","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"NotificationPage","type":"COMMUNITY","urlPath":"/notifications","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"UserPage","type":"USER","urlPath":"/users/:login/:userId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"OccasionReplyPage","type":"OCCASION_REPLY","urlPath":"/event/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ManageMembersPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/manage/:tab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"SearchResultsPage","type":"COMMUNITY","urlPath":"/search","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"BlogReplyPage","type":"BLOG_REPLY","urlPath":"/blog/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"GroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"TermsOfServicePage","type":"COMMUNITY","urlPath":"/termsofservice","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"CategoryPage","type":"CATEGORY","urlPath":"/category/:categoryId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"ForumViewAllTopicsPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/all-topics/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"TkbPostPage","type":"TKB","urlPath":"/category/:categoryId/kbs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743754490971,"localOverride":null,"page":{"id":"GroupHubPostPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"}],"localOverride":false},"CachedAsset:text:en_US-components/context/AppContext/AppContextProvider-0":{"__typename":"CachedAsset","id":"text:en_US-components/context/AppContext/AppContextProvider-0","value":{"noCommunity":"Cannot find community","noUser":"Cannot find current user","noNode":"Cannot find node with id {nodeId}","noMessage":"Cannot find message with id {messageId}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-0":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-0","value":{"title":"Loading..."},"localOverride":false},"User:user:-1":{"__typename":"User","id":"user:-1","uid":-1,"login":"Deleted","email":"","avatar":null,"rank":null,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":"ANONYMOUS","registrationTime":null,"confirmEmailStatus":false,"registrationAccessLevel":"VIEW","ssoRegistrationFields":[]},"ssoId":null,"profileSettings":{"__typename":"ProfileSettings","dateDisplayStyle":{"__typename":"InheritableStringSettingWithPossibleValues","key":"layout.friendly_dates_enabled","value":"false","localValue":"true","possibleValues":["true","false"]},"dateDisplayFormat":{"__typename":"InheritableStringSetting","key":"layout.format_pattern_date","value":"MMM dd yyyy","localValue":"MM-dd-yyyy"},"language":{"__typename":"InheritableStringSettingWithPossibleValues","key":"profile.language","value":"en-US","localValue":"en","possibleValues":["en-US"]}},"deleted":false},"Theme:customTheme1":{"__typename":"Theme","id":"customTheme1"},"Category:category:AI":{"__typename":"Category","id":"category:AI","entityType":"CATEGORY","displayId":"AI","nodeType":"category","depth":3,"title":"Artificial Intelligence and Machine Learning","shortTitle":"Artificial Intelligence and Machine Learning","parent":{"__ref":"Category:category:solutions"},"categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:top":{"__typename":"Category","id":"category:top","displayId":"top","nodeType":"category","depth":0,"title":"Top","entityType":"CATEGORY","shortTitle":"Top"},"Category:category:communities":{"__typename":"Category","id":"category:communities","displayId":"communities","nodeType":"category","depth":1,"parent":{"__ref":"Category:category:top"},"title":"Communities","entityType":"CATEGORY","shortTitle":"Communities"},"Category:category:solutions":{"__typename":"Category","id":"category:solutions","displayId":"solutions","nodeType":"category","depth":2,"parent":{"__ref":"Category:category:communities"},"title":"Topics","entityType":"CATEGORY","shortTitle":"Topics"},"Blog:board:AIPlatformBlog":{"__typename":"Blog","id":"board:AIPlatformBlog","entityType":"BLOG","displayId":"AIPlatformBlog","nodeType":"board","depth":4,"conversationStyle":"BLOG","title":"AI - AI Platform Blog","description":"","avatar":null,"profileSettings":{"__typename":"ProfileSettings","language":null},"parent":{"__ref":"Category:category:AI"},"ancestors":{"__typename":"CoreNodeConnection","edges":[{"__typename":"CoreNodeEdge","node":{"__ref":"Community:community:gxcuf89792"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:communities"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:solutions"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:AI"}}]},"userContext":{"__typename":"NodeUserContext","canAddAttachments":false,"canUpdateNode":false,"canPostMessages":false,"isSubscribed":false},"boardPolicies":{"__typename":"BoardPolicies","canPublishArticleOnCreate":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","args":[]}}},"shortTitle":"AI - AI Platform Blog","repliesProperties":{"__typename":"RepliesProperties","sortOrder":"REVERSE_PUBLISH_TIME","repliesFormat":"threaded"},"tagProperties":{"__typename":"TagNodeProperties","tagsEnabled":{"__typename":"PolicyResult","failureReason":null}},"requireTags":true,"tagType":"PRESET_ONLY"},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc","height":512,"width":512,"mimeType":"image/png"},"Rank:rank:4":{"__typename":"Rank","id":"rank:4","position":6,"name":"Microsoft","color":"333333","icon":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}"},"rankStyle":"OUTLINE"},"User:user:2358745":{"__typename":"User","id":"user:2358745","uid":2358745,"login":"cedricvidal","deleted":false,"avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS0yMzU4NzQ1LTU2MDI3Mmk0MDdGOThGM0Y4Nzk3MjBC"},"rank":{"__ref":"Rank:rank:4"},"email":"","messagesCount":8,"biography":null,"topicsCount":7,"kudosReceivedCount":13,"kudosGivenCount":1,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-03-11T09:33:53.193-07:00","confirmEmailStatus":null},"followersCount":null,"solutionsCount":0},"BlogTopicMessage:message:4249359":{"__typename":"BlogTopicMessage","uid":4249359,"subject":"The Future of AI: Fine-Tuning Llama 3.1 8B on Azure AI Serverless, why it's so easy & cost efficient","id":"message:4249359","revisionNum":1,"repliesCount":0,"author":{"__ref":"User:user:2358745"},"depth":0,"hasGivenKudo":false,"board":{"__ref":"Blog:board:AIPlatformBlog"},"conversation":{"__ref":"Conversation:conversation:4249359"},"messagePolicies":{"__typename":"MessagePolicies","canPublishArticleOnEdit":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","args":[]}},"canModerateSpamMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","args":[]}}},"contentWorkflow":{"__typename":"ContentWorkflow","state":"PUBLISH","scheduledPublishTime":null,"scheduledTimezone":null,"userContext":{"__typename":"MessageWorkflowContext","canSubmitForReview":null,"canEdit":false,"canRecall":null,"canSubmitForPublication":null,"canReturnToAuthor":null,"canPublish":null,"canReturnToReview":null,"canSchedule":false},"shortScheduledTimezone":null},"readOnly":false,"editFrozen":false,"moderationData":{"__ref":"ModerationData:moderation_data:4249359"},"teaser":"

\n

In this article, you will learn how to fine-tune the Llama 3.1 8B model using RAFT and LoRA with Azure AI Serverless Fine-Tuning for efficient, cost-effective model customization.

","body":"

The Future of AI: LLM Distillation just got easier

\n

Part 2 - Fine-Tuning Llama 3.1 8B on Azure AI Serverless

\n

How Azure AI Serverless Fine-tuning, LoRA, RAFT and the AI Python SDK are streamlining fine-tuning of domain specific models. (🚀🔥 Github recipe repo).

\n

 

\n

By Cedric Vidal, Principal AI Advocate, Microsoft

\n

Part of the Future of AI đźš€ series initiated by Marco Casalaina with his Exploring Multi-Agent AI Systems blog post.

\n

 

\n

\n

AI-powered engine fine-tuning setup, generated using Azure OpenAI DALL-E 3

\n

 

\n

In our previous blog post, we explored utilizing Llama 3.1 405B with RAFT to generate a synthetic dataset. Today, you’ll learn how to fine-tune a Llama 3.1 8B model with the dataset you generated. This post will walk you through a simplified fine-tuning process using Azure AI Fine-Tuning as a Service, highlighting its ease of use and cost efficiency. We’ll also explain what LoRA is and why combining RAFT with LoRA provides a unique advantage for efficient and affordable model customization. Finally, we’ll provide practical, step-by-step code examples to help you apply these concepts in your own projects. > The concepts and source code mentioned in this post are fully available in the Github recipe repo.

\n

 

\n

Azure AI takes the complexity out of the equation. Gone are the days when setting up GPU infrastructure, configuring Python frameworks, and mastering model fine-tuning techniques were necessary hurdles. Azure Serverless Fine-Tuning allows you to bypass the hassle entirely. Simply upload your dataset, adjust a few hyperparameters, and start the fine-tuning process. This ease of use democratizes AI development, making it accessible to a wider range of users and organizations.

\n

Why Azure AI Serverless Fine-Tuning Changes the Game

\n

Fine-tuning a model used to be a daunting task:

\n
    \n
  1. Skill Requirements: Proficiency in Python and machine learning frameworks like TensorFlow or PyTorch was essential.
  2. \n
  3. Resource Intensive: Setting up and managing GPU infrastructure required significant investment.
  4. \n
  5. Time-Consuming: The process was often lengthy, from setup to execution.
  6. \n
\n

Azure AI Fine-Tuning as a Service eliminates these barriers by providing an intuitive platform where you can fine-tune models without worrying about the underlying infrastructure. With serverless capabilities, you simply upload your dataset, specify hyperparameters, and hit the “fine-tune” button. This streamlined process allows for quick iterations and experimentation, significantly accelerating AI development cycles.

\n

 

\n

\n

Llama relaxing in a workshop, generated using Azure OpenAI DALL-E 3

\n

LoRA: A Game-Changer for Efficient Fine-Tuning

\n

What is LoRA?

\n

LoRA (Low-order Rank Adaptation) is an efficient method for fine-tuning large language models. Unlike traditional fine-tuning, which updates all the model’s weights, LoRA modifies only a small fraction of the weights captured in an adapter. This focused approach drastically reduces the time and cost needed for fine-tuning while maintaining the model’s performance.

\n

LoRA in Action

\n

LoRA fine-tunes models by selectively adjusting a small fraction of weights via an adapter, offering several advantages:

\n\n

\n

Illustration of LoRA Fine-tuning. This diagram shows a single attention block enhanced with LoRA. Each attention block in the model typically incorporates its own LoRA module. SVG diagram generated using Azure OpenAI GPT-4o

\n

Combining RAFT and LoRA: Why It’s So Effective

\n

We’ve seen how Serverless Fine-tuning on Azure AI uses LoRA, which updates only a fraction of the weights of the model and can therefore be so cheap and fast.

\n

 

\n

With the combination of RAFT and LORA, the model is not taught new fundamental knowledge, indeed it becomes an expert at understanding the domain, focusing its attention on the citations that are the most useful to answer a question but it doesn’t contain all the information about the domain. It is like a librarian (see RAG Hack session on RAFT), a librarian doesn’t know the content of all the books perfectly, but it knows which books contain the answers to a given question.

\n

 

\n

Another way to look at it is from a standpoint of information theory. Because LoRA only updates a fraction of the weights, there is only so much information you can store in those weights as opposed to full weight fine tuning which updates all the weight bottom to top of the model.

\n

 

\n

LoRA might look like a limitation but it’s actually perfect when used in combination with RAFT and RAG. You get the best of RAG and fine-tuning. RAG provides access to a potentially infinite amount of reference documents and RAFT with LoRA provides a model which is an expert at understanding the documents retrieved by RAG at a fraction of the cost of full weight fine-tuning.

\n

Azure AI Fine-Tuning API and the Importance of Automating your AI Ops Pipeline

\n

Azure AI empowers developers with serverless fine-tuning via an API, simplifying the integration of fine-tuning processes into automated AI operations (AI Ops) pipelines. Organizations can use the Azure AI Python SDK to further streamline this process, enabling seamless orchestration of model training workflows. This includes systematic data handling, model versioning, and deployment. Automating these processes is crucial as it ensures consistency, reduces human error, and accelerates the entire AI lifecycle—from data preparation, through model training, to deployment and monitoring. By leveraging Azure AI’s serverless fine-tuning API, along with the Python SDK, organizations can maintain an efficient, scalable, and agile AI Ops pipeline, ultimately driving faster innovation and more reliable AI systems.

\n

Addressing Model Drift and Foundation Model Obsolescence

\n

One critical aspect of machine learning, especially in fine-tuning, is ensuring that models generalize well to unseen data. This is the primary purpose of the evaluation phase.

\n

 

\n

However, as domains evolve and documents are added or updated, models will inevitably begin to drift. The rate of this drift depends on how quickly your domain changes; it could be a month, six months, a year, or even longer.

\n

 

\n

Therefore, it’s essential to periodically refresh your model and execute the distillation process anew to maintain its performance.

\n

Moreover, the field of AI is dynamic, with new and improved foundational models being released frequently. To leverage these advancements, you should have a streamlined process to re-run distillation on the latest models, enabling you to measure improvements and deploy updates to your users efficiently.

\n

Why Automating the Distillation Process is Essential

\n

Automation in the distillation process is crucial. As new documents are added or existing ones are updated, your model’s alignment with the domain can drift over time. Setting up an automated, end-to-end distillation pipeline ensures that your model remains current and accurate. By regularly re-running the distillation, you can keep the model aligned with the evolving domain, maintaining its reliability and performance.

\n

Practical Steps: Fine-Tuning Llama 3.1 8B with RAFT and LoRA

\n

Now that we’ve explained the benefits, let’s walk through the practical steps using the raft-distillation-recipe repository on GitHub.

\n

If you have not yet run the synthetic data generation phase using RAFT, I invite you to head over the previous article of this blog series.

\n

 

\n

Once you have your synthetic dataset on hand, you can head over to the finetuning notebook of the distillation recipe repository.

\n

Here are the key snippets of code illustrating how to use the Azure AI Python SDK to upload a dataset, subscribe to the Markerplace offer, create and submit a fine-tuning job on the Azure AI Serverless platform.

\n

Uploading the training dataset

\n

The following code checks if the training dataset already exists in the workspace and uploads it only if needed. It incorporates the hash of the dataset into the filename, facilitating easy detection of whether the file has been previously uploaded.

\n

 

\n

 

\n

 

\n

 

\n
from azure.ai.ml.entities import Data\n\ndataset_version = \"1\"\ntrain_dataset_name = f\"{ds_name}_train_{train_hash}\"\ntry:\n    train_data_created = workspace_ml_client.data.get(train_dataset_name, version=dataset_version)\n    print(f\"Dataset {train_dataset_name} already exists\")\nexcept:\n    print(f\"Creating dataset {train_dataset_name}\")\n    train_data = Data(\n        path=dataset_path_ft_train,\n        type=AssetTypes.URI_FILE,\n        description=f\"{ds_name} training dataset\",\n        name=train_dataset_name,\n        version=dataset_version,\n    )\n    train_data_created = workspace_ml_client.data.create_or_update(train_data)\n\nfrom azure.ai.ml.entities._inputs_outputs import Input\n\ntraining_data = Input(\n    type=train_data_created.type, path=f\"azureml://locations/{workspace.location}/workspaces/{workspace._workspace_id}/data/{train_data_created.name}/versions/{train_data_created.version}\"\n)
\n

 

\n

 

\n

 

\n

 

\n

Subscribing to the Marketplace offer

\n

This step is only necessary when fine-tuning a model from a third party vendor such as Meta or Mistral. If you’re fine-tuning a Microsoft first party model such as Phi 3 then you can skip this step.

\n

 

\n

 

\n

 

\n

 

\n
from azure.ai.ml.entities import MarketplaceSubscription\n\nmodel_id = \"/\".join(foundation_model.id.split(\"/\")[:-2])\nsubscription_name = model_id.split(\"/\")[-1].replace(\".\", \"-\").replace(\"_\", \"-\")\n\nprint(f\"Subscribing to Marketplace model: {model_id}\")\n\nfrom azure.core.exceptions import ResourceExistsError\nmarketplace_subscription = MarketplaceSubscription(\n    model_id=model_id,\n    name=subscription_name,\n)\n\ntry:\n    marketplace_subscription = workspace_ml_client.marketplace_subscriptions.begin_create_or_update(marketplace_subscription).result()\nexcept ResourceExistsError as ex:\n    print(f\"Marketplace subscription {subscription_name} already exists for model {model_id}\")
\n

 

\n

 

\n

 

\n

 

\n

Create the fine tuning job using the the model and data as inputs

\n

 

\n

 

\n

 

\n
finetuning_job = CustomModelFineTuningJob(\n    task=task,\n    training_data=training_data,\n    validation_data=validation_data,\n    hyperparameters={\n        \"per_device_train_batch_size\": \"1\",\n        \"learning_rate\": str(learning_rate),\n        \"num_train_epochs\": \"1\",\n        \"registered_model_name\": registered_model_name,\n    },\n    model=model_to_finetune,\n    display_name=job_name,\n    name=job_name,\n    experiment_name=experiment_name,\n    outputs={\"registered_model\": Output(type=\"mlflow_model\", name=f\"ft-job-finetune-registered-{short_guid}\")},\n)
\n

 

\n

 

\n

 

\n

Submit the fine-tuning job

\n

The following snippet will submit the previously created fine-tuning job to the Azure AI serverless platform. If the submission is successful, the job details including the Studio URL and the registered model name will be printed. Any errors encountered during the submission will be displayed as well.

\n

 

\n

 

\n

 

\n

 

\n
try:\n    print(f\"Submitting job {finetuning_job.name}\")\n    created_job = workspace_ml_client.jobs.create_or_update(finetuning_job)\n    print(f\"Successfully created job {finetuning_job.name}\")\n    print(f\"Studio URL is {created_job.studio_url}\")\n    print(f\"Registered model name will be {registered_model_name}\")\nexcept Exception as e:\n    print(\"Error creating job\", e)\n    raise e
\n

 

\n

 

\n

 

\n

 

\n

The full runnable code is available in the previously mentioned finetuning notebook.

\n

Join the Conversation

\n

We invite you to join our tech community on Discord to discuss fine-tuning techniques, RAFT, LoRA, and more. Whether you’re a seasoned AI developer or just starting, our community is here to support you. Share your experiences, ask questions, and collaborate with fellow AI enthusiasts. Join us on Discord and be part of the conversation!

\n

 

\n

\n

What’s next?

\n

This concludes the second installment of our blog series on fine-tuning the Llama 3.1 8B model with RAFT and LoRA, harnessing the capabilities of Azure AI Serverless Fine-Tuning. Today, we’ve shown how these advanced technologies enable efficient and cost-effective model customization that precisely meets your domain needs.

\n

 

\n

By integrating RAFT and LoRA, you can transform your models into specialists that effectively navigate and interpret relevant information from extensive document repositories using RAG, all while significantly cutting down on the time and costs associated with full weight fine-tuning. This methodology accelerates the fine-tuning process and democratizes access to advanced AI capabilities.

\n

 

\n

With the detailed steps and code snippets provided, you now have the tools to implement serverless fine-tuning within your AI development workflow. Leveraging automation in AI Ops will help you maintain and optimize model performance over time, keeping your AI solutions competitive in an ever-changing environment.

\n

 

\n

Stay tuned! In two weeks, we’ll dive into the next topic: deploying our fine-tuned models.

","body@stringLength":"19307","rawBody":"

The Future of AI: LLM Distillation just got easier

\n

Part 2 - Fine-Tuning Llama 3.1 8B on Azure AI Serverless

\n

How Azure AI Serverless Fine-tuning, LoRA, RAFT and the AI Python SDK are streamlining fine-tuning of domain specific models. (🚀🔥 Github recipe repo).

\n

 

\n

By Cedric Vidal, Principal AI Advocate, Microsoft

\n

Part of the Future of AI đźš€ series initiated by Marco Casalaina with his Exploring Multi-Agent AI Systems blog post.

\n

 

\n

\n

AI-powered engine fine-tuning setup, generated using Azure OpenAI DALL-E 3

\n

 

\n

In our previous blog post, we explored utilizing Llama 3.1 405B with RAFT to generate a synthetic dataset. Today, you’ll learn how to fine-tune a Llama 3.1 8B model with the dataset you generated. This post will walk you through a simplified fine-tuning process using Azure AI Fine-Tuning as a Service, highlighting its ease of use and cost efficiency. We’ll also explain what LoRA is and why combining RAFT with LoRA provides a unique advantage for efficient and affordable model customization. Finally, we’ll provide practical, step-by-step code examples to help you apply these concepts in your own projects. > The concepts and source code mentioned in this post are fully available in the Github recipe repo.

\n

 

\n

Azure AI takes the complexity out of the equation. Gone are the days when setting up GPU infrastructure, configuring Python frameworks, and mastering model fine-tuning techniques were necessary hurdles. Azure Serverless Fine-Tuning allows you to bypass the hassle entirely. Simply upload your dataset, adjust a few hyperparameters, and start the fine-tuning process. This ease of use democratizes AI development, making it accessible to a wider range of users and organizations.

\n

Why Azure AI Serverless Fine-Tuning Changes the Game

\n

Fine-tuning a model used to be a daunting task:

\n
    \n
  1. Skill Requirements: Proficiency in Python and machine learning frameworks like TensorFlow or PyTorch was essential.
  2. \n
  3. Resource Intensive: Setting up and managing GPU infrastructure required significant investment.
  4. \n
  5. Time-Consuming: The process was often lengthy, from setup to execution.
  6. \n
\n

Azure AI Fine-Tuning as a Service eliminates these barriers by providing an intuitive platform where you can fine-tune models without worrying about the underlying infrastructure. With serverless capabilities, you simply upload your dataset, specify hyperparameters, and hit the “fine-tune” button. This streamlined process allows for quick iterations and experimentation, significantly accelerating AI development cycles.

\n

 

\n

\n

Llama relaxing in a workshop, generated using Azure OpenAI DALL-E 3

\n

LoRA: A Game-Changer for Efficient Fine-Tuning

\n

What is LoRA?

\n

LoRA (Low-order Rank Adaptation) is an efficient method for fine-tuning large language models. Unlike traditional fine-tuning, which updates all the model’s weights, LoRA modifies only a small fraction of the weights captured in an adapter. This focused approach drastically reduces the time and cost needed for fine-tuning while maintaining the model’s performance.

\n

LoRA in Action

\n

LoRA fine-tunes models by selectively adjusting a small fraction of weights via an adapter, offering several advantages:

\n\n

\n

Illustration of LoRA Fine-tuning. This diagram shows a single attention block enhanced with LoRA. Each attention block in the model typically incorporates its own LoRA module. SVG diagram generated using Azure OpenAI GPT-4o

\n

Combining RAFT and LoRA: Why It’s So Effective

\n

We’ve seen how Serverless Fine-tuning on Azure AI uses LoRA, which updates only a fraction of the weights of the model and can therefore be so cheap and fast.

\n

 

\n

With the combination of RAFT and LORA, the model is not taught new fundamental knowledge, indeed it becomes an expert at understanding the domain, focusing its attention on the citations that are the most useful to answer a question but it doesn’t contain all the information about the domain. It is like a librarian (see RAG Hack session on RAFT), a librarian doesn’t know the content of all the books perfectly, but it knows which books contain the answers to a given question.

\n

 

\n

Another way to look at it is from a standpoint of information theory. Because LoRA only updates a fraction of the weights, there is only so much information you can store in those weights as opposed to full weight fine tuning which updates all the weight bottom to top of the model.

\n

 

\n

LoRA might look like a limitation but it’s actually perfect when used in combination with RAFT and RAG. You get the best of RAG and fine-tuning. RAG provides access to a potentially infinite amount of reference documents and RAFT with LoRA provides a model which is an expert at understanding the documents retrieved by RAG at a fraction of the cost of full weight fine-tuning.

\n

Azure AI Fine-Tuning API and the Importance of Automating your AI Ops Pipeline

\n

Azure AI empowers developers with serverless fine-tuning via an API, simplifying the integration of fine-tuning processes into automated AI operations (AI Ops) pipelines. Organizations can use the Azure AI Python SDK to further streamline this process, enabling seamless orchestration of model training workflows. This includes systematic data handling, model versioning, and deployment. Automating these processes is crucial as it ensures consistency, reduces human error, and accelerates the entire AI lifecycle—from data preparation, through model training, to deployment and monitoring. By leveraging Azure AI’s serverless fine-tuning API, along with the Python SDK, organizations can maintain an efficient, scalable, and agile AI Ops pipeline, ultimately driving faster innovation and more reliable AI systems.

\n

Addressing Model Drift and Foundation Model Obsolescence

\n

One critical aspect of machine learning, especially in fine-tuning, is ensuring that models generalize well to unseen data. This is the primary purpose of the evaluation phase.

\n

 

\n

However, as domains evolve and documents are added or updated, models will inevitably begin to drift. The rate of this drift depends on how quickly your domain changes; it could be a month, six months, a year, or even longer.

\n

 

\n

Therefore, it’s essential to periodically refresh your model and execute the distillation process anew to maintain its performance.

\n

Moreover, the field of AI is dynamic, with new and improved foundational models being released frequently. To leverage these advancements, you should have a streamlined process to re-run distillation on the latest models, enabling you to measure improvements and deploy updates to your users efficiently.

\n

Why Automating the Distillation Process is Essential

\n

Automation in the distillation process is crucial. As new documents are added or existing ones are updated, your model’s alignment with the domain can drift over time. Setting up an automated, end-to-end distillation pipeline ensures that your model remains current and accurate. By regularly re-running the distillation, you can keep the model aligned with the evolving domain, maintaining its reliability and performance.

\n

Practical Steps: Fine-Tuning Llama 3.1 8B with RAFT and LoRA

\n

Now that we’ve explained the benefits, let’s walk through the practical steps using the raft-distillation-recipe repository on GitHub.

\n

If you have not yet run the synthetic data generation phase using RAFT, I invite you to head over the previous article of this blog series.

\n

 

\n

Once you have your synthetic dataset on hand, you can head over to the finetuning notebook of the distillation recipe repository.

\n

Here are the key snippets of code illustrating how to use the Azure AI Python SDK to upload a dataset, subscribe to the Markerplace offer, create and submit a fine-tuning job on the Azure AI Serverless platform.

\n

Uploading the training dataset

\n

The following code checks if the training dataset already exists in the workspace and uploads it only if needed. It incorporates the hash of the dataset into the filename, facilitating easy detection of whether the file has been previously uploaded.

\n

 

\n

 

\n

 

\n

 

\nfrom azure.ai.ml.entities import Data\n\ndataset_version = \"1\"\ntrain_dataset_name = f\"{ds_name}_train_{train_hash}\"\ntry:\n train_data_created = workspace_ml_client.data.get(train_dataset_name, version=dataset_version)\n print(f\"Dataset {train_dataset_name} already exists\")\nexcept:\n print(f\"Creating dataset {train_dataset_name}\")\n train_data = Data(\n path=dataset_path_ft_train,\n type=AssetTypes.URI_FILE,\n description=f\"{ds_name} training dataset\",\n name=train_dataset_name,\n version=dataset_version,\n )\n train_data_created = workspace_ml_client.data.create_or_update(train_data)\n\nfrom azure.ai.ml.entities._inputs_outputs import Input\n\ntraining_data = Input(\n type=train_data_created.type, path=f\"azureml://locations/{workspace.location}/workspaces/{workspace._workspace_id}/data/{train_data_created.name}/versions/{train_data_created.version}\"\n)\n

 

\n

 

\n

 

\n

 

\n

Subscribing to the Marketplace offer

\n

This step is only necessary when fine-tuning a model from a third party vendor such as Meta or Mistral. If you’re fine-tuning a Microsoft first party model such as Phi 3 then you can skip this step.

\n

 

\n

 

\n

 

\n

 

\nfrom azure.ai.ml.entities import MarketplaceSubscription\n\nmodel_id = \"/\".join(foundation_model.id.split(\"/\")[:-2])\nsubscription_name = model_id.split(\"/\")[-1].replace(\".\", \"-\").replace(\"_\", \"-\")\n\nprint(f\"Subscribing to Marketplace model: {model_id}\")\n\nfrom azure.core.exceptions import ResourceExistsError\nmarketplace_subscription = MarketplaceSubscription(\n model_id=model_id,\n name=subscription_name,\n)\n\ntry:\n marketplace_subscription = workspace_ml_client.marketplace_subscriptions.begin_create_or_update(marketplace_subscription).result()\nexcept ResourceExistsError as ex:\n print(f\"Marketplace subscription {subscription_name} already exists for model {model_id}\")\n

 

\n

 

\n

 

\n

 

\n

Create the fine tuning job using the the model and data as inputs

\n

 

\n

 

\n

 

\nfinetuning_job = CustomModelFineTuningJob(\n task=task,\n training_data=training_data,\n validation_data=validation_data,\n hyperparameters={\n \"per_device_train_batch_size\": \"1\",\n \"learning_rate\": str(learning_rate),\n \"num_train_epochs\": \"1\",\n \"registered_model_name\": registered_model_name,\n },\n model=model_to_finetune,\n display_name=job_name,\n name=job_name,\n experiment_name=experiment_name,\n outputs={\"registered_model\": Output(type=\"mlflow_model\", name=f\"ft-job-finetune-registered-{short_guid}\")},\n)\n

 

\n

 

\n

 

\n

Submit the fine-tuning job

\n

The following snippet will submit the previously created fine-tuning job to the Azure AI serverless platform. If the submission is successful, the job details including the Studio URL and the registered model name will be printed. Any errors encountered during the submission will be displayed as well.

\n

 

\n

 

\n

 

\n

 

\ntry:\n print(f\"Submitting job {finetuning_job.name}\")\n created_job = workspace_ml_client.jobs.create_or_update(finetuning_job)\n print(f\"Successfully created job {finetuning_job.name}\")\n print(f\"Studio URL is {created_job.studio_url}\")\n print(f\"Registered model name will be {registered_model_name}\")\nexcept Exception as e:\n print(\"Error creating job\", e)\n raise e\n

 

\n

 

\n

 

\n

 

\n

The full runnable code is available in the previously mentioned finetuning notebook.

\n

Join the Conversation

\n

We invite you to join our tech community on Discord to discuss fine-tuning techniques, RAFT, LoRA, and more. Whether you’re a seasoned AI developer or just starting, our community is here to support you. Share your experiences, ask questions, and collaborate with fellow AI enthusiasts. Join us on Discord and be part of the conversation!

\n

 

\n

\n

What’s next?

\n

This concludes the second installment of our blog series on fine-tuning the Llama 3.1 8B model with RAFT and LoRA, harnessing the capabilities of Azure AI Serverless Fine-Tuning. Today, we’ve shown how these advanced technologies enable efficient and cost-effective model customization that precisely meets your domain needs.

\n

 

\n

By integrating RAFT and LoRA, you can transform your models into specialists that effectively navigate and interpret relevant information from extensive document repositories using RAG, all while significantly cutting down on the time and costs associated with full weight fine-tuning. This methodology accelerates the fine-tuning process and democratizes access to advanced AI capabilities.

\n

 

\n

With the detailed steps and code snippets provided, you now have the tools to implement serverless fine-tuning within your AI development workflow. Leveraging automation in AI Ops will help you maintain and optimize model performance over time, keeping your AI solutions competitive in an ever-changing environment.

\n

 

\n

Stay tuned! In two weeks, we’ll dive into the next topic: deploying our fine-tuned models.

","kudosSumWeight":1,"postTime":"2024-09-18T20:45:14.675-07:00","images":{"__typename":"AssociatedImageConnection","edges":[{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDE","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYxNjY2MGkyMEM0QTkxQzVERjg1MUE1?revision=1\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDI","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NGk1RTZFNzRCOUU0QzA5NDU4?revision=1\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDM","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NWk0NDI3RUZDODFBRDE0MDYz?revision=1\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDQ","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2M2kyQUJDNzg5MDY1NjMyNUZD?revision=1\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDU","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NmkwQjI3MTFDNUREMDc3MUIx?revision=1\"}"}}],"totalCount":5,"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"attachments":{"__typename":"AttachmentConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"tags":{"__typename":"TagConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDE","node":{"__typename":"Tag","id":"tag:artificial intelligence","text":"artificial intelligence","time":"2018-02-28T01:21:24.829-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDI","node":{"__typename":"Tag","id":"tag:azure ai","text":"azure ai","time":"2018-12-02T09:44:10.787-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDM","node":{"__typename":"Tag","id":"tag:generative ai","text":"generative ai","time":"2023-03-22T07:27:17.462-07:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}}]},"timeToRead":8,"rawTeaser":"

\n

In this article, you will learn how to fine-tune the Llama 3.1 8B model using RAFT and LoRA with Azure AI Serverless Fine-Tuning for efficient, cost-effective model customization.

","introduction":"","coverImage":null,"coverImageProperties":{"__typename":"CoverImageProperties","style":"STANDARD","titlePosition":"BOTTOM","altText":""},"currentRevision":{"__ref":"Revision:revision:4249359_1"},"latestVersion":{"__typename":"FriendlyVersion","major":"1","minor":"0"},"metrics":{"__typename":"MessageMetrics","views":4794},"visibilityScope":"PUBLIC","canonicalUrl":null,"seoTitle":"The Future of AI: Fine-Tuning Llama 3.1 8B on Azure AI Serverless with LoRA and RAFT, why it's so easy & cost efficient","seoDescription":"In this article, you will learn how to fine-tune the Llama 3.1 8B model using RAFT and LoRA with Azure AI Serverless Fine-Tuning for efficient, cost-effective model customization.","placeholder":false,"originalMessageForPlaceholder":null,"contributors":{"__typename":"UserConnection","edges":[]},"nonCoAuthorContributors":{"__typename":"UserConnection","edges":[]},"coAuthors":{"__typename":"UserConnection","edges":[]},"blogMessagePolicies":{"__typename":"BlogMessagePolicies","canDoAuthoringActionsOnBlog":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","key":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","args":[]}}},"archivalData":null,"replies":{"__typename":"MessageConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"customFields":[],"revisions({\"constraints\":{\"isPublished\":{\"eq\":true}},\"first\":1})":{"__typename":"RevisionConnection","totalCount":1}},"Conversation:conversation:4249359":{"__typename":"Conversation","id":"conversation:4249359","solved":false,"topic":{"__ref":"BlogTopicMessage:message:4249359"},"lastPostingActivityTime":"2024-09-18T20:45:14.675-07:00","lastPostTime":"2024-09-18T20:45:14.675-07:00","unreadReplyCount":0,"isSubscribed":false},"ModerationData:moderation_data:4249359":{"__typename":"ModerationData","id":"moderation_data:4249359","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYxNjY2MGkyMEM0QTkxQzVERjg1MUE1?revision=1\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYxNjY2MGkyMEM0QTkxQzVERjg1MUE1?revision=1","title":"cedricvidal_9-1725406893871.jpeg","associationType":"TEASER","width":999,"height":999,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NGk1RTZFNzRCOUU0QzA5NDU4?revision=1\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NGk1RTZFNzRCOUU0QzA5NDU4?revision=1","title":"cedricvidal_0-1726692301841.png","associationType":"BODY","width":1792,"height":1024,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NWk0NDI3RUZDODFBRDE0MDYz?revision=1\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NWk0NDI3RUZDODFBRDE0MDYz?revision=1","title":"cedricvidal_1-1726692301987.png","associationType":"BODY","width":1792,"height":1024,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2M2kyQUJDNzg5MDY1NjMyNUZD?revision=1\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2M2kyQUJDNzg5MDY1NjMyNUZD?revision=1","title":"cedricvidal_2-1726692301990.png","associationType":"BODY","width":781,"height":502,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NmkwQjI3MTFDNUREMDc3MUIx?revision=1\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjQ5MzU5LTYyMTM2NmkwQjI3MTFDNUREMDc3MUIx?revision=1","title":"cedricvidal_3-1726692301991.png","associationType":"BODY","width":2473,"height":469,"altText":null},"Revision:revision:4249359_1":{"__typename":"Revision","id":"revision:4249359_1","lastEditTime":"2024-09-18T20:45:14.675-07:00"},"CachedAsset:theme:customTheme1-1743778046037":{"__typename":"CachedAsset","id":"theme:customTheme1-1743778046037","value":{"id":"customTheme1","animation":{"fast":"150ms","normal":"250ms","slow":"500ms","slowest":"750ms","function":"cubic-bezier(0.07, 0.91, 0.51, 1)","__typename":"AnimationThemeSettings"},"avatar":{"borderRadius":"50%","collections":["default"],"__typename":"AvatarThemeSettings"},"basics":{"browserIcon":{"imageAssetName":"favicon-1730836283320.png","imageLastModified":"1730836286415","__typename":"ThemeAsset"},"customerLogo":{"imageAssetName":"favicon-1730836271365.png","imageLastModified":"1730836274203","__typename":"ThemeAsset"},"maximumWidthOfPageContent":"1300px","oneColumnNarrowWidth":"800px","gridGutterWidthMd":"30px","gridGutterWidthXs":"10px","pageWidthStyle":"WIDTH_OF_BROWSER","__typename":"BasicsThemeSettings"},"buttons":{"borderRadiusSm":"3px","borderRadius":"3px","borderRadiusLg":"5px","paddingY":"5px","paddingYLg":"7px","paddingYHero":"var(--lia-bs-btn-padding-y-lg)","paddingX":"12px","paddingXLg":"16px","paddingXHero":"60px","fontStyle":"NORMAL","fontWeight":"700","textTransform":"NONE","disabledOpacity":0.5,"primaryTextColor":"var(--lia-bs-white)","primaryTextHoverColor":"var(--lia-bs-white)","primaryTextActiveColor":"var(--lia-bs-white)","primaryBgColor":"var(--lia-bs-primary)","primaryBgHoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.85))","primaryBgActiveColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.7))","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","primaryBorderActive":"1px solid transparent","primaryBorderFocus":"1px solid var(--lia-bs-white)","primaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","secondaryTextColor":"var(--lia-bs-gray-900)","secondaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","secondaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","secondaryBgColor":"var(--lia-bs-gray-200)","secondaryBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","secondaryBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","secondaryBorder":"1px solid transparent","secondaryBorderHover":"1px solid transparent","secondaryBorderActive":"1px solid transparent","secondaryBorderFocus":"1px solid transparent","secondaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","tertiaryTextColor":"var(--lia-bs-gray-900)","tertiaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","tertiaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","tertiaryBgColor":"transparent","tertiaryBgHoverColor":"transparent","tertiaryBgActiveColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.04)","tertiaryBorder":"1px solid transparent","tertiaryBorderHover":"1px solid hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","tertiaryBorderActive":"1px solid transparent","tertiaryBorderFocus":"1px solid transparent","tertiaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","destructiveTextColor":"var(--lia-bs-danger)","destructiveTextHoverColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.95))","destructiveTextActiveColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.9))","destructiveBgColor":"var(--lia-bs-gray-200)","destructiveBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","destructiveBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","destructiveBorder":"1px solid transparent","destructiveBorderHover":"1px solid transparent","destructiveBorderActive":"1px solid transparent","destructiveBorderFocus":"1px solid transparent","destructiveBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","__typename":"ButtonsThemeSettings"},"border":{"color":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","mainContent":"NONE","sideContent":"LIGHT","radiusSm":"3px","radius":"5px","radiusLg":"9px","radius50":"100vw","__typename":"BorderThemeSettings"},"boxShadow":{"xs":"0 0 0 1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.08), 0 3px 0 -1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.16)","sm":"0 2px 4px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.12)","md":"0 5px 15px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","lg":"0 10px 30px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","__typename":"BoxShadowThemeSettings"},"cards":{"bgColor":"var(--lia-panel-bg-color)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":"var(--lia-box-shadow-xs)","__typename":"CardsThemeSettings"},"chip":{"maxWidth":"300px","height":"30px","__typename":"ChipThemeSettings"},"coreTypes":{"defaultMessageLinkColor":"var(--lia-bs-link-color)","defaultMessageLinkDecoration":"none","defaultMessageLinkFontStyle":"NORMAL","defaultMessageLinkFontWeight":"400","defaultMessageFontStyle":"NORMAL","defaultMessageFontWeight":"400","forumColor":"#4099E2","forumFontFamily":"var(--lia-bs-font-family-base)","forumFontWeight":"var(--lia-default-message-font-weight)","forumLineHeight":"var(--lia-bs-line-height-base)","forumFontStyle":"var(--lia-default-message-font-style)","forumMessageLinkColor":"var(--lia-default-message-link-color)","forumMessageLinkDecoration":"var(--lia-default-message-link-decoration)","forumMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","forumMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","forumSolvedColor":"#148563","blogColor":"#1CBAA0","blogFontFamily":"var(--lia-bs-font-family-base)","blogFontWeight":"var(--lia-default-message-font-weight)","blogLineHeight":"1.75","blogFontStyle":"var(--lia-default-message-font-style)","blogMessageLinkColor":"var(--lia-default-message-link-color)","blogMessageLinkDecoration":"var(--lia-default-message-link-decoration)","blogMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","blogMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","tkbColor":"#4C6B90","tkbFontFamily":"var(--lia-bs-font-family-base)","tkbFontWeight":"var(--lia-default-message-font-weight)","tkbLineHeight":"1.75","tkbFontStyle":"var(--lia-default-message-font-style)","tkbMessageLinkColor":"var(--lia-default-message-link-color)","tkbMessageLinkDecoration":"var(--lia-default-message-link-decoration)","tkbMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","tkbMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaColor":"#4099E2","qandaFontFamily":"var(--lia-bs-font-family-base)","qandaFontWeight":"var(--lia-default-message-font-weight)","qandaLineHeight":"var(--lia-bs-line-height-base)","qandaFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkColor":"var(--lia-default-message-link-color)","qandaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","qandaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaSolvedColor":"#3FA023","ideaColor":"#FF8000","ideaFontFamily":"var(--lia-bs-font-family-base)","ideaFontWeight":"var(--lia-default-message-font-weight)","ideaLineHeight":"var(--lia-bs-line-height-base)","ideaFontStyle":"var(--lia-default-message-font-style)","ideaMessageLinkColor":"var(--lia-default-message-link-color)","ideaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","ideaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","ideaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","contestColor":"#FCC845","contestFontFamily":"var(--lia-bs-font-family-base)","contestFontWeight":"var(--lia-default-message-font-weight)","contestLineHeight":"var(--lia-bs-line-height-base)","contestFontStyle":"var(--lia-default-message-link-font-style)","contestMessageLinkColor":"var(--lia-default-message-link-color)","contestMessageLinkDecoration":"var(--lia-default-message-link-decoration)","contestMessageLinkFontStyle":"ITALIC","contestMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","occasionColor":"#D13A1F","occasionFontFamily":"var(--lia-bs-font-family-base)","occasionFontWeight":"var(--lia-default-message-font-weight)","occasionLineHeight":"var(--lia-bs-line-height-base)","occasionFontStyle":"var(--lia-default-message-font-style)","occasionMessageLinkColor":"var(--lia-default-message-link-color)","occasionMessageLinkDecoration":"var(--lia-default-message-link-decoration)","occasionMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","occasionMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","grouphubColor":"#333333","categoryColor":"#949494","communityColor":"#FFFFFF","productColor":"#949494","__typename":"CoreTypesThemeSettings"},"colors":{"black":"#000000","white":"#FFFFFF","gray100":"#F7F7F7","gray200":"#F7F7F7","gray300":"#E8E8E8","gray400":"#D9D9D9","gray500":"#CCCCCC","gray600":"#717171","gray700":"#707070","gray800":"#545454","gray900":"#333333","dark":"#545454","light":"#F7F7F7","primary":"#0069D4","secondary":"#333333","bodyText":"#1E1E1E","bodyBg":"#FFFFFF","info":"#409AE2","success":"#41C5AE","warning":"#FCC844","danger":"#BC341B","alertSystem":"#FF6600","textMuted":"#707070","highlight":"#FFFCAD","outline":"var(--lia-bs-primary)","custom":["#D3F5A4","#243A5E"],"__typename":"ColorsThemeSettings"},"divider":{"size":"3px","marginLeft":"4px","marginRight":"4px","borderRadius":"50%","bgColor":"var(--lia-bs-gray-600)","bgColorActive":"var(--lia-bs-gray-600)","__typename":"DividerThemeSettings"},"dropdown":{"fontSize":"var(--lia-bs-font-size-sm)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius-sm)","dividerBg":"var(--lia-bs-gray-300)","itemPaddingY":"5px","itemPaddingX":"20px","headerColor":"var(--lia-bs-gray-700)","__typename":"DropdownThemeSettings"},"email":{"link":{"color":"#0069D4","hoverColor":"#0061c2","decoration":"none","hoverDecoration":"underline","__typename":"EmailLinkSettings"},"border":{"color":"#e4e4e4","__typename":"EmailBorderSettings"},"buttons":{"borderRadiusLg":"5px","paddingXLg":"16px","paddingYLg":"7px","fontWeight":"700","primaryTextColor":"#ffffff","primaryTextHoverColor":"#ffffff","primaryBgColor":"#0069D4","primaryBgHoverColor":"#005cb8","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","__typename":"EmailButtonsSettings"},"panel":{"borderRadius":"5px","borderColor":"#e4e4e4","__typename":"EmailPanelSettings"},"__typename":"EmailThemeSettings"},"emoji":{"skinToneDefault":"#ffcd43","skinToneLight":"#fae3c5","skinToneMediumLight":"#e2cfa5","skinToneMedium":"#daa478","skinToneMediumDark":"#a78058","skinToneDark":"#5e4d43","__typename":"EmojiThemeSettings"},"heading":{"color":"var(--lia-bs-body-color)","fontFamily":"Segoe UI","fontStyle":"NORMAL","fontWeight":"400","h1FontSize":"34px","h2FontSize":"32px","h3FontSize":"28px","h4FontSize":"24px","h5FontSize":"20px","h6FontSize":"16px","lineHeight":"1.3","subHeaderFontSize":"11px","subHeaderFontWeight":"500","h1LetterSpacing":"normal","h2LetterSpacing":"normal","h3LetterSpacing":"normal","h4LetterSpacing":"normal","h5LetterSpacing":"normal","h6LetterSpacing":"normal","subHeaderLetterSpacing":"2px","h1FontWeight":"var(--lia-bs-headings-font-weight)","h2FontWeight":"var(--lia-bs-headings-font-weight)","h3FontWeight":"var(--lia-bs-headings-font-weight)","h4FontWeight":"var(--lia-bs-headings-font-weight)","h5FontWeight":"var(--lia-bs-headings-font-weight)","h6FontWeight":"var(--lia-bs-headings-font-weight)","__typename":"HeadingThemeSettings"},"icons":{"size10":"10px","size12":"12px","size14":"14px","size16":"16px","size20":"20px","size24":"24px","size30":"30px","size40":"40px","size50":"50px","size60":"60px","size80":"80px","size120":"120px","size160":"160px","__typename":"IconsThemeSettings"},"imagePreview":{"bgColor":"var(--lia-bs-gray-900)","titleColor":"var(--lia-bs-white)","controlColor":"var(--lia-bs-white)","controlBgColor":"var(--lia-bs-gray-800)","__typename":"ImagePreviewThemeSettings"},"input":{"borderColor":"var(--lia-bs-gray-600)","disabledColor":"var(--lia-bs-gray-600)","focusBorderColor":"var(--lia-bs-primary)","labelMarginBottom":"10px","btnFontSize":"var(--lia-bs-font-size-sm)","focusBoxShadow":"0 0 0 3px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","checkLabelMarginBottom":"2px","checkboxBorderRadius":"3px","borderRadiusSm":"var(--lia-bs-border-radius-sm)","borderRadius":"var(--lia-bs-border-radius)","borderRadiusLg":"var(--lia-bs-border-radius-lg)","formTextMarginTop":"4px","textAreaBorderRadius":"var(--lia-bs-border-radius)","activeFillColor":"var(--lia-bs-primary)","__typename":"InputThemeSettings"},"loading":{"dotDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.2)","dotLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.5)","barDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.06)","barLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.4)","__typename":"LoadingThemeSettings"},"link":{"color":"var(--lia-bs-primary)","hoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) - 10%))","decoration":"none","hoverDecoration":"underline","__typename":"LinkThemeSettings"},"listGroup":{"itemPaddingY":"15px","itemPaddingX":"15px","borderColor":"var(--lia-bs-gray-300)","__typename":"ListGroupThemeSettings"},"modal":{"contentTextColor":"var(--lia-bs-body-color)","contentBg":"var(--lia-bs-white)","backgroundBg":"var(--lia-bs-black)","smSize":"440px","mdSize":"760px","lgSize":"1080px","backdropOpacity":0.3,"contentBoxShadowXs":"var(--lia-bs-box-shadow-sm)","contentBoxShadow":"var(--lia-bs-box-shadow)","headerFontWeight":"700","__typename":"ModalThemeSettings"},"navbar":{"position":"FIXED","background":{"attachment":null,"clip":null,"color":"var(--lia-bs-white)","imageAssetName":"","imageLastModified":"0","origin":null,"position":"CENTER_CENTER","repeat":"NO_REPEAT","size":"COVER","__typename":"BackgroundProps"},"backgroundOpacity":0.8,"paddingTop":"15px","paddingBottom":"15px","borderBottom":"1px solid var(--lia-bs-border-color)","boxShadow":"var(--lia-bs-box-shadow-sm)","brandMarginRight":"30px","brandMarginRightSm":"10px","brandLogoHeight":"30px","linkGap":"10px","linkJustifyContent":"flex-start","linkPaddingY":"5px","linkPaddingX":"10px","linkDropdownPaddingY":"9px","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkColor":"var(--lia-bs-body-color)","linkHoverColor":"var(--lia-bs-primary)","linkFontSize":"var(--lia-bs-font-size-sm)","linkFontStyle":"NORMAL","linkFontWeight":"400","linkTextTransform":"NONE","linkLetterSpacing":"normal","linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkBgColor":"transparent","linkBgHoverColor":"transparent","linkBorder":"none","linkBorderHover":"none","linkBoxShadow":"none","linkBoxShadowHover":"none","linkTextBorderBottom":"none","linkTextBorderBottomHover":"none","dropdownPaddingTop":"10px","dropdownPaddingBottom":"15px","dropdownPaddingX":"10px","dropdownMenuOffset":"2px","dropdownDividerMarginTop":"10px","dropdownDividerMarginBottom":"10px","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","controllerIconColor":"var(--lia-bs-body-color)","controllerIconHoverColor":"var(--lia-bs-body-color)","controllerTextColor":"var(--lia-nav-controller-icon-color)","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","controllerHighlightColor":"hsla(30, 100%, 50%)","controllerHighlightTextColor":"var(--lia-yiq-light)","controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerColor":"var(--lia-nav-controller-icon-color)","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","hamburgerBgColor":"transparent","hamburgerBgHoverColor":"transparent","hamburgerBorder":"none","hamburgerBorderHover":"none","collapseMenuMarginLeft":"20px","collapseMenuDividerBg":"var(--lia-nav-link-color)","collapseMenuDividerOpacity":0.16,"__typename":"NavbarThemeSettings"},"pager":{"textColor":"var(--lia-bs-link-color)","textFontWeight":"var(--lia-font-weight-md)","textFontSize":"var(--lia-bs-font-size-sm)","__typename":"PagerThemeSettings"},"panel":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-bs-border-radius)","borderColor":"var(--lia-bs-border-color)","boxShadow":"none","__typename":"PanelThemeSettings"},"popover":{"arrowHeight":"8px","arrowWidth":"16px","maxWidth":"300px","minWidth":"100px","headerBg":"var(--lia-bs-white)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius)","boxShadow":"0 0.5rem 1rem hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.15)","__typename":"PopoverThemeSettings"},"prism":{"color":"#000000","bgColor":"#f5f2f0","fontFamily":"var(--font-family-monospace)","fontSize":"var(--lia-bs-font-size-base)","fontWeightBold":"var(--lia-bs-font-weight-bold)","fontStyleItalic":"italic","tabSize":2,"highlightColor":"#b3d4fc","commentColor":"#62707e","punctuationColor":"#6f6f6f","namespaceOpacity":"0.7","propColor":"#990055","selectorColor":"#517a00","operatorColor":"#906736","operatorBgColor":"hsla(0, 0%, 100%, 0.5)","keywordColor":"#0076a9","functionColor":"#d3284b","variableColor":"#c14700","__typename":"PrismThemeSettings"},"rte":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":" var(--lia-panel-box-shadow)","customColor1":"#bfedd2","customColor2":"#fbeeb8","customColor3":"#f8cac6","customColor4":"#eccafa","customColor5":"#c2e0f4","customColor6":"#2dc26b","customColor7":"#f1c40f","customColor8":"#e03e2d","customColor9":"#b96ad9","customColor10":"#3598db","customColor11":"#169179","customColor12":"#e67e23","customColor13":"#ba372a","customColor14":"#843fa1","customColor15":"#236fa1","customColor16":"#ecf0f1","customColor17":"#ced4d9","customColor18":"#95a5a6","customColor19":"#7e8c8d","customColor20":"#34495e","customColor21":"#000000","customColor22":"#ffffff","defaultMessageHeaderMarginTop":"40px","defaultMessageHeaderMarginBottom":"20px","defaultMessageItemMarginTop":"0","defaultMessageItemMarginBottom":"10px","diffAddedColor":"hsla(170, 53%, 51%, 0.4)","diffChangedColor":"hsla(43, 97%, 63%, 0.4)","diffNoneColor":"hsla(0, 0%, 80%, 0.4)","diffRemovedColor":"hsla(9, 74%, 47%, 0.4)","specialMessageHeaderMarginTop":"40px","specialMessageHeaderMarginBottom":"20px","specialMessageItemMarginTop":"0","specialMessageItemMarginBottom":"10px","__typename":"RteThemeSettings"},"tags":{"bgColor":"var(--lia-bs-gray-200)","bgHoverColor":"var(--lia-bs-gray-400)","borderRadius":"var(--lia-bs-border-radius-sm)","color":"var(--lia-bs-body-color)","hoverColor":"var(--lia-bs-body-color)","fontWeight":"var(--lia-font-weight-md)","fontSize":"var(--lia-font-size-xxs)","textTransform":"UPPERCASE","letterSpacing":"0.5px","__typename":"TagsThemeSettings"},"toasts":{"borderRadius":"var(--lia-bs-border-radius)","paddingX":"12px","__typename":"ToastsThemeSettings"},"typography":{"fontFamilyBase":"Segoe UI","fontStyleBase":"NORMAL","fontWeightBase":"400","fontWeightLight":"300","fontWeightNormal":"400","fontWeightMd":"500","fontWeightBold":"700","letterSpacingSm":"normal","letterSpacingXs":"normal","lineHeightBase":"1.5","fontSizeBase":"16px","fontSizeXxs":"11px","fontSizeXs":"12px","fontSizeSm":"14px","fontSizeLg":"20px","fontSizeXl":"24px","smallFontSize":"14px","customFonts":[{"source":"SERVER","name":"Segoe UI","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"},{"style":"NORMAL","weight":"300","__typename":"FontStyleData"},{"style":"NORMAL","weight":"600","__typename":"FontStyleData"},{"style":"NORMAL","weight":"700","__typename":"FontStyleData"},{"style":"ITALIC","weight":"400","__typename":"FontStyleData"}],"assetNames":["SegoeUI-normal-400.woff2","SegoeUI-normal-300.woff2","SegoeUI-normal-600.woff2","SegoeUI-normal-700.woff2","SegoeUI-italic-400.woff2"],"__typename":"CustomFont"},{"source":"SERVER","name":"MWF Fluent Icons","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"}],"assetNames":["MWFFluentIcons-normal-400.woff2"],"__typename":"CustomFont"}],"__typename":"TypographyThemeSettings"},"unstyledListItem":{"marginBottomSm":"5px","marginBottomMd":"10px","marginBottomLg":"15px","marginBottomXl":"20px","marginBottomXxl":"25px","__typename":"UnstyledListItemThemeSettings"},"yiq":{"light":"#ffffff","dark":"#000000","__typename":"YiqThemeSettings"},"colorLightness":{"primaryDark":0.36,"primaryLight":0.74,"primaryLighter":0.89,"primaryLightest":0.95,"infoDark":0.39,"infoLight":0.72,"infoLighter":0.85,"infoLightest":0.93,"successDark":0.24,"successLight":0.62,"successLighter":0.8,"successLightest":0.91,"warningDark":0.39,"warningLight":0.68,"warningLighter":0.84,"warningLightest":0.93,"dangerDark":0.41,"dangerLight":0.72,"dangerLighter":0.89,"dangerLightest":0.95,"__typename":"ColorLightnessThemeSettings"},"localOverride":false,"__typename":"Theme"},"localOverride":false},"CachedAsset:text:en_US-components/common/EmailVerification-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/common/EmailVerification-1743095130000","value":{"email.verification.title":"Email Verification Required","email.verification.message.update.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. To change your email, visit My Settings.","email.verification.message.resend.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. Resend email."},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-1743095130000","value":{"title":"Loading..."},"localOverride":false},"CachedAsset:quilt:o365.prod:pages/blogs/BlogMessagePage:board:AIPlatformBlog-1743754487582":{"__typename":"CachedAsset","id":"quilt:o365.prod:pages/blogs/BlogMessagePage:board:AIPlatformBlog-1743754487582","value":{"id":"BlogMessagePage","container":{"id":"Common","headerProps":{"backgroundImageProps":null,"backgroundColor":null,"addComponents":null,"removeComponents":["community.widget.bannerWidget"],"componentOrder":null,"__typename":"QuiltContainerSectionProps"},"headerComponentProps":{"community.widget.breadcrumbWidget":{"disableLastCrumbForDesktop":false}},"footerProps":null,"footerComponentProps":null,"items":[{"id":"blog-article","layout":"ONE_COLUMN","bgColor":null,"showTitle":null,"showDescription":null,"textPosition":null,"textColor":null,"sectionEditLevel":"LOCKED","bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"OneColumnQuiltSection","columnMap":{"main":[{"id":"blogs.widget.blogArticleWidget","className":"lia-blog-container","props":null,"__typename":"QuiltComponent"}],"__typename":"OneSectionColumns"}},{"id":"section-1729184836777","layout":"MAIN_SIDE","bgColor":"transparent","showTitle":false,"showDescription":false,"textPosition":"CENTER","textColor":"var(--lia-bs-body-color)","sectionEditLevel":null,"bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"MainSideQuiltSection","columnMap":{"main":[],"side":[{"id":"custom.widget.Social_Sharing","className":null,"props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":true,"title":"Share","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"MainSideSectionColumns"}}],"__typename":"QuiltContainer"},"__typename":"Quilt","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-pages/blogs/BlogMessagePage-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-pages/blogs/BlogMessagePage-1743095130000","value":{"title":"{contextMessageSubject} | {communityTitle}","errorMissing":"This blog post cannot be found","name":"Blog Message Page","section.blog-article.title":"Blog Post","archivedMessageTitle":"This Content Has Been Archived","section.section-1729184836777.title":"","section.section-1729184836777.description":"","section.CncIde.title":"Blog Post","section.tifEmD.description":"","section.tifEmD.title":""},"localOverride":false},"CachedAsset:quiltWrapper:o365.prod:Common:1743754282020":{"__typename":"CachedAsset","id":"quiltWrapper:o365.prod:Common:1743754282020","value":{"id":"Common","header":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"community.widget.navbarWidget","props":{"showUserName":true,"showRegisterLink":true,"useIconLanguagePicker":true,"useLabelLanguagePicker":true,"className":"QuiltComponent_lia-component-edit-mode__0nCcm","links":{"sideLinks":[],"mainLinks":[{"children":[],"linkType":"INTERNAL","id":"gxcuf89792","params":{},"routeName":"CommunityPage"},{"children":[],"linkType":"EXTERNAL","id":"external-link","url":"/Directory","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft365","params":{"categoryId":"microsoft365"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-teams","params":{"categoryId":"MicrosoftTeams"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows","params":{"categoryId":"Windows"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-securityand-compliance","params":{"categoryId":"microsoft-security"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"outlook","params":{"categoryId":"Outlook"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"planner","params":{"categoryId":"Planner"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows-server","params":{"categoryId":"Windows-Server"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"azure","params":{"categoryId":"Azure"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"exchange","params":{"categoryId":"Exchange"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-endpoint-manager","params":{"categoryId":"microsoft-endpoint-manager"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-q-l-server","params":{"categoryId":"SQL-Server"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-2","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities","url":"/","target":"BLANK"},{"children":[{"linkType":"INTERNAL","id":"education-sector","params":{"categoryId":"EducationSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"a-i","params":{"categoryId":"AI"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"i-t-ops-talk","params":{"categoryId":"ITOpsTalk"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"partner-community","params":{"categoryId":"PartnerCommunity"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-mechanics","params":{"categoryId":"MicrosoftMechanics"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"healthcare-and-life-sciences","params":{"categoryId":"HealthcareAndLifeSciences"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"public-sector","params":{"categoryId":"PublicSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"io-t","params":{"categoryId":"IoT"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"driving-adoption","params":{"categoryId":"DrivingAdoption"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-m-b","params":{"categoryId":"SMB"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"startupsat-microsoft","params":{"categoryId":"StartupsatMicrosoft"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-1","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities-1","url":"/","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external","url":"/Blogs","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external-1","url":"/Events","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft-learn-1","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-learn-blog","params":{"boardId":"MicrosoftLearnBlog","categoryId":"MicrosoftLearn"},"routeName":"BlogBoardPage"},{"linkType":"EXTERNAL","id":"external-10","url":"https://learningroomdirectory.microsoft.com/","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-3","url":"https://docs.microsoft.com/learn/dynamics365/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-4","url":"https://docs.microsoft.com/learn/m365/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-5","url":"https://docs.microsoft.com/learn/topics/sci/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-6","url":"https://docs.microsoft.com/learn/powerplatform/?wt.mc_id=techcom_header-webpage-powerplatform","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-7","url":"https://docs.microsoft.com/learn/github/?wt.mc_id=techcom_header-webpage-github","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-8","url":"https://docs.microsoft.com/learn/teams/?wt.mc_id=techcom_header-webpage-teams","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-9","url":"https://docs.microsoft.com/learn/dotnet/?wt.mc_id=techcom_header-webpage-dotnet","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-2","url":"https://docs.microsoft.com/learn/azure/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"}],"linkType":"INTERNAL","id":"microsoft-learn","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"children":[],"linkType":"INTERNAL","id":"community-info-center","params":{"categoryId":"Community-Info-Center"},"routeName":"CategoryPage"}]},"style":{"boxShadow":"var(--lia-bs-box-shadow-sm)","controllerHighlightColor":"hsla(30, 100%, 50%)","linkFontWeight":"400","dropdownDividerMarginBottom":"10px","hamburgerBorderHover":"none","linkBoxShadowHover":"none","linkFontSize":"14px","backgroundOpacity":0.8,"controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerBgColor":"transparent","hamburgerColor":"var(--lia-nav-controller-icon-color)","linkTextBorderBottom":"none","brandLogoHeight":"30px","linkBgHoverColor":"transparent","linkLetterSpacing":"normal","collapseMenuDividerOpacity":0.16,"dropdownPaddingBottom":"15px","paddingBottom":"15px","dropdownMenuOffset":"2px","hamburgerBgHoverColor":"transparent","borderBottom":"1px solid var(--lia-bs-border-color)","hamburgerBorder":"none","dropdownPaddingX":"10px","brandMarginRightSm":"10px","linkBoxShadow":"none","collapseMenuDividerBg":"var(--lia-nav-link-color)","linkColor":"var(--lia-bs-body-color)","linkJustifyContent":"flex-start","dropdownPaddingTop":"10px","controllerHighlightTextColor":"var(--lia-yiq-dark)","controllerTextColor":"var(--lia-nav-controller-icon-color)","background":{"imageAssetName":"","color":"var(--lia-bs-white)","size":"COVER","repeat":"NO_REPEAT","position":"CENTER_CENTER","imageLastModified":""},"linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkHoverColor":"var(--lia-bs-body-color)","position":"FIXED","linkBorder":"none","linkTextBorderBottomHover":"2px solid var(--lia-bs-body-color)","brandMarginRight":"30px","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","linkBorderHover":"none","collapseMenuMarginLeft":"20px","linkFontStyle":"NORMAL","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","linkPaddingX":"10px","linkPaddingY":"5px","paddingTop":"15px","linkTextTransform":"NONE","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","linkBgColor":"transparent","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkDropdownPaddingY":"9px","controllerIconColor":"var(--lia-bs-body-color)","dropdownDividerMarginTop":"10px","linkGap":"10px","controllerIconHoverColor":"var(--lia-bs-body-color)"},"showSearchIcon":false,"languagePickerStyle":"iconAndLabel"},"__typename":"QuiltComponent"},{"id":"community.widget.breadcrumbWidget","props":{"backgroundColor":"transparent","linkHighlightColor":"var(--lia-bs-primary)","visualEffects":{"showBottomBorder":true},"linkTextColor":"var(--lia-bs-gray-700)"},"__typename":"QuiltComponent"},{"id":"custom.widget.community_banner","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"usePageWidth":false,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"},{"id":"custom.widget.HeroBanner","props":{"widgetVisibility":"signedInOrAnonymous","usePageWidth":false,"useTitle":true,"cMax_items":3,"useBackground":false,"title":"","lazyLoad":false,"widgetChooser":"custom.widget.HeroBanner"},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"footer":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"custom.widget.MicrosoftFooter","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"__typename":"QuiltWrapper","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/ActionFeedback-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/common/ActionFeedback-1743095130000","value":{"joinedGroupHub.title":"Welcome","joinedGroupHub.message":"You are now a member of this group and are subscribed to updates.","groupHubInviteNotFound.title":"Invitation Not Found","groupHubInviteNotFound.message":"Sorry, we could not find your invitation to the group. The owner may have canceled the invite.","groupHubNotFound.title":"Group Not Found","groupHubNotFound.message":"The grouphub you tried to join does not exist. It may have been deleted.","existingGroupHubMember.title":"Already Joined","existingGroupHubMember.message":"You are already a member of this group.","accountLocked.title":"Account Locked","accountLocked.message":"Your account has been locked due to multiple failed attempts. Try again in {lockoutTime} minutes.","editedGroupHub.title":"Changes Saved","editedGroupHub.message":"Your group has been updated.","leftGroupHub.title":"Goodbye","leftGroupHub.message":"You are no longer a member of this group and will not receive future updates.","deletedGroupHub.title":"Deleted","deletedGroupHub.message":"The group has been deleted.","groupHubCreated.title":"Group Created","groupHubCreated.message":"{groupHubName} is ready to use","accountClosed.title":"Account Closed","accountClosed.message":"The account has been closed and you will now be redirected to the homepage","resetTokenExpired.title":"Reset Password Link has Expired","resetTokenExpired.message":"Try resetting your password again","invalidUrl.title":"Invalid URL","invalidUrl.message":"The URL you're using is not recognized. Verify your URL and try again.","accountClosedForUser.title":"Account Closed","accountClosedForUser.message":"{userName}'s account is closed","inviteTokenInvalid.title":"Invitation Invalid","inviteTokenInvalid.message":"Your invitation to the community has been canceled or expired.","inviteTokenError.title":"Invitation Verification Failed","inviteTokenError.message":"The url you are utilizing is not recognized. Verify your URL and try again","pageNotFound.title":"Access Denied","pageNotFound.message":"You do not have access to this area of the community or it doesn't exist","eventAttending.title":"Responded as Attending","eventAttending.message":"You'll be notified when there's new activity and reminded as the event approaches","eventInterested.title":"Responded as Interested","eventInterested.message":"You'll be notified when there's new activity and reminded as the event approaches","eventNotFound.title":"Event Not Found","eventNotFound.message":"The event you tried to respond to does not exist.","redirectToRelatedPage.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.message":"The content you are trying to access is archived","redirectToRelatedPage.message":"The content you are trying to access is archived","relatedUrl.archivalLink.flyoutMessage":"The content you are trying to access is archived View Archived Content"},"localOverride":false},"CachedAsset:component:custom.widget.community_banner-en-1743754526896":{"__typename":"CachedAsset","id":"component:custom.widget.community_banner-en-1743754526896","value":{"component":{"id":"custom.widget.community_banner","template":{"id":"community_banner","markupLanguage":"HANDLEBARS","style":".community-banner {\n a.top-bar.btn {\n top: 0px;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0px;\n background: #0068b8;\n color: white;\n padding: 10px 0px;\n display:block;\n box-shadow:none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0px !important;\n font-size:14px;\n }\n}","texts":null,"defaults":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.community_banner","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_community_banner_community-banner_1a5zb_1 {\n a.custom_widget_community_banner_top-bar_1a5zb_2.custom_widget_community_banner_btn_1a5zb_2 {\n top: 0;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0;\n background: #0068b8;\n color: white;\n padding: 0.625rem 0;\n display:block;\n box-shadow:none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0 !important;\n font-size:0.875rem;\n }\n}","tokens":{"community-banner":"custom_widget_community_banner_community-banner_1a5zb_1","top-bar":"custom_widget_community_banner_top-bar_1a5zb_2","btn":"custom_widget_community_banner_btn_1a5zb_2"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.HeroBanner-en-1743754526896":{"__typename":"CachedAsset","id":"component:custom.widget.HeroBanner-en-1743754526896","value":{"component":{"id":"custom.widget.HeroBanner","template":{"id":"HeroBanner","markupLanguage":"REACT","style":null,"texts":{"searchPlaceholderText":"Search this community","followActionText":"Follow","unfollowActionText":"Following","searchOnHoverText":"Please enter your search term(s) and then press return key to complete a search."},"defaults":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.HeroBanner","form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"__typename":"Component","localOverride":false},"globalCss":null,"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"}},"localOverride":false},"CachedAsset:component:custom.widget.Social_Sharing-en-1743754526896":{"__typename":"CachedAsset","id":"component:custom.widget.Social_Sharing-en-1743754526896","value":{"component":{"id":"custom.widget.Social_Sharing","template":{"id":"Social_Sharing","markupLanguage":"HANDLEBARS","style":".social-share {\n .sharing-options {\n position: relative;\n margin: 0;\n padding: 0;\n line-height: 10px;\n display: flex;\n justify-content: left;\n gap: 5px;\n list-style-type: none;\n li {\n text-align: left;\n a {\n min-width: 30px;\n min-height: 30px;\n display: block;\n padding: 1px;\n .social-share-linkedin {\n img {\n background-color: rgb(0, 119, 181);\n }\n }\n .social-share-facebook {\n img {\n background-color: rgb(59, 89, 152);\n }\n }\n .social-share-x {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .social-share-rss {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .social-share-reddit {\n img {\n background-color: rgb(255, 69, 0);\n }\n }\n .social-share-email {\n img {\n background-color: rgb(132, 132, 132);\n }\n }\n }\n a {\n img {\n height: 2rem;\n }\n }\n }\n }\n}\n","texts":null,"defaults":{"config":{"applicablePages":[],"description":"Adds buttons to share to various social media websites","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.Social_Sharing","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"Adds buttons to share to various social media websites","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_Social_Sharing_social-share_c7xxz_1 {\n .custom_widget_Social_Sharing_sharing-options_c7xxz_2 {\n position: relative;\n margin: 0;\n padding: 0;\n line-height: 0.625rem;\n display: flex;\n justify-content: left;\n gap: 0.3125rem;\n list-style-type: none;\n li {\n text-align: left;\n a {\n min-width: 1.875rem;\n min-height: 1.875rem;\n display: block;\n padding: 0.0625rem;\n .custom_widget_Social_Sharing_social-share-linkedin_c7xxz_18 {\n img {\n background-color: rgb(0, 119, 181);\n }\n }\n .custom_widget_Social_Sharing_social-share-facebook_c7xxz_23 {\n img {\n background-color: rgb(59, 89, 152);\n }\n }\n .custom_widget_Social_Sharing_social-share-x_c7xxz_28 {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-rss_c7xxz_33 {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-reddit_c7xxz_38 {\n img {\n background-color: rgb(255, 69, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-email_c7xxz_43 {\n img {\n background-color: rgb(132, 132, 132);\n }\n }\n }\n a {\n img {\n height: 2rem;\n }\n }\n }\n }\n}\n","tokens":{"social-share":"custom_widget_Social_Sharing_social-share_c7xxz_1","sharing-options":"custom_widget_Social_Sharing_sharing-options_c7xxz_2","social-share-linkedin":"custom_widget_Social_Sharing_social-share-linkedin_c7xxz_18","social-share-facebook":"custom_widget_Social_Sharing_social-share-facebook_c7xxz_23","social-share-x":"custom_widget_Social_Sharing_social-share-x_c7xxz_28","social-share-rss":"custom_widget_Social_Sharing_social-share-rss_c7xxz_33","social-share-reddit":"custom_widget_Social_Sharing_social-share-reddit_c7xxz_38","social-share-email":"custom_widget_Social_Sharing_social-share-email_c7xxz_43"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.MicrosoftFooter-en-1743754526896":{"__typename":"CachedAsset","id":"component:custom.widget.MicrosoftFooter-en-1743754526896","value":{"component":{"id":"custom.widget.MicrosoftFooter","template":{"id":"MicrosoftFooter","markupLanguage":"HANDLEBARS","style":".context-uhf {\n min-width: 280px;\n font-size: 15px;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.c-uhff-link {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.c-uhff {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.c-uhff-nav {\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n .c-heading-4 {\n color: #616161;\n word-break: break-word;\n font-size: 15px;\n line-height: 20px;\n padding: 36px 0 4px;\n font-weight: 600;\n }\n .c-uhff-nav-row {\n .c-uhff-nav-group {\n display: block;\n float: left;\n min-height: 1px;\n vertical-align: text-top;\n padding: 0 12px;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.c-list.f-bare {\n font-size: 11px;\n line-height: 16px;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 8px 0;\n margin: 0;\n }\n }\n }\n }\n}\n.c-uhff-base {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 30px 5% 16px;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.c-uhff-ccpa {\n font-size: 11px;\n line-height: 16px;\n float: left;\n margin: 3px 0;\n }\n a.c-uhff-ccpa:hover {\n text-decoration: underline;\n }\n ul.c-list {\n font-size: 11px;\n line-height: 16px;\n float: right;\n margin: 3px 0;\n color: #616161;\n li {\n padding: 0 24px 4px 0;\n display: inline-block;\n }\n }\n .c-list.f-bare {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 30px 24px 16px;\n }\n}\n","texts":{"New tab":"What's New","New 1":"Surface Laptop Studio 2","New 2":"Surface Laptop Go 3","New 3":"Surface Pro 9","New 4":"Surface Laptop 5","New 5":"Surface Studio 2+","New 6":"Copilot in Windows","New 7":"Microsoft 365","New 8":"Windows 11 apps","Store tab":"Microsoft Store","Store 1":"Account Profile","Store 2":"Download Center","Store 3":"Microsoft Store Support","Store 4":"Returns","Store 5":"Order tracking","Store 6":"Certified Refurbished","Store 7":"Microsoft Store Promise","Store 8":"Flexible Payments","Education tab":"Education","Edu 1":"Microsoft in education","Edu 2":"Devices for education","Edu 3":"Microsoft Teams for Education","Edu 4":"Microsoft 365 Education","Edu 5":"How to buy for your school","Edu 6":"Educator Training and development","Edu 7":"Deals for students and parents","Edu 8":"Azure for students","Business tab":"Business","Bus 1":"Microsoft Cloud","Bus 2":"Microsoft Security","Bus 3":"Dynamics 365","Bus 4":"Microsoft 365","Bus 5":"Microsoft Power Platform","Bus 6":"Microsoft Teams","Bus 7":"Microsoft Industry","Bus 8":"Small Business","Developer tab":"Developer & IT","Dev 1":"Azure","Dev 2":"Developer Center","Dev 3":"Documentation","Dev 4":"Microsoft Learn","Dev 5":"Microsoft Tech Community","Dev 6":"Azure Marketplace","Dev 7":"AppSource","Dev 8":"Visual Studio","Company tab":"Company","Com 1":"Careers","Com 2":"About Microsoft","Com 3":"Company News","Com 4":"Privacy at Microsoft","Com 5":"Investors","Com 6":"Diversity and inclusion","Com 7":"Accessiblity","Com 8":"Sustainibility"},"defaults":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.MicrosoftFooter","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_MicrosoftFooter_context-uhf_f95yq_1 {\n min-width: 17.5rem;\n font-size: 0.9375rem;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-link_f95yq_12 {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff_f95yq_12 {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.custom_widget_MicrosoftFooter_c-uhff-nav_f95yq_35 {\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n .custom_widget_MicrosoftFooter_c-heading-4_f95yq_49 {\n color: #616161;\n word-break: break-word;\n font-size: 0.9375rem;\n line-height: 1.25rem;\n padding: 2.25rem 0 0.25rem;\n font-weight: 600;\n }\n .custom_widget_MicrosoftFooter_c-uhff-nav-row_f95yq_57 {\n .custom_widget_MicrosoftFooter_c-uhff-nav-group_f95yq_58 {\n display: block;\n float: left;\n min-height: 0.0625rem;\n vertical-align: text-top;\n padding: 0 0.75rem;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.custom_widget_MicrosoftFooter_c-list_f95yq_78.custom_widget_MicrosoftFooter_f-bare_f95yq_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 0.5rem 0;\n margin: 0;\n }\n }\n }\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff-base_f95yq_94 {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 1.875rem 5% 1rem;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: left;\n margin: 0.1875rem 0;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107:hover {\n text-decoration: underline;\n }\n ul.custom_widget_MicrosoftFooter_c-list_f95yq_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: right;\n margin: 0.1875rem 0;\n color: #616161;\n li {\n padding: 0 1.5rem 0.25rem 0;\n display: inline-block;\n }\n }\n .custom_widget_MicrosoftFooter_c-list_f95yq_78.custom_widget_MicrosoftFooter_f-bare_f95yq_78 {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 1.875rem 1.5rem 1rem;\n }\n}\n","tokens":{"context-uhf":"custom_widget_MicrosoftFooter_context-uhf_f95yq_1","c-uhff-link":"custom_widget_MicrosoftFooter_c-uhff-link_f95yq_12","c-uhff":"custom_widget_MicrosoftFooter_c-uhff_f95yq_12","c-uhff-nav":"custom_widget_MicrosoftFooter_c-uhff-nav_f95yq_35","c-heading-4":"custom_widget_MicrosoftFooter_c-heading-4_f95yq_49","c-uhff-nav-row":"custom_widget_MicrosoftFooter_c-uhff-nav-row_f95yq_57","c-uhff-nav-group":"custom_widget_MicrosoftFooter_c-uhff-nav-group_f95yq_58","c-list":"custom_widget_MicrosoftFooter_c-list_f95yq_78","f-bare":"custom_widget_MicrosoftFooter_f-bare_f95yq_78","c-uhff-base":"custom_widget_MicrosoftFooter_c-uhff-base_f95yq_94","c-uhff-ccpa":"custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107"}},"form":null},"localOverride":false},"CachedAsset:text:en_US-components/community/Breadcrumb-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/community/Breadcrumb-1743095130000","value":{"navLabel":"Breadcrumbs","dropdown":"Additional parent page navigation"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBanner-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBanner-1743095130000","value":{"messageMarkedAsSpam":"This post has been marked as spam","messageMarkedAsSpam@board:TKB":"This article has been marked as spam","messageMarkedAsSpam@board:BLOG":"This post has been marked as spam","messageMarkedAsSpam@board:FORUM":"This discussion has been marked as spam","messageMarkedAsSpam@board:OCCASION":"This event has been marked as spam","messageMarkedAsSpam@board:IDEA":"This idea has been marked as spam","manageSpam":"Manage Spam","messageMarkedAsAbuse":"This post has been marked as abuse","messageMarkedAsAbuse@board:TKB":"This article has been marked as abuse","messageMarkedAsAbuse@board:BLOG":"This post has been marked as abuse","messageMarkedAsAbuse@board:FORUM":"This discussion has been marked as abuse","messageMarkedAsAbuse@board:OCCASION":"This event has been marked as abuse","messageMarkedAsAbuse@board:IDEA":"This idea has been marked as abuse","preModCommentAuthorText":"This comment will be published as soon as it is approved","preModCommentModeratorText":"This comment is awaiting moderation","messageMarkedAsOther":"This post has been rejected due to other reasons","messageMarkedAsOther@board:TKB":"This article has been rejected due to other reasons","messageMarkedAsOther@board:BLOG":"This post has been rejected due to other reasons","messageMarkedAsOther@board:FORUM":"This discussion has been rejected due to other reasons","messageMarkedAsOther@board:OCCASION":"This event has been rejected due to other reasons","messageMarkedAsOther@board:IDEA":"This idea has been rejected due to other reasons","messageArchived":"This post was archived on {date}","relatedUrl":"View Related Content","relatedContentText":"Showing related content","archivedContentLink":"View Archived Content"},"localOverride":false},"Category:category:Exchange":{"__typename":"Category","id":"category:Exchange","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Planner":{"__typename":"Category","id":"category:Planner","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Outlook":{"__typename":"Category","id":"category:Outlook","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Community-Info-Center":{"__typename":"Category","id":"category:Community-Info-Center","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:EducationSector":{"__typename":"Category","id":"category:EducationSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:DrivingAdoption":{"__typename":"Category","id":"category:DrivingAdoption","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Azure":{"__typename":"Category","id":"category:Azure","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows-Server":{"__typename":"Category","id":"category:Windows-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:SQL-Server":{"__typename":"Category","id":"category:SQL-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftTeams":{"__typename":"Category","id":"category:MicrosoftTeams","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PublicSector":{"__typename":"Category","id":"category:PublicSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft365":{"__typename":"Category","id":"category:microsoft365","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:IoT":{"__typename":"Category","id":"category:IoT","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:HealthcareAndLifeSciences":{"__typename":"Category","id":"category:HealthcareAndLifeSciences","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:SMB":{"__typename":"Category","id":"category:SMB","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:ITOpsTalk":{"__typename":"Category","id":"category:ITOpsTalk","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-endpoint-manager":{"__typename":"Category","id":"category:microsoft-endpoint-manager","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftLearn":{"__typename":"Category","id":"category:MicrosoftLearn","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Blog:board:MicrosoftLearnBlog":{"__typename":"Blog","id":"board:MicrosoftLearnBlog","blogPolicies":{"__typename":"BlogPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}},"boardPolicies":{"__typename":"BoardPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftMechanics":{"__typename":"Category","id":"category:MicrosoftMechanics","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:StartupsatMicrosoft":{"__typename":"Category","id":"category:StartupsatMicrosoft","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PartnerCommunity":{"__typename":"Category","id":"category:PartnerCommunity","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows":{"__typename":"Category","id":"category:Windows","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-security":{"__typename":"Category","id":"category:microsoft-security","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"QueryVariables:TopicReplyList:message:4249359:1":{"__typename":"QueryVariables","id":"TopicReplyList:message:4249359:1","value":{"id":"message:4249359","first":10,"sorts":{"postTime":{"direction":"DESC"}},"repliesFirst":3,"repliesFirstDepthThree":1,"repliesSorts":{"postTime":{"direction":"DESC"}},"useAvatar":true,"useAuthorLogin":true,"useAuthorRank":true,"useBody":true,"useKudosCount":true,"useTimeToRead":false,"useMedia":false,"useReadOnlyIcon":false,"useRepliesCount":true,"useSearchSnippet":false,"useAcceptedSolutionButton":false,"useSolvedBadge":false,"useAttachments":false,"attachmentsFirst":5,"useTags":true,"useNodeAncestors":false,"useUserHoverCard":false,"useNodeHoverCard":false,"useModerationStatus":true,"usePreviewSubjectModal":false,"useMessageStatus":true}},"ROOT_MUTATION":{"__typename":"Mutation"},"CachedAsset:text:en_US-components/community/Navbar-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/community/Navbar-1743095130000","value":{"community":"Community Home","inbox":"Inbox","manageContent":"Manage Content","tos":"Terms of Service","forgotPassword":"Forgot Password","themeEditor":"Theme Editor","edit":"Edit Navigation Bar","skipContent":"Skip to content","gxcuf89792":"Tech Community","external-1":"Events","s-m-b":"Small and Medium Businesses","windows-server":"Windows Server","education-sector":"Education Sector","driving-adoption":"Driving Adoption","microsoft-learn":"Microsoft Learn","s-q-l-server":"SQL Server","partner-community":"Microsoft Partner Community","microsoft365":"Microsoft 365","external-9":".NET","external-8":"Teams","external-7":"Github","products-services":"Products","external-6":"Power Platform","communities-1":"Topics","external-5":"Microsoft Security","planner":"Planner","external-4":"Microsoft 365","external-3":"Dynamics 365","azure":"Azure","healthcare-and-life-sciences":"Healthcare and Life Sciences","external-2":"Azure","microsoft-mechanics":"Microsoft Mechanics","microsoft-learn-1":"Community","external-10":"Learning Room Directory","microsoft-learn-blog":"Blog","windows":"Windows","i-t-ops-talk":"ITOps Talk","external-link-1":"View All","microsoft-securityand-compliance":"Microsoft Security","public-sector":"Public Sector","community-info-center":"Lounge","external-link-2":"View All","microsoft-teams":"Microsoft Teams","external":"Blogs","microsoft-endpoint-manager":"Microsoft Intune and Configuration Manager","startupsat-microsoft":"Startups at Microsoft","exchange":"Exchange","a-i":"AI and Machine Learning","io-t":"Internet of Things (IoT)","outlook":"Outlook","external-link":"Community Hubs","communities":"Products"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarHamburgerDropdown-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarHamburgerDropdown-1743095130000","value":{"hamburgerLabel":"Side Menu"},"localOverride":false},"CachedAsset:text:en_US-components/community/BrandLogo-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/community/BrandLogo-1743095130000","value":{"logoAlt":"Khoros","themeLogoAlt":"Brand Logo"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarTextLinks-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarTextLinks-1743095130000","value":{"more":"More"},"localOverride":false},"CachedAsset:text:en_US-components/authentication/AuthenticationLink-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/authentication/AuthenticationLink-1743095130000","value":{"title.login":"Sign In","title.registration":"Register","title.forgotPassword":"Forgot Password","title.multiAuthLogin":"Sign In"},"localOverride":false},"CachedAsset:text:en_US-components/nodes/NodeLink-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/nodes/NodeLink-1743095130000","value":{"place":"Place {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageView/MessageViewStandard-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageView/MessageViewStandard-1743095130000","value":{"anonymous":"Anonymous","author":"{messageAuthorLogin}","authorBy":"{messageAuthorLogin}","board":"{messageBoardTitle}","replyToUser":" to {parentAuthor}","showMoreReplies":"Show More","replyText":"Reply","repliesText":"Replies","markedAsSolved":"Marked as Solved","movedMessagePlaceholder.BLOG":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.TKB":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.FORUM":"{count, plural, =0 {This reply has been} other {These replies have been} }","movedMessagePlaceholder.IDEA":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.OCCASION":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholderUrlText":"moved.","messageStatus":"Status: ","statusChanged":"Status changed: {previousStatus} to {currentStatus}","statusAdded":"Status added: {status}","statusRemoved":"Status removed: {status}","labelExpand":"expand replies","labelCollapse":"collapse replies","unhelpfulReason.reason1":"Content is outdated","unhelpfulReason.reason2":"Article is missing information","unhelpfulReason.reason3":"Content is for a different Product","unhelpfulReason.reason4":"Doesn't match what I was searching for"},"localOverride":false},"CachedAsset:text:en_US-components/messages/ThreadedReplyList-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/ThreadedReplyList-1743095130000","value":{"title":"{count, plural, one{# Reply} other{# Replies}}","title@board:BLOG":"{count, plural, one{# Comment} other{# Comments}}","title@board:TKB":"{count, plural, one{# Comment} other{# Comments}}","title@board:IDEA":"{count, plural, one{# Comment} other{# Comments}}","title@board:OCCASION":"{count, plural, one{# Comment} other{# Comments}}","noRepliesTitle":"No Replies","noRepliesTitle@board:BLOG":"No Comments","noRepliesTitle@board:TKB":"No Comments","noRepliesTitle@board:IDEA":"No Comments","noRepliesTitle@board:OCCASION":"No Comments","noRepliesDescription":"Be the first to reply","noRepliesDescription@board:BLOG":"Be the first to comment","noRepliesDescription@board:TKB":"Be the first to comment","noRepliesDescription@board:IDEA":"Be the first to comment","noRepliesDescription@board:OCCASION":"Be the first to comment","messageReadOnlyAlert:BLOG":"Comments have been turned off for this post","messageReadOnlyAlert:TKB":"Comments have been turned off for this article","messageReadOnlyAlert:IDEA":"Comments have been turned off for this idea","messageReadOnlyAlert:FORUM":"Replies have been turned off for this discussion","messageReadOnlyAlert:OCCASION":"Comments have been turned off for this event"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyCallToAction-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyCallToAction-1743095130000","value":{"leaveReply":"Leave a reply...","leaveReply@board:BLOG@message:root":"Leave a comment...","leaveReply@board:TKB@message:root":"Leave a comment...","leaveReply@board:IDEA@message:root":"Leave a comment...","leaveReply@board:OCCASION@message:root":"Leave a comment...","repliesTurnedOff.FORUM":"Replies are turned off for this topic","repliesTurnedOff.BLOG":"Comments are turned off for this topic","repliesTurnedOff.TKB":"Comments are turned off for this topic","repliesTurnedOff.IDEA":"Comments are turned off for this topic","repliesTurnedOff.OCCASION":"Comments are turned off for this topic","infoText":"Stop poking me!"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarDropdownToggle-1743095130000","value":{"ariaLabelClosed":"Press the down arrow to open the menu"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/QueryHandler-1743095130000","value":{"title":"Query Handler"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCoverImage-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCoverImage-1743095130000","value":{"coverImageTitle":"Cover Image"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeTitle-1743095130000","value":{"nodeTitle":"{nodeTitle, select, community {Community} other {{nodeTitle}}} "},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTimeToRead-1743095130000","value":{"minReadText":"{min} MIN READ"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageSubject-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageSubject-1743095130000","value":{"noSubject":"(no subject)"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserLink-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserLink-1743095130000","value":{"authorName":"View Profile: {author}","anonymous":"Anonymous"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserRank-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserRank-1743095130000","value":{"rankName":"{rankName}","userRank":"Author rank {rankName}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTime-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTime-1743095130000","value":{"postTime":"Published: {time}","lastPublishTime":"Last Update: {time}","conversation.lastPostingActivityTime":"Last posting activity time: {time}","conversation.lastPostTime":"Last post time: {time}","moderationData.rejectTime":"Rejected time: {time}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBody-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBody-1743095130000","value":{"showMessageBody":"Show More","mentionsErrorTitle":"{mentionsType, select, board {Board} user {User} message {Message} other {}} No Longer Available","mentionsErrorMessage":"The {mentionsType} you are trying to view has been removed from the community.","videoProcessing":"Video is being processed. Please try again in a few minutes.","bannerTitle":"Video provider requires cookies to play the video. Accept to continue or {url} it directly on the provider's site.","buttonTitle":"Accept","urlText":"watch"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCustomFields-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCustomFields-1743095130000","value":{"CustomField.default.label":"Value of {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageRevision-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageRevision-1743095130000","value":{"lastUpdatedDatePublished":"{publishCount, plural, one{Published} other{Updated}} {date}","lastUpdatedDateDraft":"Created {date}","version":"Version {major}.{minor}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyButton-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyButton-1743095130000","value":{"repliesCount":"{count}","title":"Reply","title@board:BLOG@message:root":"Comment","title@board:TKB@message:root":"Comment","title@board:IDEA@message:root":"Comment","title@board:OCCASION@message:root":"Comment"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageAuthorBio-1743095130000","value":{"sendMessage":"Send Message","actionMessage":"Follow this blog board to get notified when there's new activity","coAuthor":"CO-PUBLISHER","contributor":"CONTRIBUTOR","userProfile":"View Profile","iconlink":"Go to {name} {type}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserAvatar-1743095130000","value":{"altText":"{login}'s avatar","altTextGeneric":"User's avatar"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/ranks/UserRankLabel-1743095130000","value":{"altTitle":"Icon for {rankName} rank"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserRegistrationDate-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserRegistrationDate-1743095130000","value":{"noPrefix":"{date}","withPrefix":"Joined {date}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeAvatar-1743095130000","value":{"altTitle":"Node avatar for {nodeTitle}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeDescription-1743095130000","value":{"description":"{description}"},"localOverride":false},"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-components/tags/TagView/TagViewChip-1743095130000","value":{"tagLabelName":"Tag name {tagName}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1743095130000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeIcon-1743095130000","value":{"contentType":"Content Type {style, select, FORUM {Forum} BLOG {Blog} TKB {Knowledge Base} IDEA {Ideas} OCCASION {Events} other {}} icon"},"localOverride":false}}}},"page":"/blogs/BlogMessagePage/BlogMessagePage","query":{"boardId":"aiplatformblog","messageSubject":"the-future-of-ai-fine-tuning-llama-3-1-8b-on-azure-ai-serverless-why-its-so-easy","messageId":"4249359"},"buildId":"HEhyUrv5OXNBIbfCLaOrw","runtimeConfig":{"buildInformationVisible":false,"logLevelApp":"info","logLevelMetrics":"info","openTelemetryClientEnabled":false,"openTelemetryConfigName":"o365","openTelemetryServiceVersion":"25.1.0","openTelemetryUniverse":"prod","openTelemetryCollector":"http://localhost:4318","openTelemetryRouteChangeAllowedTime":"5000","apolloDevToolsEnabled":false,"inboxMuteWipFeatureEnabled":false},"isFallback":false,"isExperimentalCompile":false,"dynamicIds":["./components/community/Navbar/NavbarWidget.tsx","./components/community/Breadcrumb/BreadcrumbWidget.tsx","./components/customComponent/CustomComponent/CustomComponent.tsx","./components/blogs/BlogArticleWidget/BlogArticleWidget.tsx","./components/external/components/ExternalComponent.tsx","./components/messages/MessageView/MessageViewStandard/MessageViewStandard.tsx","./components/messages/ThreadedReplyList/ThreadedReplyList.tsx","../shared/client/components/common/List/UnwrappedList/UnwrappedList.tsx","./components/tags/TagView/TagView.tsx","./components/tags/TagView/TagViewChip/TagViewChip.tsx"],"appGip":true,"scriptLoader":[{"id":"analytics","src":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/pagescripts/1730819800000/analytics.js?page.id=BlogMessagePage&entity.id=board%3Aaiplatformblog&entity.id=message%3A4249359","strategy":"afterInteractive"}]}