Gorilla Student passing exam (Generated using DALL-E 3)
Introduction
One of the most impactful applications of generative AI for businesses is to create natural language interfaces that have access to existing knowledge. This means answering questions about specific domains such as banking, legal and medical. There are currently two main ways to do this. First: domain-specific Fine-tuning (DSF), which means training an existing base model on a set of documents that represent the domain specific knowledge. Second: RAG (Retrieval Augmented Generation), which involves storing those documents in a vector database and (at query time) finding documents based on their semantic similarity with the question and bringing them into the context of the LLM for in context learning.
In this article, we will look at the limitations of those two approaches and how a team of UC Berkeley researchers, Tianjun Zhang and Shishir G. Patil, may have just discovered a better approach. The team previously known for Gorilla LLM :gorilla: presents this new approach in their RAFT paper (Retrieval Augmented Fine Tuning) showing how they used Meta Llama 2 and Azure AI Studio to conduct their research and implement their approach.
The Berkeley team also published a blog post about the paper explaining what those advantages and disadvantages are and how the RAFT approach produces more effective results. The RAFT paper implementation is available in their Github repository.
Let’s start by giving an overview of how the RAFT approach works.
Understanding the RAFT method
In conventional RAG, when a query is posed to a model, it retrieves a few documents from an index that are likely to contain the answer. It uses these documents as the context to generate an answer to the user’s query.
With fine-tuning, the model answers queries like a student writing a closed-book exam. With RAG, this scenario resembles an open-book exam, where the student has full access to a textbook to find the answers. Open-book exams are easier to solve than closed-book exams, which explains the efficacy and popularity of RAG.
Both approaches have limitations. With fine-tuning, the model is not only limited to what it has been trained on, but it is also subject to approximation and hallucination. With RAG, the model is grounded but documents are retrieved merely on their semantic proximity with the query. The model doesn’t know which documents are truly relevant or are just red herrings. These “distractor” documents may be pulled into the model’s context even when they are not good sources for a well-reasoned answer.
Tianjun and Shishir were looking to improve these deficiencies of RAG. They hypothesized that a student who studies the textbooks before the open-book exam was likely to perform better than a student who studies the textbook. Translating that back to LLMs, if a model “studied” the documents beforehand, could that improve its RAG performance? Their approach – Retrieval Augmented Fine Tuning – attempts to get the model to study or adapt to a domain before it is used in a RAG setup.
Using Meta Llama 2 7B language model, they first prepare a synthetic dataset where each data sample consists of:
A question,
A set of documents to refer to (including documents containing relevant information and documents that do not contain any relevant information to answer the question and therefore can safely be ignored),
An answer generated from the documents,
A Chain-of-Thought explanation including excerpts from the relevant documents (generated by a general purpose LLM such as GPT-4, or Llama 2 70B)
This dataset is used to fine-tune the Llama 2 7B model using standard supervised training. The model is now better adapted to the domain; it not only aligns its tone and voice to the domain dataset but is also better at extracting the useful bits of information from the retrieved context. The addition of Chain-of-Thought reasoning prevents overfitting and improves training robustness.
RAFT sits in the middle-ground between RAG and domain-specific SFT. It simultaneously primes the LLM on domain knowledge and style (a la DSF), while improving the quality of generated answers from the retrieved context. Since pretrained models like Llama 2 are trained on a diverse set of domains, techniques like RAFT can make it better suited for niche areas like healthcare or legal datasets.
The RAFT team answers questions
Cedric and Suraj had the opportunity to sit down with Tianjun and Shishir and ask them a few questions about their work on RAFT.
Question: Why did you choose Llama 2 7B? Answer: We chose Llama 2 7B because we focus on RAG tasks, where the task requires a combination of the model's ability to reason, understand language, have lower-latency inference, and be easily adaptable to diverse settings. Llama 2 7B fit the bill well- it's a good base model for a lot of the general-knowledge, question-answering tasks, with encouraging math skills, and the ability to parse reasonably long documents due to its 4096k pre-training. Llama 2 7B is also a perfect model for training on 4 A100-40G GPUs and serving on a single GPU. Thereby in the pareto curve or performance, ease-of-deployment, and with the right licensing, the Llama 2 model is quite apt for the RAFT task. With the help of Microsoft AI studio, we are happy to explore Llama 2 13b or 70b as well.
Question: What recommendations do you have for people trying to fine-tune Llama? Any best practices you learnt on the field with fine-tuning LLMs? Answer: Fine-tuning Llama is usually a complex task involving data collection, data cleaning and actual fine-tuning. In terms of data, we recommend collecting diverse questions with respect to your domain and constructing chain-of-thought (CoT) answers (also talked about in our RAFT paper). We also recommend you store intermediate checkpoints, which would then help with early stopping. It is also critical to have the fine-tuning learning rate set to at least a magnitude lower than what was used for pre-training. Other than this, the usual best-practices of 16-bit precision, not training for more than 3 epochs, using large-batch sizes are also recommended.
Question: Should the fine-tuning be applied to each domain? Or is the fine-tuned model better at RAG on multiple domains in general? Answer: The fine-tuned model's performance is dependent on the domain (documents it is trained on) for knowledge but can generalize across domains for behavior to a certain extent. There is a slight tradeoff between accuracy vs. generalization. Usually fine-tuning for a domain is a good practice, but fine-tuning for a limited set of enterprise docs may bring better performance since the knowledge is strictly narrower.
Question: What did you think about the Azure AI Studio Fine-tuning system? Answer: The Azure AI fine-tuning system is very user-friendly, from training data uploading, to hyperparameter selection, to deploying the trained models, everything is easy to use.
Question: What are the benefits of AI Studio Fine-tuning? Answer: The biggest benefit is that you do not need to worry about GPUs; Do not need to handle training platforms; Do not need to worry about model deployment; One click, easy to use and the performance is great!
Question: What do you think could be improved in AI Studio Fine-tuning? Answer: As a researcher, it would be interesting if the developer can find additional peak or insights into the exact fine-tuning recipe happening inside the system (e.g., if it is Lora or full-parameter fine-tuning, how many GPUs has been used, what's the different hyperparameters for LoRA, etc)!
Question: What do you think AI Studio Fine-tuning changes for the industry? Answer: This could enable the easy fine-tuning and deployment of LLMs for enterprises, greatly enabling the deployments of custom models for different enterprises.
Azure AI Studio Fine-tuning
The Berkeley team (aka.ms/raft-repo) to fine-tune Meta Llama 2 for their RAFT paper using MaaS (Model as a Service) in Azure AI Studio.
So far, fine-tuning has been reserved for ML engineers with excellent understanding of the latest advancements in generative AI, Python, ML frameworks, GPUs and Cloud infrastructure. Azure AI Studio is a game changer: it automates all the technicalities, infrastructure and fine-tuning ML framework setup to focus on the data preparation.
All it takes is opening the AI Studio ‘s Fine-tuning wizard [1].
You select which model you want to fine-tune:
You upload the training dataset JSONL file (JSON Lines format):
You select which column is the prompt and which column is the completion:
And finally, select the batch size multiplier, the learning rate and the number of epochs:
For those parameters, we asked Tianjun and Shishir what they recommend. See their answer below.
> For fine tuning, we use multiplier of 1, learning rate 0.00002 and epoch of 1.
AI Studio is greatly enhancing the capacity for developers and enterprises to adjust foundational models for their domain specific tasks, a breakthrough because it significantly reduces the entry barrier and allows them to concentrate on their expertise, their domain and to let the ML adjustment infrastructure be handled by the experts.
Conclusion
Llama and Azure are creating value for the industry by enabling a new paradigm of domain-specific AI development. By leveraging the power of open foundational models, such as Llama 2 and its variants, and providing an easy-to-use platform for fine-tuning, testing, and deploying them, they are democratizing access to state-of-the-art natural language processing capabilities. This will allow developers and enterprises to create innovative and customized solutions for their specific needs and challenges, without requiring extensive ML expertise or resources. Llama and Azure are thus paving the way for a more diverse and inclusive AI ecosystem, where anyone can benefit from the latest advances in Generative AI and LLMs.
[1] AI Studio Fine-tuning is currently available in US West 3
In the RAFT approach, the document set used for fine-tuning includes both relevant documents (containing the answer) and distractor documents (not containing the answer). How does the design of the Chain-of-Thought explanation, potentially generated by a separate LLM like GPT-4, affect the model's ability to differentiate between these two types of documents during training?
This is a great advancement i love how swiftly you have combined the RAG with Finetunning it is very intuitive. Iam working on a project that can utilize this. I would love to connect and get some input as I need some help doing it cedricvidal
Woah! That's pretty good stuff. I never thought about combining those two approaches / techniques. Many thanks for the heads up!
Share
"}},"componentScriptGroups({\"componentId\":\"custom.widget.Social_Sharing\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"component({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"Component","render({\"context\":{\"component\":{\"entities\":[],\"props\":{}},\"page\":{\"entities\":[\"board:AIPlatformBlog\",\"message:4084674\"],\"name\":\"BlogMessagePage\",\"props\":{},\"url\":\"https://techcommunity.microsoft.com/blog/aiplatformblog/raft-a-new-way-to-teach-llms-to-be-better-at-rag/4084674\"}}})":{"__typename":"ComponentRenderResult","html":""}},"componentScriptGroups({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/community/NavbarDropdownToggle\"]})":[{"__ref":"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/common/QueryHandler\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCoverImage\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCoverImage-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeTitle\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTimeToRead\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageSubject\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageSubject-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserLink\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserLink-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserRank\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserRank-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTime\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTime-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageBody\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageBody-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCustomFields\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCustomFields-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageRevision\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageRevision-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageReplyButton\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageReplyButton-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageAuthorBio\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/ranks/UserRankLabel\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserRegistrationDate\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserRegistrationDate-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeDescription\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1743151752845"}],"message({\"id\":\"message:4101966\"})":{"__ref":"BlogReplyMessage:message:4101966"},"message({\"id\":\"message:4101705\"})":{"__ref":"BlogReplyMessage:message:4101705"},"message({\"id\":\"message:4096942\"})":{"__ref":"BlogReplyMessage:message:4096942"},"message({\"id\":\"message:4096609\"})":{"__ref":"BlogReplyMessage:message:4096609"},"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"components/tags/TagView/TagViewChip\"]})":[{"__ref":"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1743151752845"}],"cachedText({\"lastModified\":\"1743151752845\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeIcon\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1743151752845"}]},"CachedAsset:pages-1743059039344":{"__typename":"CachedAsset","id":"pages-1743059039344","value":[{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"BlogViewAllPostsPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId/all-posts/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"CasePortalPage","type":"CASE_PORTAL","urlPath":"/caseportal","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"CreateGroupHubPage","type":"GROUP_HUB","urlPath":"/groups/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"CaseViewPage","type":"CASE_DETAILS","urlPath":"/case/:caseId/:caseNumber","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"InboxPage","type":"COMMUNITY","urlPath":"/inbox","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"HelpFAQPage","type":"COMMUNITY","urlPath":"/help","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"IdeaMessagePage","type":"IDEA_POST","urlPath":"/idea/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"IdeaViewAllIdeasPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/all-ideas/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"LoginPage","type":"USER","urlPath":"/signin","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"BlogPostPage","type":"BLOG","urlPath":"/category/:categoryId/blogs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"UserBlogPermissions.Page","type":"COMMUNITY","urlPath":"/c/user-blog-permissions/page","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ThemeEditorPage","type":"COMMUNITY","urlPath":"/designer/themes","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"TkbViewAllArticlesPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId/all-articles/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllEvents","type":"CUSTOM","urlPath":"/Events","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"OccasionEditPage","type":"EVENT","urlPath":"/event/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"OAuthAuthorizationAllowPage","type":"USER","urlPath":"/auth/authorize/allow","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"PageEditorPage","type":"COMMUNITY","urlPath":"/designer/pages","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"PostPage","type":"COMMUNITY","urlPath":"/category/:categoryId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ForumBoardPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"TkbBoardPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"EventPostPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"UserBadgesPage","type":"COMMUNITY","urlPath":"/users/:login/:userId/badges","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"GroupHubMembershipAction","type":"GROUP_HUB","urlPath":"/membership/join/:nodeId/:membershipType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"MaintenancePage","type":"COMMUNITY","urlPath":"/maintenance","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"IdeaReplyPage","type":"IDEA_REPLY","urlPath":"/idea/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"UserSettingsPage","type":"USER","urlPath":"/mysettings/:userSettingsTab","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"GroupHubsPage","type":"GROUP_HUB","urlPath":"/groups","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ForumPostPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"OccasionRsvpActionPage","type":"OCCASION","urlPath":"/event/:boardId/:messageSubject/:messageId/rsvp/:responseType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"VerifyUserEmailPage","type":"USER","urlPath":"/verifyemail/:userId/:verifyEmailToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"AllOccasionsPage","type":"OCCASION","urlPath":"/category/:categoryId/events/:boardId/all-events/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"EventBoardPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"TkbReplyPage","type":"TKB_REPLY","urlPath":"/kb/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"IdeaBoardPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"CommunityGuideLinesPage","type":"COMMUNITY","urlPath":"/communityguidelines","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"CaseCreatePage","type":"SALESFORCE_CASE_CREATION","urlPath":"/caseportal/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"TkbEditPage","type":"TKB","urlPath":"/kb/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ForgotPasswordPage","type":"USER","urlPath":"/forgotpassword","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"IdeaEditPage","type":"IDEA","urlPath":"/idea/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"TagPage","type":"COMMUNITY","urlPath":"/tag/:tagName","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"BlogBoardPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"OccasionMessagePage","type":"OCCASION_TOPIC","urlPath":"/event/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ManageContentPage","type":"COMMUNITY","urlPath":"/managecontent","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ClosedMembershipNodeNonMembersPage","type":"GROUP_HUB","urlPath":"/closedgroup/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"CommunityPage","type":"COMMUNITY","urlPath":"/","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ForumMessagePage","type":"FORUM_TOPIC","urlPath":"/discussions/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"IdeaPostPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"CommunityHub.Page","type":"CUSTOM","urlPath":"/Directory","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"BlogMessagePage","type":"BLOG_ARTICLE","urlPath":"/blog/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"RegistrationPage","type":"USER","urlPath":"/register","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"EditGroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ForumEditPage","type":"FORUM","urlPath":"/discussions/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ResetPasswordPage","type":"USER","urlPath":"/resetpassword/:userId/:resetPasswordToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllBlogs.Page","type":"CUSTOM","urlPath":"/blogs","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"TkbMessagePage","type":"TKB_ARTICLE","urlPath":"/kb/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"BlogEditPage","type":"BLOG","urlPath":"/blog/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ManageUsersPage","type":"USER","urlPath":"/users/manage/:tab?/:manageUsersTab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ForumReplyPage","type":"FORUM_REPLY","urlPath":"/discussions/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"PrivacyPolicyPage","type":"COMMUNITY","urlPath":"/privacypolicy","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"NotificationPage","type":"COMMUNITY","urlPath":"/notifications","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"UserPage","type":"USER","urlPath":"/users/:login/:userId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"OccasionReplyPage","type":"OCCASION_REPLY","urlPath":"/event/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ManageMembersPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/manage/:tab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"SearchResultsPage","type":"COMMUNITY","urlPath":"/search","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"BlogReplyPage","type":"BLOG_REPLY","urlPath":"/blog/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"GroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"TermsOfServicePage","type":"COMMUNITY","urlPath":"/termsofservice","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"CategoryPage","type":"CATEGORY","urlPath":"/category/:categoryId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"ForumViewAllTopicsPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/all-topics/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"TkbPostPage","type":"TKB","urlPath":"/category/:categoryId/kbs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1743059039344,"localOverride":null,"page":{"id":"GroupHubPostPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"}],"localOverride":false},"CachedAsset:text:en_US-components/context/AppContext/AppContextProvider-0":{"__typename":"CachedAsset","id":"text:en_US-components/context/AppContext/AppContextProvider-0","value":{"noCommunity":"Cannot find community","noUser":"Cannot find current user","noNode":"Cannot find node with id {nodeId}","noMessage":"Cannot find message with id {messageId}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-0":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-0","value":{"title":"Loading..."},"localOverride":false},"User:user:-1":{"__typename":"User","id":"user:-1","uid":-1,"login":"Deleted","email":"","avatar":null,"rank":null,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":"ANONYMOUS","registrationTime":null,"confirmEmailStatus":false,"registrationAccessLevel":"VIEW","ssoRegistrationFields":[]},"ssoId":null,"profileSettings":{"__typename":"ProfileSettings","dateDisplayStyle":{"__typename":"InheritableStringSettingWithPossibleValues","key":"layout.friendly_dates_enabled","value":"false","localValue":"true","possibleValues":["true","false"]},"dateDisplayFormat":{"__typename":"InheritableStringSetting","key":"layout.format_pattern_date","value":"MMM dd yyyy","localValue":"MM-dd-yyyy"},"language":{"__typename":"InheritableStringSettingWithPossibleValues","key":"profile.language","value":"en-US","localValue":"en","possibleValues":["en-US"]}},"deleted":false},"Theme:customTheme1":{"__typename":"Theme","id":"customTheme1"},"Category:category:AI":{"__typename":"Category","id":"category:AI","entityType":"CATEGORY","displayId":"AI","nodeType":"category","depth":3,"title":"Artificial Intelligence and Machine Learning","shortTitle":"Artificial Intelligence and Machine Learning","parent":{"__ref":"Category:category:solutions"},"categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:top":{"__typename":"Category","id":"category:top","displayId":"top","nodeType":"category","depth":0,"title":"Top","entityType":"CATEGORY","shortTitle":"Top"},"Category:category:communities":{"__typename":"Category","id":"category:communities","displayId":"communities","nodeType":"category","depth":1,"parent":{"__ref":"Category:category:top"},"title":"Communities","entityType":"CATEGORY","shortTitle":"Communities"},"Category:category:solutions":{"__typename":"Category","id":"category:solutions","displayId":"solutions","nodeType":"category","depth":2,"parent":{"__ref":"Category:category:communities"},"title":"Topics","entityType":"CATEGORY","shortTitle":"Topics"},"Blog:board:AIPlatformBlog":{"__typename":"Blog","id":"board:AIPlatformBlog","entityType":"BLOG","displayId":"AIPlatformBlog","nodeType":"board","depth":4,"conversationStyle":"BLOG","title":"AI - AI Platform Blog","description":"","avatar":null,"profileSettings":{"__typename":"ProfileSettings","language":null},"parent":{"__ref":"Category:category:AI"},"ancestors":{"__typename":"CoreNodeConnection","edges":[{"__typename":"CoreNodeEdge","node":{"__ref":"Community:community:gxcuf89792"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:communities"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:solutions"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:AI"}}]},"userContext":{"__typename":"NodeUserContext","canAddAttachments":false,"canUpdateNode":false,"canPostMessages":false,"isSubscribed":false},"boardPolicies":{"__typename":"BoardPolicies","canPublishArticleOnCreate":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","args":[]}}},"shortTitle":"AI - AI Platform Blog","repliesProperties":{"__typename":"RepliesProperties","sortOrder":"REVERSE_PUBLISH_TIME","repliesFormat":"threaded"},"eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:AIPlatformBlog/","tagProperties":{"__typename":"TagNodeProperties","tagsEnabled":{"__typename":"PolicyResult","failureReason":null}},"requireTags":true,"tagType":"PRESET_ONLY"},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc","height":512,"width":512,"mimeType":"image/png"},"Rank:rank:4":{"__typename":"Rank","id":"rank:4","position":6,"name":"Microsoft","color":"333333","icon":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}"},"rankStyle":"OUTLINE"},"User:user:2358745":{"__typename":"User","id":"user:2358745","uid":2358745,"login":"cedricvidal","deleted":false,"avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS0yMzU4NzQ1LTU2MDI3Mmk0MDdGOThGM0Y4Nzk3MjBC"},"rank":{"__ref":"Rank:rank:4"},"email":"","messagesCount":8,"biography":null,"topicsCount":7,"kudosReceivedCount":13,"kudosGivenCount":1,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-03-11T09:33:53.193-07:00","confirmEmailStatus":null},"followersCount":null,"solutionsCount":0,"entityType":"USER","eventPath":"community:gxcuf89792/user:2358745"},"BlogTopicMessage:message:4084674":{"__typename":"BlogTopicMessage","uid":4084674,"subject":"RAFT: A new way to teach LLMs to be better at RAG","id":"message:4084674","revisionNum":14,"repliesCount":4,"author":{"__ref":"User:user:2358745"},"depth":0,"hasGivenKudo":false,"board":{"__ref":"Blog:board:AIPlatformBlog"},"conversation":{"__ref":"Conversation:conversation:4084674"},"messagePolicies":{"__typename":"MessagePolicies","canPublishArticleOnEdit":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","args":[]}},"canModerateSpamMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","args":[]}}},"contentWorkflow":{"__typename":"ContentWorkflow","state":"DRAFT","scheduledPublishTime":null,"scheduledTimezone":null,"userContext":{"__typename":"MessageWorkflowContext","canSubmitForReview":false,"canEdit":false,"canRecall":false,"canSubmitForPublication":false,"canReturnToAuthor":false,"canPublish":false,"canReturnToReview":false,"canSchedule":false},"shortScheduledTimezone":null},"readOnly":false,"editFrozen":false,"moderationData":{"__ref":"ModerationData:moderation_data:4084674"},"teaser":"
\n
In this article, we will look at the limitations of RAG and domain-specific Fine-tuning to adapt LLMs to existing knowledge and how a team of UC Berkeley researchers, Tianjun Zhang and Shishir G. Patil, may have just discovered a better approach.
","body":"
RAFT: A new way to teach LLMs to be better at RAG
\n
“Retrieval-Augmented Fine-Tuning” combines the benefits of Retrieval-Augmented Generation and Fine-Tuning for better domain adaptation
Gorilla Student passing exam (Generated using DALL-E 3)
\n
\n
Introduction
\n
One of the most impactful applications of generative AI for businesses is to create natural language interfaces that have access to existing knowledge. This means answering questions about specific domains such as banking, legal and medical. There are currently two main ways to do this. First: domain-specific Fine-tuning (DSF), which means training an existing base model on a set of documents that represent the domain specific knowledge. Second: RAG (Retrieval Augmented Generation), which involves storing those documents in a vector database and (at query time) finding documents based on their semantic similarity with the question and bringing them into the context of the LLM for in context learning.
\n
\n
In this article, we will look at the limitations of those two approaches and how a team of UC Berkeley researchers, Tianjun Zhang and Shishir G. Patil, may have just discovered a better approach. The team previously known for Gorilla LLM :gorilla: presents this new approach in their RAFT paper (Retrieval Augmented Fine Tuning) showing how they used Meta Llama 2 and Azure AI Studio to conduct their research and implement their approach.
\n
\n
The Berkeley team also published a blog post about the paper explaining what those advantages and disadvantages are and how the RAFT approach produces more effective results. The RAFT paper implementation is available in their Github repository.
\n
\n
Let’s start by giving an overview of how the RAFT approach works.
\n
\n
Understanding the RAFT method
\n
In conventional RAG, when a query is posed to a model, it retrieves a few documents from an index that are likely to contain the answer. It uses these documents as the context to generate an answer to the user’s query.
\n
\n
With fine-tuning, the model answers queries like a student writing a closed-book exam. With RAG, this scenario resembles an open-book exam, where the student has full access to a textbook to find the answers. Open-book exams are easier to solve than closed-book exams, which explains the efficacy and popularity of RAG.
\n
\n
Both approaches have limitations. With fine-tuning, the model is not only limited to what it has been trained on, but it is also subject to approximation and hallucination. With RAG, the model is grounded but documents are retrieved merely on their semantic proximity with the query. The model doesn’t know which documents are truly relevant or are just red herrings. These “distractor” documents may be pulled into the model’s context even when they are not good sources for a well-reasoned answer.
\n
\n
Tianjun and Shishir were looking to improve these deficiencies of RAG. They hypothesized that a student who studies the textbooks before the open-book exam was likely to perform better than a student who studies the textbook. Translating that back to LLMs, if a model “studied” the documents beforehand, could that improve its RAG performance? Their approach – Retrieval Augmented Fine Tuning – attempts to get the model to study or adapt to a domain before it is used in a RAG setup.
\n
\n
Using Meta Llama 2 7B language model, they first prepare a synthetic dataset where each data sample consists of:
\n
\n
A question,
\n
A set of documents to refer to (including documents containing relevant information and documents that do not contain any relevant information to answer the question and therefore can safely be ignored),
\n
An answer generated from the documents,
\n
A Chain-of-Thought explanation including excerpts from the relevant documents (generated by a general purpose LLM such as GPT-4, or Llama 2 70B)
\n
\n
\n
This dataset is used to fine-tune the Llama 2 7B model using standard supervised training. The model is now better adapted to the domain; it not only aligns its tone and voice to the domain dataset but is also better at extracting the useful bits of information from the retrieved context. The addition of Chain-of-Thought reasoning prevents overfitting and improves training robustness.
\n
\n
RAFT sits in the middle-ground between RAG and domain-specific SFT. It simultaneously primes the LLM on domain knowledge and style (a la DSF), while improving the quality of generated answers from the retrieved context. Since pretrained models like Llama 2 are trained on a diverse set of domains, techniques like RAFT can make it better suited for niche areas like healthcare or legal datasets.
\n
\n
The RAFT team answers questions
\n
Cedric and Suraj had the opportunity to sit down with Tianjun and Shishir and ask them a few questions about their work on RAFT.
\n
\n
Question: Why did you choose Llama 2 7B? Answer: We chose Llama 2 7B because we focus on RAG tasks, where the task requires a combination of the model's ability to reason, understand language, have lower-latency inference, and be easily adaptable to diverse settings. Llama 2 7B fit the bill well- it's a good base model for a lot of the general-knowledge, question-answering tasks, with encouraging math skills, and the ability to parse reasonably long documents due to its 4096k pre-training. Llama 2 7B is also a perfect model for training on 4 A100-40G GPUs and serving on a single GPU. Thereby in the pareto curve or performance, ease-of-deployment, and with the right licensing, the Llama 2 model is quite apt for the RAFT task. With the help of Microsoft AI studio, we are happy to explore Llama 2 13b or 70b as well.
Question: What recommendations do you have for people trying to fine-tune Llama? Any best practices you learnt on the field with fine-tuning LLMs? Answer: Fine-tuning Llama is usually a complex task involving data collection, data cleaning and actual fine-tuning. In terms of data, we recommend collecting diverse questions with respect to your domain and constructing chain-of-thought (CoT) answers (also talked about in our RAFT paper). We also recommend you store intermediate checkpoints, which would then help with early stopping. It is also critical to have the fine-tuning learning rate set to at least a magnitude lower than what was used for pre-training. Other than this, the usual best-practices of 16-bit precision, not training for more than 3 epochs, using large-batch sizes are also recommended.
\n
Question: Should the fine-tuning be applied to each domain? Or is the fine-tuned model better at RAG on multiple domains in general? Answer: The fine-tuned model's performance is dependent on the domain (documents it is trained on) for knowledge but can generalize across domains for behavior to a certain extent. There is a slight tradeoff between accuracy vs. generalization. Usually fine-tuning for a domain is a good practice, but fine-tuning for a limited set of enterprise docs may bring better performance since the knowledge is strictly narrower.
\n
\n
Question: What did you think about the Azure AI Studio Fine-tuning system? Answer: The Azure AI fine-tuning system is very user-friendly, from training data uploading, to hyperparameter selection, to deploying the trained models, everything is easy to use.
Question: What are the benefits of AI Studio Fine-tuning? Answer: The biggest benefit is that you do not need to worry about GPUs; Do not need to handle training platforms; Do not need to worry about model deployment; One click, easy to use and the performance is great!
Question: What do you think could be improved in AI Studio Fine-tuning? Answer: As a researcher, it would be interesting if the developer can find additional peak or insights into the exact fine-tuning recipe happening inside the system (e.g., if it is Lora or full-parameter fine-tuning, how many GPUs has been used, what's the different hyperparameters for LoRA, etc)!
Question: What do you think AI Studio Fine-tuning changes for the industry? Answer: This could enable the easy fine-tuning and deployment of LLMs for enterprises, greatly enabling the deployments of custom models for different enterprises.
\n
\n
Azure AI Studio Fine-tuning
\n
The Berkeley team (aka.ms/raft-repo) to fine-tune Meta Llama 2 for their RAFT paper using MaaS (Model as a Service) in Azure AI Studio.
So far, fine-tuning has been reserved for ML engineers with excellent understanding of the latest advancements in generative AI, Python, ML frameworks, GPUs and Cloud infrastructure. Azure AI Studio is a game changer: it automates all the technicalities, infrastructure and fine-tuning ML framework setup to focus on the data preparation.
\n
\n
All it takes is opening the AI Studio ‘s Fine-tuning wizard [1].
\n
\n
\n
\n
\n
You select which model you want to fine-tune:
\n
\n
\n
\n
\n
You upload the training dataset JSONL file (JSON Lines format):
\n
\n
\n
\n
You select which column is the prompt and which column is the completion:
\n
\n
\n
\n
And finally, select the batch size multiplier, the learning rate and the number of epochs:
\n
\n
\n
\n
\n
For those parameters, we asked Tianjun and Shishir what they recommend. See their answer below.
\n
\n
> For fine tuning, we use multiplier of 1, learning rate 0.00002 and epoch of 1.
\n
\n
AI Studio is greatly enhancing the capacity for developers and enterprises to adjust foundational models for their domain specific tasks, a breakthrough because it significantly reduces the entry barrier and allows them to concentrate on their expertise, their domain and to let the ML adjustment infrastructure be handled by the experts.
\n
\n
Conclusion
\n
Llama and Azure are creating value for the industry by enabling a new paradigm of domain-specific AI development. By leveraging the power of open foundational models, such as Llama 2 and its variants, and providing an easy-to-use platform for fine-tuning, testing, and deploying them, they are democratizing access to state-of-the-art natural language processing capabilities. This will allow developers and enterprises to create innovative and customized solutions for their specific needs and challenges, without requiring extensive ML expertise or resources. Llama and Azure are thus paving the way for a more diverse and inclusive AI ecosystem, where anyone can benefit from the latest advances in Generative AI and LLMs.
\n
\n
[1] AI Studio Fine-tuning is currently available in US West 3
\n
","body@stringLength":"16207","rawBody":"
RAFT: A new way to teach LLMs to be better at RAG
\n
“Retrieval-Augmented Fine-Tuning” combines the benefits of Retrieval-Augmented Generation and Fine-Tuning for better domain adaptation
Gorilla Student passing exam (Generated using DALL-E 3)
\n
\n
Introduction
\n
One of the most impactful applications of generative AI for businesses is to create natural language interfaces that have access to existing knowledge. This means answering questions about specific domains such as banking, legal and medical. There are currently two main ways to do this. First: domain-specific Fine-tuning (DSF), which means training an existing base model on a set of documents that represent the domain specific knowledge. Second: RAG (Retrieval Augmented Generation), which involves storing those documents in a vector database and (at query time) finding documents based on their semantic similarity with the question and bringing them into the context of the LLM for in context learning.
\n
\n
In this article, we will look at the limitations of those two approaches and how a team of UC Berkeley researchers, Tianjun Zhang and Shishir G. Patil, may have just discovered a better approach. The team previously known for Gorilla LLM presents this new approach in their RAFT paper (Retrieval Augmented Fine Tuning) showing how they used Meta Llama 2 and Azure AI Studio to conduct their research and implement their approach.
\n
\n
The Berkeley team also published a blog post about the paper explaining what those advantages and disadvantages are and how the RAFT approach produces more effective results. The RAFT paper implementation is available in their Github repository.
\n
\n
Let’s start by giving an overview of how the RAFT approach works.
\n
\n
Understanding the RAFT method
\n
In conventional RAG, when a query is posed to a model, it retrieves a few documents from an index that are likely to contain the answer. It uses these documents as the context to generate an answer to the user’s query.
\n
\n
With fine-tuning, the model answers queries like a student writing a closed-book exam. With RAG, this scenario resembles an open-book exam, where the student has full access to a textbook to find the answers. Open-book exams are easier to solve than closed-book exams, which explains the efficacy and popularity of RAG.
\n
\n
Both approaches have limitations. With fine-tuning, the model is not only limited to what it has been trained on, but it is also subject to approximation and hallucination. With RAG, the model is grounded but documents are retrieved merely on their semantic proximity with the query. The model doesn’t know which documents are truly relevant or are just red herrings. These “distractor” documents may be pulled into the model’s context even when they are not good sources for a well-reasoned answer.
\n
\n
Tianjun and Shishir were looking to improve these deficiencies of RAG. They hypothesized that a student who studies the textbooks before the open-book exam was likely to perform better than a student who studies the textbook. Translating that back to LLMs, if a model “studied” the documents beforehand, could that improve its RAG performance? Their approach – Retrieval Augmented Fine Tuning – attempts to get the model to study or adapt to a domain before it is used in a RAG setup.
\n
\n
Using Meta Llama 2 7B language model, they first prepare a synthetic dataset where each data sample consists of:
\n
\n
A question,
\n
A set of documents to refer to (including documents containing relevant information and documents that do not contain any relevant information to answer the question and therefore can safely be ignored),
\n
An answer generated from the documents,
\n
A Chain-of-Thought explanation including excerpts from the relevant documents (generated by a general purpose LLM such as GPT-4, or Llama 2 70B)
\n
\n
\n
This dataset is used to fine-tune the Llama 2 7B model using standard supervised training. The model is now better adapted to the domain; it not only aligns its tone and voice to the domain dataset but is also better at extracting the useful bits of information from the retrieved context. The addition of Chain-of-Thought reasoning prevents overfitting and improves training robustness.
\n
\n
RAFT sits in the middle-ground between RAG and domain-specific SFT. It simultaneously primes the LLM on domain knowledge and style (a la DSF), while improving the quality of generated answers from the retrieved context. Since pretrained models like Llama 2 are trained on a diverse set of domains, techniques like RAFT can make it better suited for niche areas like healthcare or legal datasets.
\n
\n
The RAFT team answers questions
\n
Cedric and Suraj had the opportunity to sit down with Tianjun and Shishir and ask them a few questions about their work on RAFT.
\n
\n
Question: Why did you choose Llama 2 7B? Answer: We chose Llama 2 7B because we focus on RAG tasks, where the task requires a combination of the model's ability to reason, understand language, have lower-latency inference, and be easily adaptable to diverse settings. Llama 2 7B fit the bill well- it's a good base model for a lot of the general-knowledge, question-answering tasks, with encouraging math skills, and the ability to parse reasonably long documents due to its 4096k pre-training. Llama 2 7B is also a perfect model for training on 4 A100-40G GPUs and serving on a single GPU. Thereby in the pareto curve or performance, ease-of-deployment, and with the right licensing, the Llama 2 model is quite apt for the RAFT task. With the help of Microsoft AI studio, we are happy to explore Llama 2 13b or 70b as well.
Question: What recommendations do you have for people trying to fine-tune Llama? Any best practices you learnt on the field with fine-tuning LLMs? Answer: Fine-tuning Llama is usually a complex task involving data collection, data cleaning and actual fine-tuning. In terms of data, we recommend collecting diverse questions with respect to your domain and constructing chain-of-thought (CoT) answers (also talked about in our RAFT paper). We also recommend you store intermediate checkpoints, which would then help with early stopping. It is also critical to have the fine-tuning learning rate set to at least a magnitude lower than what was used for pre-training. Other than this, the usual best-practices of 16-bit precision, not training for more than 3 epochs, using large-batch sizes are also recommended.
\n
Question: Should the fine-tuning be applied to each domain? Or is the fine-tuned model better at RAG on multiple domains in general? Answer: The fine-tuned model's performance is dependent on the domain (documents it is trained on) for knowledge but can generalize across domains for behavior to a certain extent. There is a slight tradeoff between accuracy vs. generalization. Usually fine-tuning for a domain is a good practice, but fine-tuning for a limited set of enterprise docs may bring better performance since the knowledge is strictly narrower.
\n
\n
Question: What did you think about the Azure AI Studio Fine-tuning system? Answer: The Azure AI fine-tuning system is very user-friendly, from training data uploading, to hyperparameter selection, to deploying the trained models, everything is easy to use.
Question: What are the benefits of AI Studio Fine-tuning? Answer: The biggest benefit is that you do not need to worry about GPUs; Do not need to handle training platforms; Do not need to worry about model deployment; One click, easy to use and the performance is great!
Question: What do you think could be improved in AI Studio Fine-tuning? Answer: As a researcher, it would be interesting if the developer can find additional peak or insights into the exact fine-tuning recipe happening inside the system (e.g., if it is Lora or full-parameter fine-tuning, how many GPUs has been used, what's the different hyperparameters for LoRA, etc)!
Question: What do you think AI Studio Fine-tuning changes for the industry? Answer: This could enable the easy fine-tuning and deployment of LLMs for enterprises, greatly enabling the deployments of custom models for different enterprises.
\n
\n
Azure AI Studio Fine-tuning
\n
The Berkeley team (aka.ms/raft-repo) to fine-tune Meta Llama 2 for their RAFT paper using MaaS (Model as a Service) in Azure AI Studio.
So far, fine-tuning has been reserved for ML engineers with excellent understanding of the latest advancements in generative AI, Python, ML frameworks, GPUs and Cloud infrastructure. Azure AI Studio is a game changer: it automates all the technicalities, infrastructure and fine-tuning ML framework setup to focus on the data preparation.
\n
\n
All it takes is opening the AI Studio ‘s Fine-tuning wizard [1].
\n
\n
\n
\n
\n
You select which model you want to fine-tune:
\n
\n
\n
\n
\n
You upload the training dataset JSONL file (JSON Lines format):
\n
\n
\n
\n
You select which column is the prompt and which column is the completion:
\n
\n
\n
\n
And finally, select the batch size multiplier, the learning rate and the number of epochs:
\n
\n
\n
\n
\n
For those parameters, we asked Tianjun and Shishir what they recommend. See their answer below.
\n
\n
> For fine tuning, we use multiplier of 1, learning rate 0.00002 and epoch of 1.
\n
\n
AI Studio is greatly enhancing the capacity for developers and enterprises to adjust foundational models for their domain specific tasks, a breakthrough because it significantly reduces the entry barrier and allows them to concentrate on their expertise, their domain and to let the ML adjustment infrastructure be handled by the experts.
\n
\n
Conclusion
\n
Llama and Azure are creating value for the industry by enabling a new paradigm of domain-specific AI development. By leveraging the power of open foundational models, such as Llama 2 and its variants, and providing an easy-to-use platform for fine-tuning, testing, and deploying them, they are democratizing access to state-of-the-art natural language processing capabilities. This will allow developers and enterprises to create innovative and customized solutions for their specific needs and challenges, without requiring extensive ML expertise or resources. Llama and Azure are thus paving the way for a more diverse and inclusive AI ecosystem, where anyone can benefit from the latest advances in Generative AI and LLMs.
\n
\n
[1] AI Studio Fine-tuning is currently available in US West 3
\n
","kudosSumWeight":7,"postTime":"2024-03-15T10:19:49.850-07:00","images":{"__typename":"AssociatedImageConnection","edges":[{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDE","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTczMmkxOUQ1OEE0RDkyNzY0QjU5?revision=14\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDI","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTczM2kwMThBRTNGRDRGMEEwMTNE?revision=14\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDM","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwNmkwQUUxMjA4MDYxNUE4MUY4?revision=14\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDQ","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwOGkxNzk5NEE2MDAxNUNGQkM1?revision=14\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDU","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwN2kzMTdBMjMyMzJBNDI3QUEz?revision=14\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDY","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMxMGlGRjY5RjRFNzg5NEMzNTk3?revision=14\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuMXwyLjF8b3wyNXxfTlZffDc","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwOWkwMkE1MzBGQzBFQzk3RkIx?revision=14\"}"}}],"totalCount":7,"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"attachments":{"__typename":"AttachmentConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"tags":{"__typename":"TagConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDE","node":{"__typename":"Tag","id":"tag:artificial intelligence","text":"artificial intelligence","time":"2018-02-28T01:21:24.829-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDI","node":{"__typename":"Tag","id":"tag:azure ai studio","text":"azure ai studio","time":"2023-11-11T00:57:52.231-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDM","node":{"__typename":"Tag","id":"tag:azure machine learning","text":"azure machine learning","time":"2016-09-06T11:34:30.244-07:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDQ","node":{"__typename":"Tag","id":"tag:model catalog","text":"model catalog","time":"2023-11-15T08:00:00.239-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}},{"__typename":"TagEdge","cursor":"MjUuMXwyLjF8b3wxMHxfTlZffDU","node":{"__typename":"Tag","id":"tag:natural language processing","text":"natural language processing","time":"2022-06-10T14:23:41.201-07:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}}]},"timeToRead":7,"rawTeaser":"
\n
In this article, we will look at the limitations of RAG and domain-specific Fine-tuning to adapt LLMs to existing knowledge and how a team of UC Berkeley researchers, Tianjun Zhang and Shishir G. Patil, may have just discovered a better approach.
","introduction":"","coverImage":null,"coverImageProperties":{"__typename":"CoverImageProperties","style":"STANDARD","titlePosition":"BOTTOM","altText":""},"currentRevision":{"__ref":"Revision:revision:4084674_14"},"latestVersion":{"__typename":"FriendlyVersion","major":"4","minor":"0"},"metrics":{"__typename":"MessageMetrics","views":101267},"visibilityScope":"PUBLIC","canonicalUrl":null,"seoTitle":"RAFT (Retrieval Augmented Fine-tuning): A new way to teach LLMs (Large Language Models) to be better at RAG (Retrieval Augmented Generation)","seoDescription":"RAFT “Retrieval-Augmented Fine-Tuning” combines the benefits of RAG (Retrieval-Augmented Generation) and Fine-Tuning for better domain adaptation","placeholder":false,"originalMessageForPlaceholder":null,"contributors":{"__typename":"UserConnection","edges":[]},"nonCoAuthorContributors":{"__typename":"UserConnection","edges":[]},"coAuthors":{"__typename":"UserConnection","edges":[]},"blogMessagePolicies":{"__typename":"BlogMessagePolicies","canDoAuthoringActionsOnBlog":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","key":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","args":[]}}},"archivalData":null,"replies":{"__typename":"MessageConnection","edges":[{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDEwMTk2Niw0MTAxOTY2","node":{"__ref":"BlogReplyMessage:message:4101966"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDEwMTk2Niw0MTAxNzA1","node":{"__ref":"BlogReplyMessage:message:4101705"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDEwMTk2Niw0MDk2OTQy","node":{"__ref":"BlogReplyMessage:message:4096942"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDEwMTk2Niw0MDk2NjA5","node":{"__ref":"BlogReplyMessage:message:4096609"}}],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"customFields":[],"revisions({\"constraints\":{\"isPublished\":{\"eq\":true}},\"first\":1})":{"__typename":"RevisionConnection","totalCount":15}},"Conversation:conversation:4084674":{"__typename":"Conversation","id":"conversation:4084674","solved":false,"topic":{"__ref":"BlogTopicMessage:message:4084674"},"lastPostingActivityTime":"2024-03-31T22:20:14.461-07:00","lastPostTime":"2024-03-31T22:20:14.461-07:00","unreadReplyCount":4,"isSubscribed":false},"ModerationData:moderation_data:4084674":{"__typename":"ModerationData","id":"moderation_data:4084674","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTczMmkxOUQ1OEE0RDkyNzY0QjU5?revision=14\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTczMmkxOUQ1OEE0RDkyNzY0QjU5?revision=14","title":"Student Gorilla 1 copy outpaint 2.jpeg","associationType":"TEASER","width":1312,"height":744,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTczM2kwMThBRTNGRDRGMEEwMTNE?revision=14\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTczM2kwMThBRTNGRDRGMEEwMTNE?revision=14","title":"Student Gorilla 1 copy outpaint 2.jpeg","associationType":"BODY","width":1312,"height":744,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwNmkwQUUxMjA4MDYxNUE4MUY4?revision=14\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwNmkwQUUxMjA4MDYxNUE4MUY4?revision=14","title":"cedricvidal_0-1710375494232.png","associationType":"BODY","width":1429,"height":686,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwOGkxNzk5NEE2MDAxNUNGQkM1?revision=14\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwOGkxNzk5NEE2MDAxNUNGQkM1?revision=14","title":"cedricvidal_1-1710375494235.png","associationType":"BODY","width":1429,"height":632,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwN2kzMTdBMjMyMzJBNDI3QUEz?revision=14\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwN2kzMTdBMjMyMzJBNDI3QUEz?revision=14","title":"cedricvidal_2-1710375494237.png","associationType":"BODY","width":900,"height":513,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMxMGlGRjY5RjRFNzg5NEMzNTk3?revision=14\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMxMGlGRjY5RjRFNzg5NEMzNTk3?revision=14","title":"cedricvidal_3-1710375494238.png","associationType":"BODY","width":684,"height":405,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwOWkwMkE1MzBGQzBFQzk3RkIx?revision=14\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MDg0Njc0LTU2MTMwOWkwMkE1MzBGQzBFQzk3RkIx?revision=14","title":"cedricvidal_4-1710375494240.png","associationType":"BODY","width":1022,"height":464,"altText":null},"Revision:revision:4084674_14":{"__typename":"Revision","id":"revision:4084674_14","lastEditTime":"2024-03-15T10:33:09.512-07:00"},"CachedAsset:theme:customTheme1-1743059038809":{"__typename":"CachedAsset","id":"theme:customTheme1-1743059038809","value":{"id":"customTheme1","animation":{"fast":"150ms","normal":"250ms","slow":"500ms","slowest":"750ms","function":"cubic-bezier(0.07, 0.91, 0.51, 1)","__typename":"AnimationThemeSettings"},"avatar":{"borderRadius":"50%","collections":["default"],"__typename":"AvatarThemeSettings"},"basics":{"browserIcon":{"imageAssetName":"favicon-1730836283320.png","imageLastModified":"1730836286415","__typename":"ThemeAsset"},"customerLogo":{"imageAssetName":"favicon-1730836271365.png","imageLastModified":"1730836274203","__typename":"ThemeAsset"},"maximumWidthOfPageContent":"1300px","oneColumnNarrowWidth":"800px","gridGutterWidthMd":"30px","gridGutterWidthXs":"10px","pageWidthStyle":"WIDTH_OF_BROWSER","__typename":"BasicsThemeSettings"},"buttons":{"borderRadiusSm":"3px","borderRadius":"3px","borderRadiusLg":"5px","paddingY":"5px","paddingYLg":"7px","paddingYHero":"var(--lia-bs-btn-padding-y-lg)","paddingX":"12px","paddingXLg":"16px","paddingXHero":"60px","fontStyle":"NORMAL","fontWeight":"700","textTransform":"NONE","disabledOpacity":0.5,"primaryTextColor":"var(--lia-bs-white)","primaryTextHoverColor":"var(--lia-bs-white)","primaryTextActiveColor":"var(--lia-bs-white)","primaryBgColor":"var(--lia-bs-primary)","primaryBgHoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.85))","primaryBgActiveColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.7))","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","primaryBorderActive":"1px solid transparent","primaryBorderFocus":"1px solid var(--lia-bs-white)","primaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","secondaryTextColor":"var(--lia-bs-gray-900)","secondaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","secondaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","secondaryBgColor":"var(--lia-bs-gray-200)","secondaryBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","secondaryBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","secondaryBorder":"1px solid transparent","secondaryBorderHover":"1px solid transparent","secondaryBorderActive":"1px solid transparent","secondaryBorderFocus":"1px solid transparent","secondaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","tertiaryTextColor":"var(--lia-bs-gray-900)","tertiaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","tertiaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","tertiaryBgColor":"transparent","tertiaryBgHoverColor":"transparent","tertiaryBgActiveColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.04)","tertiaryBorder":"1px solid transparent","tertiaryBorderHover":"1px solid hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","tertiaryBorderActive":"1px solid transparent","tertiaryBorderFocus":"1px solid transparent","tertiaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","destructiveTextColor":"var(--lia-bs-danger)","destructiveTextHoverColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.95))","destructiveTextActiveColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.9))","destructiveBgColor":"var(--lia-bs-gray-200)","destructiveBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","destructiveBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","destructiveBorder":"1px solid transparent","destructiveBorderHover":"1px solid transparent","destructiveBorderActive":"1px solid transparent","destructiveBorderFocus":"1px solid transparent","destructiveBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","__typename":"ButtonsThemeSettings"},"border":{"color":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","mainContent":"NONE","sideContent":"LIGHT","radiusSm":"3px","radius":"5px","radiusLg":"9px","radius50":"100vw","__typename":"BorderThemeSettings"},"boxShadow":{"xs":"0 0 0 1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.08), 0 3px 0 -1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.16)","sm":"0 2px 4px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.12)","md":"0 5px 15px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","lg":"0 10px 30px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","__typename":"BoxShadowThemeSettings"},"cards":{"bgColor":"var(--lia-panel-bg-color)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":"var(--lia-box-shadow-xs)","__typename":"CardsThemeSettings"},"chip":{"maxWidth":"300px","height":"30px","__typename":"ChipThemeSettings"},"coreTypes":{"defaultMessageLinkColor":"var(--lia-bs-link-color)","defaultMessageLinkDecoration":"none","defaultMessageLinkFontStyle":"NORMAL","defaultMessageLinkFontWeight":"400","defaultMessageFontStyle":"NORMAL","defaultMessageFontWeight":"400","forumColor":"#4099E2","forumFontFamily":"var(--lia-bs-font-family-base)","forumFontWeight":"var(--lia-default-message-font-weight)","forumLineHeight":"var(--lia-bs-line-height-base)","forumFontStyle":"var(--lia-default-message-font-style)","forumMessageLinkColor":"var(--lia-default-message-link-color)","forumMessageLinkDecoration":"var(--lia-default-message-link-decoration)","forumMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","forumMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","forumSolvedColor":"#148563","blogColor":"#1CBAA0","blogFontFamily":"var(--lia-bs-font-family-base)","blogFontWeight":"var(--lia-default-message-font-weight)","blogLineHeight":"1.75","blogFontStyle":"var(--lia-default-message-font-style)","blogMessageLinkColor":"var(--lia-default-message-link-color)","blogMessageLinkDecoration":"var(--lia-default-message-link-decoration)","blogMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","blogMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","tkbColor":"#4C6B90","tkbFontFamily":"var(--lia-bs-font-family-base)","tkbFontWeight":"var(--lia-default-message-font-weight)","tkbLineHeight":"1.75","tkbFontStyle":"var(--lia-default-message-font-style)","tkbMessageLinkColor":"var(--lia-default-message-link-color)","tkbMessageLinkDecoration":"var(--lia-default-message-link-decoration)","tkbMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","tkbMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaColor":"#4099E2","qandaFontFamily":"var(--lia-bs-font-family-base)","qandaFontWeight":"var(--lia-default-message-font-weight)","qandaLineHeight":"var(--lia-bs-line-height-base)","qandaFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkColor":"var(--lia-default-message-link-color)","qandaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","qandaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaSolvedColor":"#3FA023","ideaColor":"#FF8000","ideaFontFamily":"var(--lia-bs-font-family-base)","ideaFontWeight":"var(--lia-default-message-font-weight)","ideaLineHeight":"var(--lia-bs-line-height-base)","ideaFontStyle":"var(--lia-default-message-font-style)","ideaMessageLinkColor":"var(--lia-default-message-link-color)","ideaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","ideaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","ideaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","contestColor":"#FCC845","contestFontFamily":"var(--lia-bs-font-family-base)","contestFontWeight":"var(--lia-default-message-font-weight)","contestLineHeight":"var(--lia-bs-line-height-base)","contestFontStyle":"var(--lia-default-message-link-font-style)","contestMessageLinkColor":"var(--lia-default-message-link-color)","contestMessageLinkDecoration":"var(--lia-default-message-link-decoration)","contestMessageLinkFontStyle":"ITALIC","contestMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","occasionColor":"#D13A1F","occasionFontFamily":"var(--lia-bs-font-family-base)","occasionFontWeight":"var(--lia-default-message-font-weight)","occasionLineHeight":"var(--lia-bs-line-height-base)","occasionFontStyle":"var(--lia-default-message-font-style)","occasionMessageLinkColor":"var(--lia-default-message-link-color)","occasionMessageLinkDecoration":"var(--lia-default-message-link-decoration)","occasionMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","occasionMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","grouphubColor":"#333333","categoryColor":"#949494","communityColor":"#FFFFFF","productColor":"#949494","__typename":"CoreTypesThemeSettings"},"colors":{"black":"#000000","white":"#FFFFFF","gray100":"#F7F7F7","gray200":"#F7F7F7","gray300":"#E8E8E8","gray400":"#D9D9D9","gray500":"#CCCCCC","gray600":"#717171","gray700":"#707070","gray800":"#545454","gray900":"#333333","dark":"#545454","light":"#F7F7F7","primary":"#0069D4","secondary":"#333333","bodyText":"#333333","bodyBg":"#FFFFFF","info":"#409AE2","success":"#41C5AE","warning":"#FCC844","danger":"#BC341B","alertSystem":"#FF6600","textMuted":"#707070","highlight":"#FFFCAD","outline":"var(--lia-bs-primary)","custom":["#D3F5A4","#243A5E"],"__typename":"ColorsThemeSettings"},"divider":{"size":"3px","marginLeft":"4px","marginRight":"4px","borderRadius":"50%","bgColor":"var(--lia-bs-gray-600)","bgColorActive":"var(--lia-bs-gray-600)","__typename":"DividerThemeSettings"},"dropdown":{"fontSize":"var(--lia-bs-font-size-sm)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius-sm)","dividerBg":"var(--lia-bs-gray-300)","itemPaddingY":"5px","itemPaddingX":"20px","headerColor":"var(--lia-bs-gray-700)","__typename":"DropdownThemeSettings"},"email":{"link":{"color":"#0069D4","hoverColor":"#0061c2","decoration":"none","hoverDecoration":"underline","__typename":"EmailLinkSettings"},"border":{"color":"#e4e4e4","__typename":"EmailBorderSettings"},"buttons":{"borderRadiusLg":"5px","paddingXLg":"16px","paddingYLg":"7px","fontWeight":"700","primaryTextColor":"#ffffff","primaryTextHoverColor":"#ffffff","primaryBgColor":"#0069D4","primaryBgHoverColor":"#005cb8","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","__typename":"EmailButtonsSettings"},"panel":{"borderRadius":"5px","borderColor":"#e4e4e4","__typename":"EmailPanelSettings"},"__typename":"EmailThemeSettings"},"emoji":{"skinToneDefault":"#ffcd43","skinToneLight":"#fae3c5","skinToneMediumLight":"#e2cfa5","skinToneMedium":"#daa478","skinToneMediumDark":"#a78058","skinToneDark":"#5e4d43","__typename":"EmojiThemeSettings"},"heading":{"color":"var(--lia-bs-body-color)","fontFamily":"Segoe UI","fontStyle":"NORMAL","fontWeight":"400","h1FontSize":"34px","h2FontSize":"32px","h3FontSize":"28px","h4FontSize":"24px","h5FontSize":"20px","h6FontSize":"16px","lineHeight":"1.3","subHeaderFontSize":"11px","subHeaderFontWeight":"500","h1LetterSpacing":"normal","h2LetterSpacing":"normal","h3LetterSpacing":"normal","h4LetterSpacing":"normal","h5LetterSpacing":"normal","h6LetterSpacing":"normal","subHeaderLetterSpacing":"2px","h1FontWeight":"var(--lia-bs-headings-font-weight)","h2FontWeight":"var(--lia-bs-headings-font-weight)","h3FontWeight":"var(--lia-bs-headings-font-weight)","h4FontWeight":"var(--lia-bs-headings-font-weight)","h5FontWeight":"var(--lia-bs-headings-font-weight)","h6FontWeight":"var(--lia-bs-headings-font-weight)","__typename":"HeadingThemeSettings"},"icons":{"size10":"10px","size12":"12px","size14":"14px","size16":"16px","size20":"20px","size24":"24px","size30":"30px","size40":"40px","size50":"50px","size60":"60px","size80":"80px","size120":"120px","size160":"160px","__typename":"IconsThemeSettings"},"imagePreview":{"bgColor":"var(--lia-bs-gray-900)","titleColor":"var(--lia-bs-white)","controlColor":"var(--lia-bs-white)","controlBgColor":"var(--lia-bs-gray-800)","__typename":"ImagePreviewThemeSettings"},"input":{"borderColor":"var(--lia-bs-gray-600)","disabledColor":"var(--lia-bs-gray-600)","focusBorderColor":"var(--lia-bs-primary)","labelMarginBottom":"10px","btnFontSize":"var(--lia-bs-font-size-sm)","focusBoxShadow":"0 0 0 3px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","checkLabelMarginBottom":"2px","checkboxBorderRadius":"3px","borderRadiusSm":"var(--lia-bs-border-radius-sm)","borderRadius":"var(--lia-bs-border-radius)","borderRadiusLg":"var(--lia-bs-border-radius-lg)","formTextMarginTop":"4px","textAreaBorderRadius":"var(--lia-bs-border-radius)","activeFillColor":"var(--lia-bs-primary)","__typename":"InputThemeSettings"},"loading":{"dotDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.2)","dotLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.5)","barDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.06)","barLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.4)","__typename":"LoadingThemeSettings"},"link":{"color":"var(--lia-bs-primary)","hoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) - 10%))","decoration":"none","hoverDecoration":"underline","__typename":"LinkThemeSettings"},"listGroup":{"itemPaddingY":"15px","itemPaddingX":"15px","borderColor":"var(--lia-bs-gray-300)","__typename":"ListGroupThemeSettings"},"modal":{"contentTextColor":"var(--lia-bs-body-color)","contentBg":"var(--lia-bs-white)","backgroundBg":"var(--lia-bs-black)","smSize":"440px","mdSize":"760px","lgSize":"1080px","backdropOpacity":0.3,"contentBoxShadowXs":"var(--lia-bs-box-shadow-sm)","contentBoxShadow":"var(--lia-bs-box-shadow)","headerFontWeight":"700","__typename":"ModalThemeSettings"},"navbar":{"position":"FIXED","background":{"attachment":null,"clip":null,"color":"var(--lia-bs-white)","imageAssetName":"","imageLastModified":"0","origin":null,"position":"CENTER_CENTER","repeat":"NO_REPEAT","size":"COVER","__typename":"BackgroundProps"},"backgroundOpacity":0.8,"paddingTop":"15px","paddingBottom":"15px","borderBottom":"1px solid var(--lia-bs-border-color)","boxShadow":"var(--lia-bs-box-shadow-sm)","brandMarginRight":"30px","brandMarginRightSm":"10px","brandLogoHeight":"30px","linkGap":"10px","linkJustifyContent":"flex-start","linkPaddingY":"5px","linkPaddingX":"10px","linkDropdownPaddingY":"9px","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkColor":"var(--lia-bs-body-color)","linkHoverColor":"var(--lia-bs-primary)","linkFontSize":"var(--lia-bs-font-size-sm)","linkFontStyle":"NORMAL","linkFontWeight":"400","linkTextTransform":"NONE","linkLetterSpacing":"normal","linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkBgColor":"transparent","linkBgHoverColor":"transparent","linkBorder":"none","linkBorderHover":"none","linkBoxShadow":"none","linkBoxShadowHover":"none","linkTextBorderBottom":"none","linkTextBorderBottomHover":"none","dropdownPaddingTop":"10px","dropdownPaddingBottom":"15px","dropdownPaddingX":"10px","dropdownMenuOffset":"2px","dropdownDividerMarginTop":"10px","dropdownDividerMarginBottom":"10px","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","controllerIconColor":"var(--lia-bs-body-color)","controllerIconHoverColor":"var(--lia-bs-body-color)","controllerTextColor":"var(--lia-nav-controller-icon-color)","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","controllerHighlightColor":"hsla(30, 100%, 50%)","controllerHighlightTextColor":"var(--lia-yiq-light)","controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerColor":"var(--lia-nav-controller-icon-color)","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","hamburgerBgColor":"transparent","hamburgerBgHoverColor":"transparent","hamburgerBorder":"none","hamburgerBorderHover":"none","collapseMenuMarginLeft":"20px","collapseMenuDividerBg":"var(--lia-nav-link-color)","collapseMenuDividerOpacity":0.16,"__typename":"NavbarThemeSettings"},"pager":{"textColor":"var(--lia-bs-link-color)","textFontWeight":"var(--lia-font-weight-md)","textFontSize":"var(--lia-bs-font-size-sm)","__typename":"PagerThemeSettings"},"panel":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-bs-border-radius)","borderColor":"var(--lia-bs-border-color)","boxShadow":"none","__typename":"PanelThemeSettings"},"popover":{"arrowHeight":"8px","arrowWidth":"16px","maxWidth":"300px","minWidth":"100px","headerBg":"var(--lia-bs-white)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius)","boxShadow":"0 0.5rem 1rem hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.15)","__typename":"PopoverThemeSettings"},"prism":{"color":"#000000","bgColor":"#f5f2f0","fontFamily":"var(--font-family-monospace)","fontSize":"var(--lia-bs-font-size-base)","fontWeightBold":"var(--lia-bs-font-weight-bold)","fontStyleItalic":"italic","tabSize":2,"highlightColor":"#b3d4fc","commentColor":"#62707e","punctuationColor":"#6f6f6f","namespaceOpacity":"0.7","propColor":"#990055","selectorColor":"#517a00","operatorColor":"#906736","operatorBgColor":"hsla(0, 0%, 100%, 0.5)","keywordColor":"#0076a9","functionColor":"#d3284b","variableColor":"#c14700","__typename":"PrismThemeSettings"},"rte":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":" var(--lia-panel-box-shadow)","customColor1":"#bfedd2","customColor2":"#fbeeb8","customColor3":"#f8cac6","customColor4":"#eccafa","customColor5":"#c2e0f4","customColor6":"#2dc26b","customColor7":"#f1c40f","customColor8":"#e03e2d","customColor9":"#b96ad9","customColor10":"#3598db","customColor11":"#169179","customColor12":"#e67e23","customColor13":"#ba372a","customColor14":"#843fa1","customColor15":"#236fa1","customColor16":"#ecf0f1","customColor17":"#ced4d9","customColor18":"#95a5a6","customColor19":"#7e8c8d","customColor20":"#34495e","customColor21":"#000000","customColor22":"#ffffff","defaultMessageHeaderMarginTop":"40px","defaultMessageHeaderMarginBottom":"20px","defaultMessageItemMarginTop":"0","defaultMessageItemMarginBottom":"10px","diffAddedColor":"hsla(170, 53%, 51%, 0.4)","diffChangedColor":"hsla(43, 97%, 63%, 0.4)","diffNoneColor":"hsla(0, 0%, 80%, 0.4)","diffRemovedColor":"hsla(9, 74%, 47%, 0.4)","specialMessageHeaderMarginTop":"40px","specialMessageHeaderMarginBottom":"20px","specialMessageItemMarginTop":"0","specialMessageItemMarginBottom":"10px","__typename":"RteThemeSettings"},"tags":{"bgColor":"var(--lia-bs-gray-200)","bgHoverColor":"var(--lia-bs-gray-400)","borderRadius":"var(--lia-bs-border-radius-sm)","color":"var(--lia-bs-body-color)","hoverColor":"var(--lia-bs-body-color)","fontWeight":"var(--lia-font-weight-md)","fontSize":"var(--lia-font-size-xxs)","textTransform":"UPPERCASE","letterSpacing":"0.5px","__typename":"TagsThemeSettings"},"toasts":{"borderRadius":"var(--lia-bs-border-radius)","paddingX":"12px","__typename":"ToastsThemeSettings"},"typography":{"fontFamilyBase":"Segoe UI","fontStyleBase":"NORMAL","fontWeightBase":"400","fontWeightLight":"300","fontWeightNormal":"400","fontWeightMd":"500","fontWeightBold":"700","letterSpacingSm":"normal","letterSpacingXs":"normal","lineHeightBase":"1.5","fontSizeBase":"16px","fontSizeXxs":"11px","fontSizeXs":"12px","fontSizeSm":"14px","fontSizeLg":"20px","fontSizeXl":"24px","smallFontSize":"14px","customFonts":[{"source":"SERVER","name":"Segoe UI","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"},{"style":"NORMAL","weight":"300","__typename":"FontStyleData"},{"style":"NORMAL","weight":"600","__typename":"FontStyleData"},{"style":"NORMAL","weight":"700","__typename":"FontStyleData"},{"style":"ITALIC","weight":"400","__typename":"FontStyleData"}],"assetNames":["SegoeUI-normal-400.woff2","SegoeUI-normal-300.woff2","SegoeUI-normal-600.woff2","SegoeUI-normal-700.woff2","SegoeUI-italic-400.woff2"],"__typename":"CustomFont"},{"source":"SERVER","name":"MWF Fluent Icons","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"}],"assetNames":["MWFFluentIcons-normal-400.woff2"],"__typename":"CustomFont"}],"__typename":"TypographyThemeSettings"},"unstyledListItem":{"marginBottomSm":"5px","marginBottomMd":"10px","marginBottomLg":"15px","marginBottomXl":"20px","marginBottomXxl":"25px","__typename":"UnstyledListItemThemeSettings"},"yiq":{"light":"#ffffff","dark":"#000000","__typename":"YiqThemeSettings"},"colorLightness":{"primaryDark":0.36,"primaryLight":0.74,"primaryLighter":0.89,"primaryLightest":0.95,"infoDark":0.39,"infoLight":0.72,"infoLighter":0.85,"infoLightest":0.93,"successDark":0.24,"successLight":0.62,"successLighter":0.8,"successLightest":0.91,"warningDark":0.39,"warningLight":0.68,"warningLighter":0.84,"warningLightest":0.93,"dangerDark":0.41,"dangerLight":0.72,"dangerLighter":0.89,"dangerLightest":0.95,"__typename":"ColorLightnessThemeSettings"},"localOverride":false,"__typename":"Theme"},"localOverride":false},"CachedAsset:text:en_US-components/common/EmailVerification-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/common/EmailVerification-1743151752845","value":{"email.verification.title":"Email Verification Required","email.verification.message.update.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. To change your email, visit My Settings.","email.verification.message.resend.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. Resend email."},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-1743151752845","value":{"title":"Loading..."},"localOverride":false},"CachedAsset:quilt:o365.prod:pages/blogs/BlogMessagePage:board:AIPlatformBlog-1743151744559":{"__typename":"CachedAsset","id":"quilt:o365.prod:pages/blogs/BlogMessagePage:board:AIPlatformBlog-1743151744559","value":{"id":"BlogMessagePage","container":{"id":"Common","headerProps":{"backgroundImageProps":null,"backgroundColor":null,"addComponents":null,"removeComponents":["community.widget.bannerWidget"],"componentOrder":null,"__typename":"QuiltContainerSectionProps"},"headerComponentProps":{"community.widget.breadcrumbWidget":{"disableLastCrumbForDesktop":false}},"footerProps":null,"footerComponentProps":null,"items":[{"id":"blog-article","layout":"ONE_COLUMN","bgColor":null,"showTitle":null,"showDescription":null,"textPosition":null,"textColor":null,"sectionEditLevel":"LOCKED","bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"OneColumnQuiltSection","columnMap":{"main":[{"id":"blogs.widget.blogArticleWidget","className":"lia-blog-container","props":null,"__typename":"QuiltComponent"}],"__typename":"OneSectionColumns"}},{"id":"section-1729184836777","layout":"MAIN_SIDE","bgColor":"transparent","showTitle":false,"showDescription":false,"textPosition":"CENTER","textColor":"var(--lia-bs-body-color)","sectionEditLevel":null,"bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"MainSideQuiltSection","columnMap":{"main":[],"side":[{"id":"custom.widget.Social_Sharing","className":null,"props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":true,"title":"Share","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"MainSideSectionColumns"}}],"__typename":"QuiltContainer"},"__typename":"Quilt","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-pages/blogs/BlogMessagePage-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-pages/blogs/BlogMessagePage-1743151752845","value":{"title":"{contextMessageSubject} | {communityTitle}","errorMissing":"This blog post cannot be found","name":"Blog Message Page","section.blog-article.title":"Blog Post","archivedMessageTitle":"This Content Has Been Archived","section.section-1729184836777.title":"","section.section-1729184836777.description":"","section.CncIde.title":"Blog Post","section.tifEmD.description":"","section.tifEmD.title":""},"localOverride":false},"CachedAsset:quiltWrapper:o365.prod:Common:1743058834864":{"__typename":"CachedAsset","id":"quiltWrapper:o365.prod:Common:1743058834864","value":{"id":"Common","header":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"community.widget.navbarWidget","props":{"showUserName":true,"showRegisterLink":true,"useIconLanguagePicker":true,"useLabelLanguagePicker":true,"className":"QuiltComponent_lia-component-edit-mode__0nCcm","links":{"sideLinks":[],"mainLinks":[{"children":[],"linkType":"INTERNAL","id":"gxcuf89792","params":{},"routeName":"CommunityPage"},{"children":[],"linkType":"EXTERNAL","id":"external-link","url":"/Directory","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft365","params":{"categoryId":"microsoft365"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-teams","params":{"categoryId":"MicrosoftTeams"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows","params":{"categoryId":"Windows"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-securityand-compliance","params":{"categoryId":"microsoft-security"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"outlook","params":{"categoryId":"Outlook"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"planner","params":{"categoryId":"Planner"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows-server","params":{"categoryId":"Windows-Server"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"azure","params":{"categoryId":"Azure"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"exchange","params":{"categoryId":"Exchange"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-endpoint-manager","params":{"categoryId":"microsoft-endpoint-manager"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-q-l-server","params":{"categoryId":"SQL-Server"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-2","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities","url":"/","target":"BLANK"},{"children":[{"linkType":"INTERNAL","id":"education-sector","params":{"categoryId":"EducationSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"a-i","params":{"categoryId":"AI"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"i-t-ops-talk","params":{"categoryId":"ITOpsTalk"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"partner-community","params":{"categoryId":"PartnerCommunity"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-mechanics","params":{"categoryId":"MicrosoftMechanics"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"healthcare-and-life-sciences","params":{"categoryId":"HealthcareAndLifeSciences"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"public-sector","params":{"categoryId":"PublicSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"io-t","params":{"categoryId":"IoT"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"driving-adoption","params":{"categoryId":"DrivingAdoption"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-m-b","params":{"categoryId":"SMB"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"startupsat-microsoft","params":{"categoryId":"StartupsatMicrosoft"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-1","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities-1","url":"/","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external","url":"/Blogs","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external-1","url":"/Events","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft-learn-1","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-learn-blog","params":{"boardId":"MicrosoftLearnBlog","categoryId":"MicrosoftLearn"},"routeName":"BlogBoardPage"},{"linkType":"EXTERNAL","id":"external-10","url":"https://learningroomdirectory.microsoft.com/","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-3","url":"https://docs.microsoft.com/learn/dynamics365/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-4","url":"https://docs.microsoft.com/learn/m365/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-5","url":"https://docs.microsoft.com/learn/topics/sci/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-6","url":"https://docs.microsoft.com/learn/powerplatform/?wt.mc_id=techcom_header-webpage-powerplatform","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-7","url":"https://docs.microsoft.com/learn/github/?wt.mc_id=techcom_header-webpage-github","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-8","url":"https://docs.microsoft.com/learn/teams/?wt.mc_id=techcom_header-webpage-teams","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-9","url":"https://docs.microsoft.com/learn/dotnet/?wt.mc_id=techcom_header-webpage-dotnet","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-2","url":"https://docs.microsoft.com/learn/azure/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"}],"linkType":"INTERNAL","id":"microsoft-learn","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"children":[],"linkType":"INTERNAL","id":"community-info-center","params":{"categoryId":"Community-Info-Center"},"routeName":"CategoryPage"}]},"style":{"boxShadow":"var(--lia-bs-box-shadow-sm)","controllerHighlightColor":"hsla(30, 100%, 50%)","linkFontWeight":"400","dropdownDividerMarginBottom":"10px","hamburgerBorderHover":"none","linkBoxShadowHover":"none","linkFontSize":"14px","backgroundOpacity":0.8,"controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerBgColor":"transparent","hamburgerColor":"var(--lia-nav-controller-icon-color)","linkTextBorderBottom":"none","brandLogoHeight":"30px","linkBgHoverColor":"transparent","linkLetterSpacing":"normal","collapseMenuDividerOpacity":0.16,"dropdownPaddingBottom":"15px","paddingBottom":"15px","dropdownMenuOffset":"2px","hamburgerBgHoverColor":"transparent","borderBottom":"1px solid var(--lia-bs-border-color)","hamburgerBorder":"none","dropdownPaddingX":"10px","brandMarginRightSm":"10px","linkBoxShadow":"none","collapseMenuDividerBg":"var(--lia-nav-link-color)","linkColor":"var(--lia-bs-body-color)","linkJustifyContent":"flex-start","dropdownPaddingTop":"10px","controllerHighlightTextColor":"var(--lia-yiq-dark)","controllerTextColor":"var(--lia-nav-controller-icon-color)","background":{"imageAssetName":"","color":"var(--lia-bs-white)","size":"COVER","repeat":"NO_REPEAT","position":"CENTER_CENTER","imageLastModified":""},"linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkHoverColor":"var(--lia-bs-body-color)","position":"FIXED","linkBorder":"none","linkTextBorderBottomHover":"2px solid var(--lia-bs-body-color)","brandMarginRight":"30px","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","linkBorderHover":"none","collapseMenuMarginLeft":"20px","linkFontStyle":"NORMAL","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","linkPaddingX":"10px","linkPaddingY":"5px","paddingTop":"15px","linkTextTransform":"NONE","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","linkBgColor":"transparent","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkDropdownPaddingY":"9px","controllerIconColor":"var(--lia-bs-body-color)","dropdownDividerMarginTop":"10px","linkGap":"10px","controllerIconHoverColor":"var(--lia-bs-body-color)"},"showSearchIcon":false,"languagePickerStyle":"iconAndLabel"},"__typename":"QuiltComponent"},{"id":"community.widget.breadcrumbWidget","props":{"backgroundColor":"transparent","linkHighlightColor":"var(--lia-bs-primary)","visualEffects":{"showBottomBorder":true},"linkTextColor":"var(--lia-bs-gray-700)"},"__typename":"QuiltComponent"},{"id":"custom.widget.community_banner","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"usePageWidth":false,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"},{"id":"custom.widget.HeroBanner","props":{"widgetVisibility":"signedInOrAnonymous","usePageWidth":false,"useTitle":true,"cMax_items":3,"useBackground":false,"title":"","lazyLoad":false,"widgetChooser":"custom.widget.HeroBanner"},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"footer":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"custom.widget.MicrosoftFooter","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"__typename":"QuiltWrapper","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/ActionFeedback-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/common/ActionFeedback-1743151752845","value":{"joinedGroupHub.title":"Welcome","joinedGroupHub.message":"You are now a member of this group and are subscribed to updates.","groupHubInviteNotFound.title":"Invitation Not Found","groupHubInviteNotFound.message":"Sorry, we could not find your invitation to the group. The owner may have canceled the invite.","groupHubNotFound.title":"Group Not Found","groupHubNotFound.message":"The grouphub you tried to join does not exist. It may have been deleted.","existingGroupHubMember.title":"Already Joined","existingGroupHubMember.message":"You are already a member of this group.","accountLocked.title":"Account Locked","accountLocked.message":"Your account has been locked due to multiple failed attempts. Try again in {lockoutTime} minutes.","editedGroupHub.title":"Changes Saved","editedGroupHub.message":"Your group has been updated.","leftGroupHub.title":"Goodbye","leftGroupHub.message":"You are no longer a member of this group and will not receive future updates.","deletedGroupHub.title":"Deleted","deletedGroupHub.message":"The group has been deleted.","groupHubCreated.title":"Group Created","groupHubCreated.message":"{groupHubName} is ready to use","accountClosed.title":"Account Closed","accountClosed.message":"The account has been closed and you will now be redirected to the homepage","resetTokenExpired.title":"Reset Password Link has Expired","resetTokenExpired.message":"Try resetting your password again","invalidUrl.title":"Invalid URL","invalidUrl.message":"The URL you're using is not recognized. Verify your URL and try again.","accountClosedForUser.title":"Account Closed","accountClosedForUser.message":"{userName}'s account is closed","inviteTokenInvalid.title":"Invitation Invalid","inviteTokenInvalid.message":"Your invitation to the community has been canceled or expired.","inviteTokenError.title":"Invitation Verification Failed","inviteTokenError.message":"The url you are utilizing is not recognized. Verify your URL and try again","pageNotFound.title":"Access Denied","pageNotFound.message":"You do not have access to this area of the community or it doesn't exist","eventAttending.title":"Responded as Attending","eventAttending.message":"You'll be notified when there's new activity and reminded as the event approaches","eventInterested.title":"Responded as Interested","eventInterested.message":"You'll be notified when there's new activity and reminded as the event approaches","eventNotFound.title":"Event Not Found","eventNotFound.message":"The event you tried to respond to does not exist.","redirectToRelatedPage.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.message":"The content you are trying to access is archived","redirectToRelatedPage.message":"The content you are trying to access is archived","relatedUrl.archivalLink.flyoutMessage":"The content you are trying to access is archived View Archived Content"},"localOverride":false},"CachedAsset:component:custom.widget.community_banner-en-1743059077119":{"__typename":"CachedAsset","id":"component:custom.widget.community_banner-en-1743059077119","value":{"component":{"id":"custom.widget.community_banner","template":{"id":"community_banner","markupLanguage":"HANDLEBARS","style":".community-banner {\n a.top-bar.btn {\n top: 0px;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0px;\n background: #0068b8;\n color: white;\n padding: 10px 0px;\n display:block;\n box-shadow:none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0px !important;\n font-size:14px;\n }\n}","texts":null,"defaults":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.community_banner","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_community_banner_community-banner_1a5zb_1 {\n a.custom_widget_community_banner_top-bar_1a5zb_2.custom_widget_community_banner_btn_1a5zb_2 {\n top: 0;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0;\n background: #0068b8;\n color: white;\n padding: 0.625rem 0;\n display:block;\n box-shadow:none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0 !important;\n font-size:0.875rem;\n }\n}","tokens":{"community-banner":"custom_widget_community_banner_community-banner_1a5zb_1","top-bar":"custom_widget_community_banner_top-bar_1a5zb_2","btn":"custom_widget_community_banner_btn_1a5zb_2"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.HeroBanner-en-1743059077119":{"__typename":"CachedAsset","id":"component:custom.widget.HeroBanner-en-1743059077119","value":{"component":{"id":"custom.widget.HeroBanner","template":{"id":"HeroBanner","markupLanguage":"REACT","style":null,"texts":{"searchPlaceholderText":"Search this community","followActionText":"Follow","unfollowActionText":"Following","searchOnHoverText":"Please enter your search term(s) and then press return key to complete a search."},"defaults":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.HeroBanner","form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"__typename":"Component","localOverride":false},"globalCss":null,"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"}},"localOverride":false},"CachedAsset:component:custom.widget.Social_Sharing-en-1743059077119":{"__typename":"CachedAsset","id":"component:custom.widget.Social_Sharing-en-1743059077119","value":{"component":{"id":"custom.widget.Social_Sharing","template":{"id":"Social_Sharing","markupLanguage":"HANDLEBARS","style":".social-share {\n .sharing-options {\n position: relative;\n margin: 0;\n padding: 0;\n line-height: 10px;\n display: flex;\n justify-content: left;\n gap: 5px;\n list-style-type: none;\n li {\n text-align: left;\n a {\n min-width: 30px;\n min-height: 30px;\n display: block;\n padding: 1px;\n .social-share-linkedin {\n img {\n background-color: rgb(0, 119, 181);\n }\n }\n .social-share-facebook {\n img {\n background-color: rgb(59, 89, 152);\n }\n }\n .social-share-x {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .social-share-rss {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .social-share-reddit {\n img {\n background-color: rgb(255, 69, 0);\n }\n }\n .social-share-email {\n img {\n background-color: rgb(132, 132, 132);\n }\n }\n }\n a {\n img {\n height: 2rem;\n }\n }\n }\n }\n}\n","texts":null,"defaults":{"config":{"applicablePages":[],"description":"Adds buttons to share to various social media websites","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.Social_Sharing","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"Adds buttons to share to various social media websites","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_Social_Sharing_social-share_c7xxz_1 {\n .custom_widget_Social_Sharing_sharing-options_c7xxz_2 {\n position: relative;\n margin: 0;\n padding: 0;\n line-height: 0.625rem;\n display: flex;\n justify-content: left;\n gap: 0.3125rem;\n list-style-type: none;\n li {\n text-align: left;\n a {\n min-width: 1.875rem;\n min-height: 1.875rem;\n display: block;\n padding: 0.0625rem;\n .custom_widget_Social_Sharing_social-share-linkedin_c7xxz_18 {\n img {\n background-color: rgb(0, 119, 181);\n }\n }\n .custom_widget_Social_Sharing_social-share-facebook_c7xxz_23 {\n img {\n background-color: rgb(59, 89, 152);\n }\n }\n .custom_widget_Social_Sharing_social-share-x_c7xxz_28 {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-rss_c7xxz_33 {\n img {\n background-color: rgb(0, 0, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-reddit_c7xxz_38 {\n img {\n background-color: rgb(255, 69, 0);\n }\n }\n .custom_widget_Social_Sharing_social-share-email_c7xxz_43 {\n img {\n background-color: rgb(132, 132, 132);\n }\n }\n }\n a {\n img {\n height: 2rem;\n }\n }\n }\n }\n}\n","tokens":{"social-share":"custom_widget_Social_Sharing_social-share_c7xxz_1","sharing-options":"custom_widget_Social_Sharing_sharing-options_c7xxz_2","social-share-linkedin":"custom_widget_Social_Sharing_social-share-linkedin_c7xxz_18","social-share-facebook":"custom_widget_Social_Sharing_social-share-facebook_c7xxz_23","social-share-x":"custom_widget_Social_Sharing_social-share-x_c7xxz_28","social-share-rss":"custom_widget_Social_Sharing_social-share-rss_c7xxz_33","social-share-reddit":"custom_widget_Social_Sharing_social-share-reddit_c7xxz_38","social-share-email":"custom_widget_Social_Sharing_social-share-email_c7xxz_43"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.MicrosoftFooter-en-1743059077119":{"__typename":"CachedAsset","id":"component:custom.widget.MicrosoftFooter-en-1743059077119","value":{"component":{"id":"custom.widget.MicrosoftFooter","template":{"id":"MicrosoftFooter","markupLanguage":"HANDLEBARS","style":".context-uhf {\n min-width: 280px;\n font-size: 15px;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.c-uhff-link {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.c-uhff {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.c-uhff-nav {\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n .c-heading-4 {\n color: #616161;\n word-break: break-word;\n font-size: 15px;\n line-height: 20px;\n padding: 36px 0 4px;\n font-weight: 600;\n }\n .c-uhff-nav-row {\n .c-uhff-nav-group {\n display: block;\n float: left;\n min-height: 1px;\n vertical-align: text-top;\n padding: 0 12px;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.c-list.f-bare {\n font-size: 11px;\n line-height: 16px;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 8px 0;\n margin: 0;\n }\n }\n }\n }\n}\n.c-uhff-base {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 30px 5% 16px;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.c-uhff-ccpa {\n font-size: 11px;\n line-height: 16px;\n float: left;\n margin: 3px 0;\n }\n a.c-uhff-ccpa:hover {\n text-decoration: underline;\n }\n ul.c-list {\n font-size: 11px;\n line-height: 16px;\n float: right;\n margin: 3px 0;\n color: #616161;\n li {\n padding: 0 24px 4px 0;\n display: inline-block;\n }\n }\n .c-list.f-bare {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 30px 24px 16px;\n }\n}\n","texts":{"New tab":"What's New","New 1":"Surface Laptop Studio 2","New 2":"Surface Laptop Go 3","New 3":"Surface Pro 9","New 4":"Surface Laptop 5","New 5":"Surface Studio 2+","New 6":"Copilot in Windows","New 7":"Microsoft 365","New 8":"Windows 11 apps","Store tab":"Microsoft Store","Store 1":"Account Profile","Store 2":"Download Center","Store 3":"Microsoft Store Support","Store 4":"Returns","Store 5":"Order tracking","Store 6":"Certified Refurbished","Store 7":"Microsoft Store Promise","Store 8":"Flexible Payments","Education tab":"Education","Edu 1":"Microsoft in education","Edu 2":"Devices for education","Edu 3":"Microsoft Teams for Education","Edu 4":"Microsoft 365 Education","Edu 5":"How to buy for your school","Edu 6":"Educator Training and development","Edu 7":"Deals for students and parents","Edu 8":"Azure for students","Business tab":"Business","Bus 1":"Microsoft Cloud","Bus 2":"Microsoft Security","Bus 3":"Dynamics 365","Bus 4":"Microsoft 365","Bus 5":"Microsoft Power Platform","Bus 6":"Microsoft Teams","Bus 7":"Microsoft Industry","Bus 8":"Small Business","Developer tab":"Developer & IT","Dev 1":"Azure","Dev 2":"Developer Center","Dev 3":"Documentation","Dev 4":"Microsoft Learn","Dev 5":"Microsoft Tech Community","Dev 6":"Azure Marketplace","Dev 7":"AppSource","Dev 8":"Visual Studio","Company tab":"Company","Com 1":"Careers","Com 2":"About Microsoft","Com 3":"Company News","Com 4":"Privacy at Microsoft","Com 5":"Investors","Com 6":"Diversity and inclusion","Com 7":"Accessiblity","Com 8":"Sustainibility"},"defaults":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.MicrosoftFooter","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_MicrosoftFooter_context-uhf_f95yq_1 {\n min-width: 17.5rem;\n font-size: 0.9375rem;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-link_f95yq_12 {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff_f95yq_12 {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.custom_widget_MicrosoftFooter_c-uhff-nav_f95yq_35 {\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n .custom_widget_MicrosoftFooter_c-heading-4_f95yq_49 {\n color: #616161;\n word-break: break-word;\n font-size: 0.9375rem;\n line-height: 1.25rem;\n padding: 2.25rem 0 0.25rem;\n font-weight: 600;\n }\n .custom_widget_MicrosoftFooter_c-uhff-nav-row_f95yq_57 {\n .custom_widget_MicrosoftFooter_c-uhff-nav-group_f95yq_58 {\n display: block;\n float: left;\n min-height: 0.0625rem;\n vertical-align: text-top;\n padding: 0 0.75rem;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.custom_widget_MicrosoftFooter_c-list_f95yq_78.custom_widget_MicrosoftFooter_f-bare_f95yq_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 0.5rem 0;\n margin: 0;\n }\n }\n }\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff-base_f95yq_94 {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 1.875rem 5% 1rem;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: left;\n margin: 0.1875rem 0;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107:hover {\n text-decoration: underline;\n }\n ul.custom_widget_MicrosoftFooter_c-list_f95yq_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: right;\n margin: 0.1875rem 0;\n color: #616161;\n li {\n padding: 0 1.5rem 0.25rem 0;\n display: inline-block;\n }\n }\n .custom_widget_MicrosoftFooter_c-list_f95yq_78.custom_widget_MicrosoftFooter_f-bare_f95yq_78 {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 1.875rem 1.5rem 1rem;\n }\n}\n","tokens":{"context-uhf":"custom_widget_MicrosoftFooter_context-uhf_f95yq_1","c-uhff-link":"custom_widget_MicrosoftFooter_c-uhff-link_f95yq_12","c-uhff":"custom_widget_MicrosoftFooter_c-uhff_f95yq_12","c-uhff-nav":"custom_widget_MicrosoftFooter_c-uhff-nav_f95yq_35","c-heading-4":"custom_widget_MicrosoftFooter_c-heading-4_f95yq_49","c-uhff-nav-row":"custom_widget_MicrosoftFooter_c-uhff-nav-row_f95yq_57","c-uhff-nav-group":"custom_widget_MicrosoftFooter_c-uhff-nav-group_f95yq_58","c-list":"custom_widget_MicrosoftFooter_c-list_f95yq_78","f-bare":"custom_widget_MicrosoftFooter_f-bare_f95yq_78","c-uhff-base":"custom_widget_MicrosoftFooter_c-uhff-base_f95yq_94","c-uhff-ccpa":"custom_widget_MicrosoftFooter_c-uhff-ccpa_f95yq_107"}},"form":null},"localOverride":false},"CachedAsset:text:en_US-components/community/Breadcrumb-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/community/Breadcrumb-1743151752845","value":{"navLabel":"Breadcrumbs","dropdown":"Additional parent page navigation"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBanner-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBanner-1743151752845","value":{"messageMarkedAsSpam":"This post has been marked as spam","messageMarkedAsSpam@board:TKB":"This article has been marked as spam","messageMarkedAsSpam@board:BLOG":"This post has been marked as spam","messageMarkedAsSpam@board:FORUM":"This discussion has been marked as spam","messageMarkedAsSpam@board:OCCASION":"This event has been marked as spam","messageMarkedAsSpam@board:IDEA":"This idea has been marked as spam","manageSpam":"Manage Spam","messageMarkedAsAbuse":"This post has been marked as abuse","messageMarkedAsAbuse@board:TKB":"This article has been marked as abuse","messageMarkedAsAbuse@board:BLOG":"This post has been marked as abuse","messageMarkedAsAbuse@board:FORUM":"This discussion has been marked as abuse","messageMarkedAsAbuse@board:OCCASION":"This event has been marked as abuse","messageMarkedAsAbuse@board:IDEA":"This idea has been marked as abuse","preModCommentAuthorText":"This comment will be published as soon as it is approved","preModCommentModeratorText":"This comment is awaiting moderation","messageMarkedAsOther":"This post has been rejected due to other reasons","messageMarkedAsOther@board:TKB":"This article has been rejected due to other reasons","messageMarkedAsOther@board:BLOG":"This post has been rejected due to other reasons","messageMarkedAsOther@board:FORUM":"This discussion has been rejected due to other reasons","messageMarkedAsOther@board:OCCASION":"This event has been rejected due to other reasons","messageMarkedAsOther@board:IDEA":"This idea has been rejected due to other reasons","messageArchived":"This post was archived on {date}","relatedUrl":"View Related Content","relatedContentText":"Showing related content","archivedContentLink":"View Archived Content"},"localOverride":false},"Category:category:Exchange":{"__typename":"Category","id":"category:Exchange","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Planner":{"__typename":"Category","id":"category:Planner","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Outlook":{"__typename":"Category","id":"category:Outlook","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Community-Info-Center":{"__typename":"Category","id":"category:Community-Info-Center","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:EducationSector":{"__typename":"Category","id":"category:EducationSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:DrivingAdoption":{"__typename":"Category","id":"category:DrivingAdoption","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Azure":{"__typename":"Category","id":"category:Azure","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows-Server":{"__typename":"Category","id":"category:Windows-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:SQL-Server":{"__typename":"Category","id":"category:SQL-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftTeams":{"__typename":"Category","id":"category:MicrosoftTeams","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PublicSector":{"__typename":"Category","id":"category:PublicSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft365":{"__typename":"Category","id":"category:microsoft365","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:IoT":{"__typename":"Category","id":"category:IoT","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:HealthcareAndLifeSciences":{"__typename":"Category","id":"category:HealthcareAndLifeSciences","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:SMB":{"__typename":"Category","id":"category:SMB","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:ITOpsTalk":{"__typename":"Category","id":"category:ITOpsTalk","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-endpoint-manager":{"__typename":"Category","id":"category:microsoft-endpoint-manager","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftLearn":{"__typename":"Category","id":"category:MicrosoftLearn","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Blog:board:MicrosoftLearnBlog":{"__typename":"Blog","id":"board:MicrosoftLearnBlog","blogPolicies":{"__typename":"BlogPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}},"boardPolicies":{"__typename":"BoardPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftMechanics":{"__typename":"Category","id":"category:MicrosoftMechanics","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:StartupsatMicrosoft":{"__typename":"Category","id":"category:StartupsatMicrosoft","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PartnerCommunity":{"__typename":"Category","id":"category:PartnerCommunity","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows":{"__typename":"Category","id":"category:Windows","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-security":{"__typename":"Category","id":"category:microsoft-security","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"QueryVariables:TopicReplyList:message:4084674:14":{"__typename":"QueryVariables","id":"TopicReplyList:message:4084674:14","value":{"id":"message:4084674","first":10,"sorts":{"postTime":{"direction":"DESC"}},"repliesFirst":3,"repliesFirstDepthThree":1,"repliesSorts":{"postTime":{"direction":"DESC"}},"useAvatar":true,"useAuthorLogin":true,"useAuthorRank":true,"useBody":true,"useKudosCount":true,"useTimeToRead":false,"useMedia":false,"useReadOnlyIcon":false,"useRepliesCount":true,"useSearchSnippet":false,"useAcceptedSolutionButton":false,"useSolvedBadge":false,"useAttachments":false,"attachmentsFirst":5,"useTags":true,"useNodeAncestors":false,"useUserHoverCard":false,"useNodeHoverCard":false,"useModerationStatus":true,"usePreviewSubjectModal":false,"useMessageStatus":true}},"ROOT_MUTATION":{"__typename":"Mutation"},"CachedAsset:text:en_US-components/community/Navbar-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/community/Navbar-1743151752845","value":{"community":"Community Home","inbox":"Inbox","manageContent":"Manage Content","tos":"Terms of Service","forgotPassword":"Forgot Password","themeEditor":"Theme Editor","edit":"Edit Navigation Bar","skipContent":"Skip to content","gxcuf89792":"Tech Community","external-1":"Events","s-m-b":"Small and Medium Businesses","windows-server":"Windows Server","education-sector":"Education Sector","driving-adoption":"Driving Adoption","microsoft-learn":"Microsoft Learn","s-q-l-server":"SQL Server","partner-community":"Microsoft Partner Community","microsoft365":"Microsoft 365","external-9":".NET","external-8":"Teams","external-7":"Github","products-services":"Products","external-6":"Power Platform","communities-1":"Topics","external-5":"Microsoft Security","planner":"Planner","external-4":"Microsoft 365","external-3":"Dynamics 365","azure":"Azure","healthcare-and-life-sciences":"Healthcare and Life Sciences","external-2":"Azure","microsoft-mechanics":"Microsoft Mechanics","microsoft-learn-1":"Community","external-10":"Learning Room Directory","microsoft-learn-blog":"Blog","windows":"Windows","i-t-ops-talk":"ITOps Talk","external-link-1":"View All","microsoft-securityand-compliance":"Microsoft Security","public-sector":"Public Sector","community-info-center":"Lounge","external-link-2":"View All","microsoft-teams":"Microsoft Teams","external":"Blogs","microsoft-endpoint-manager":"Microsoft Intune and Configuration Manager","startupsat-microsoft":"Startups at Microsoft","exchange":"Exchange","a-i":"AI and Machine Learning","io-t":"Internet of Things (IoT)","outlook":"Outlook","external-link":"Community Hubs","communities":"Products"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarHamburgerDropdown-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarHamburgerDropdown-1743151752845","value":{"hamburgerLabel":"Side Menu"},"localOverride":false},"CachedAsset:text:en_US-components/community/BrandLogo-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/community/BrandLogo-1743151752845","value":{"logoAlt":"Khoros","themeLogoAlt":"Brand Logo"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarTextLinks-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarTextLinks-1743151752845","value":{"more":"More"},"localOverride":false},"CachedAsset:text:en_US-components/authentication/AuthenticationLink-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/authentication/AuthenticationLink-1743151752845","value":{"title.login":"Sign In","title.registration":"Register","title.forgotPassword":"Forgot Password","title.multiAuthLogin":"Sign In"},"localOverride":false},"CachedAsset:text:en_US-components/nodes/NodeLink-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/nodes/NodeLink-1743151752845","value":{"place":"Place {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageView/MessageViewStandard-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageView/MessageViewStandard-1743151752845","value":{"anonymous":"Anonymous","author":"{messageAuthorLogin}","authorBy":"{messageAuthorLogin}","board":"{messageBoardTitle}","replyToUser":" to {parentAuthor}","showMoreReplies":"Show More","replyText":"Reply","repliesText":"Replies","markedAsSolved":"Marked as Solved","movedMessagePlaceholder.BLOG":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.TKB":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.FORUM":"{count, plural, =0 {This reply has been} other {These replies have been} }","movedMessagePlaceholder.IDEA":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.OCCASION":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholderUrlText":"moved.","messageStatus":"Status: ","statusChanged":"Status changed: {previousStatus} to {currentStatus}","statusAdded":"Status added: {status}","statusRemoved":"Status removed: {status}","labelExpand":"expand replies","labelCollapse":"collapse replies","unhelpfulReason.reason1":"Content is outdated","unhelpfulReason.reason2":"Article is missing information","unhelpfulReason.reason3":"Content is for a different Product","unhelpfulReason.reason4":"Doesn't match what I was searching for"},"localOverride":false},"CachedAsset:text:en_US-components/messages/ThreadedReplyList-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/ThreadedReplyList-1743151752845","value":{"title":"{count, plural, one{# Reply} other{# Replies}}","title@board:BLOG":"{count, plural, one{# Comment} other{# Comments}}","title@board:TKB":"{count, plural, one{# Comment} other{# Comments}}","title@board:IDEA":"{count, plural, one{# Comment} other{# Comments}}","title@board:OCCASION":"{count, plural, one{# Comment} other{# Comments}}","noRepliesTitle":"No Replies","noRepliesTitle@board:BLOG":"No Comments","noRepliesTitle@board:TKB":"No Comments","noRepliesTitle@board:IDEA":"No Comments","noRepliesTitle@board:OCCASION":"No Comments","noRepliesDescription":"Be the first to reply","noRepliesDescription@board:BLOG":"Be the first to comment","noRepliesDescription@board:TKB":"Be the first to comment","noRepliesDescription@board:IDEA":"Be the first to comment","noRepliesDescription@board:OCCASION":"Be the first to comment","messageReadOnlyAlert:BLOG":"Comments have been turned off for this post","messageReadOnlyAlert:TKB":"Comments have been turned off for this article","messageReadOnlyAlert:IDEA":"Comments have been turned off for this idea","messageReadOnlyAlert:FORUM":"Replies have been turned off for this discussion","messageReadOnlyAlert:OCCASION":"Comments have been turned off for this event"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyCallToAction-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyCallToAction-1743151752845","value":{"leaveReply":"Leave a reply...","leaveReply@board:BLOG@message:root":"Leave a comment...","leaveReply@board:TKB@message:root":"Leave a comment...","leaveReply@board:IDEA@message:root":"Leave a comment...","leaveReply@board:OCCASION@message:root":"Leave a comment...","repliesTurnedOff.FORUM":"Replies are turned off for this topic","repliesTurnedOff.BLOG":"Comments are turned off for this topic","repliesTurnedOff.TKB":"Comments are turned off for this topic","repliesTurnedOff.IDEA":"Comments are turned off for this topic","repliesTurnedOff.OCCASION":"Comments are turned off for this topic","infoText":"Stop poking me!"},"localOverride":false},"Rank:rank:37":{"__typename":"Rank","id":"rank:37","position":18,"name":"Copper Contributor","color":"333333","icon":null,"rankStyle":"TEXT"},"User:user:2396236":{"__typename":"User","id":"user:2396236","uid":2396236,"login":"shrijayan","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-03-31T22:17:36.581-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-7.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2396236"},"ModerationData:moderation_data:4101966":{"__typename":"ModerationData","id":"moderation_data:4101966","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4101966":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2396236"},"id":"message:4101966","revisionNum":1,"uid":4101966,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AIPlatformBlog"},"parent":{"__ref":"BlogTopicMessage:message:4084674"},"conversation":{"__ref":"Conversation:conversation:4084674"},"subject":"Re: RAFT: A new way to teach LLMs to be better at RAG","moderationData":{"__ref":"ModerationData:moderation_data:4101966"},"body":"
In the RAFT approach, the document set used for fine-tuning includes both relevant documents (containing the answer) and distractor documents (not containing the answer). How does the design of the Chain-of-Thought explanation, potentially generated by a separate LLM like GPT-4, affect the model's ability to differentiate between these two types of documents during training?
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"203","kudosSumWeight":2,"repliesCount":0,"postTime":"2024-03-31T22:20:14.461-07:00","lastPublishTime":"2024-03-31T22:20:14.461-07:00","metrics":{"__typename":"MessageMetrics","views":34170},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:AIPlatformBlog/message:4084674/message:4101966","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:2395556":{"__typename":"User","id":"user:2395556","uid":2395556,"login":"VikrantKhedkar","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-03-31T04:57:58.610-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-10.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2395556"},"ModerationData:moderation_data:4101705":{"__typename":"ModerationData","id":"moderation_data:4101705","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4101705":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2395556"},"id":"message:4101705","revisionNum":1,"uid":4101705,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AIPlatformBlog"},"parent":{"__ref":"BlogTopicMessage:message:4084674"},"conversation":{"__ref":"Conversation:conversation:4084674"},"subject":"Re: RAFT: A new way to teach LLMs to be better at RAG","moderationData":{"__ref":"ModerationData:moderation_data:4101705"},"body":"
This is a great advancement i love how swiftly you have combined the RAG with Finetunning it is very intuitive. Iam working on a project that can utilize this. I would love to connect and get some input as I need some help doing it cedricvidal
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"203","kudosSumWeight":1,"repliesCount":0,"postTime":"2024-03-31T05:02:11.122-07:00","lastPublishTime":"2024-03-31T05:02:11.122-07:00","metrics":{"__typename":"MessageMetrics","views":34306},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:AIPlatformBlog/message:4084674/message:4101705","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"ModerationData:moderation_data:4096942":{"__typename":"ModerationData","id":"moderation_data:4096942","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4096942":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2358745"},"id":"message:4096942","revisionNum":1,"uid":4096942,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AIPlatformBlog"},"parent":{"__ref":"BlogTopicMessage:message:4084674"},"conversation":{"__ref":"Conversation:conversation:4084674"},"subject":"Re: RAFT: A new way to teach LLMs to be better at RAG","moderationData":{"__ref":"ModerationData:moderation_data:4096942"},"body":"
Hello Jochan, thank you! Indeed, this combined approach is very interesting. Let us know if you try and how it works out!
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"123","kudosSumWeight":0,"repliesCount":0,"postTime":"2024-03-26T07:16:05.721-07:00","lastPublishTime":"2024-03-26T07:16:05.721-07:00","metrics":{"__typename":"MessageMetrics","views":36949},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:AIPlatformBlog/message:4084674/message:4096942","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"Rank:rank:36":{"__typename":"Rank","id":"rank:36","position":17,"name":"Brass Contributor","color":"333333","icon":null,"rankStyle":"TEXT"},"User:user:435519":{"__typename":"User","id":"user:435519","uid":435519,"login":"jhoffmann","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2019-10-29T06:16:28.403-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS00MzU1MTktMTUxNzE5aUFGODFBMkUxQjk3RjMyM0U"},"rank":{"__ref":"Rank:rank:36"},"entityType":"USER","eventPath":"community:gxcuf89792/user:435519"},"ModerationData:moderation_data:4096609":{"__typename":"ModerationData","id":"moderation_data:4096609","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4096609":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:435519"},"id":"message:4096609","revisionNum":1,"uid":4096609,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AIPlatformBlog"},"parent":{"__ref":"BlogTopicMessage:message:4084674"},"conversation":{"__ref":"Conversation:conversation:4084674"},"subject":"Re: RAFT: A new way to teach LLMs to be better at RAG","moderationData":{"__ref":"ModerationData:moderation_data:4096609"},"body":"
Woah! That's pretty good stuff. I never thought about combining those two approaches / techniques. Many thanks for the heads up!
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"136","kudosSumWeight":1,"repliesCount":0,"postTime":"2024-03-26T01:43:03.927-07:00","lastPublishTime":"2024-03-26T01:43:03.927-07:00","metrics":{"__typename":"MessageMetrics","views":37206},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:AIPlatformBlog/message:4084674/message:4096609","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarDropdownToggle-1743151752845","value":{"ariaLabelClosed":"Press the down arrow to open the menu"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/QueryHandler-1743151752845","value":{"title":"Query Handler"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCoverImage-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCoverImage-1743151752845","value":{"coverImageTitle":"Cover Image"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeTitle-1743151752845","value":{"nodeTitle":"{nodeTitle, select, community {Community} other {{nodeTitle}}} "},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTimeToRead-1743151752845","value":{"minReadText":"{min} MIN READ"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageSubject-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageSubject-1743151752845","value":{"noSubject":"(no subject)"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserLink-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserLink-1743151752845","value":{"authorName":"View Profile: {author}","anonymous":"Anonymous"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserRank-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserRank-1743151752845","value":{"rankName":"{rankName}","userRank":"Author rank {rankName}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTime-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTime-1743151752845","value":{"postTime":"Published: {time}","lastPublishTime":"Last Update: {time}","conversation.lastPostingActivityTime":"Last posting activity time: {time}","conversation.lastPostTime":"Last post time: {time}","moderationData.rejectTime":"Rejected time: {time}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBody-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBody-1743151752845","value":{"showMessageBody":"Show More","mentionsErrorTitle":"{mentionsType, select, board {Board} user {User} message {Message} other {}} No Longer Available","mentionsErrorMessage":"The {mentionsType} you are trying to view has been removed from the community.","videoProcessing":"Video is being processed. Please try again in a few minutes.","bannerTitle":"Video provider requires cookies to play the video. Accept to continue or {url} it directly on the provider's site.","buttonTitle":"Accept","urlText":"watch"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCustomFields-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCustomFields-1743151752845","value":{"CustomField.default.label":"Value of {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageRevision-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageRevision-1743151752845","value":{"lastUpdatedDatePublished":"{publishCount, plural, one{Published} other{Updated}} {date}","lastUpdatedDateDraft":"Created {date}","version":"Version {major}.{minor}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyButton-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyButton-1743151752845","value":{"repliesCount":"{count}","title":"Reply","title@board:BLOG@message:root":"Comment","title@board:TKB@message:root":"Comment","title@board:IDEA@message:root":"Comment","title@board:OCCASION@message:root":"Comment"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageAuthorBio-1743151752845","value":{"sendMessage":"Send Message","actionMessage":"Follow this blog board to get notified when there's new activity","coAuthor":"CO-PUBLISHER","contributor":"CONTRIBUTOR","userProfile":"View Profile","iconlink":"Go to {name} {type}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserAvatar-1743151752845","value":{"altText":"{login}'s avatar","altTextGeneric":"User's avatar"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/ranks/UserRankLabel-1743151752845","value":{"altTitle":"Icon for {rankName} rank"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserRegistrationDate-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserRegistrationDate-1743151752845","value":{"noPrefix":"{date}","withPrefix":"Joined {date}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeAvatar-1743151752845","value":{"altTitle":"Node avatar for {nodeTitle}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeDescription-1743151752845","value":{"description":"{description}"},"localOverride":false},"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-components/tags/TagView/TagViewChip-1743151752845","value":{"tagLabelName":"Tag name {tagName}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1743151752845":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeIcon-1743151752845","value":{"contentType":"Content Type {style, select, FORUM {Forum} BLOG {Blog} TKB {Knowledge Base} IDEA {Ideas} OCCASION {Events} other {}} icon"},"localOverride":false}}}},"page":"/blogs/BlogMessagePage/BlogMessagePage","query":{"boardId":"aiplatformblog","messageSubject":"raft-a-new-way-to-teach-llms-to-be-better-at-rag","messageId":"4084674"},"buildId":"HEhyUrv5OXNBIbfCLaOrw","runtimeConfig":{"buildInformationVisible":false,"logLevelApp":"info","logLevelMetrics":"info","openTelemetryClientEnabled":false,"openTelemetryConfigName":"o365","openTelemetryServiceVersion":"25.1.0","openTelemetryUniverse":"prod","openTelemetryCollector":"http://localhost:4318","openTelemetryRouteChangeAllowedTime":"5000","apolloDevToolsEnabled":false,"inboxMuteWipFeatureEnabled":false},"isFallback":false,"isExperimentalCompile":false,"dynamicIds":["./components/community/Navbar/NavbarWidget.tsx","./components/community/Breadcrumb/BreadcrumbWidget.tsx","./components/customComponent/CustomComponent/CustomComponent.tsx","./components/blogs/BlogArticleWidget/BlogArticleWidget.tsx","./components/external/components/ExternalComponent.tsx","./components/messages/MessageView/MessageViewStandard/MessageViewStandard.tsx","./components/messages/ThreadedReplyList/ThreadedReplyList.tsx","../shared/client/components/common/List/UnstyledList/UnstyledList.tsx","./components/messages/MessageView/MessageView.tsx","../shared/client/components/common/List/UnwrappedList/UnwrappedList.tsx","./components/tags/TagView/TagView.tsx","./components/tags/TagView/TagViewChip/TagViewChip.tsx"],"appGip":true,"scriptLoader":[{"id":"analytics","src":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/pagescripts/1730819800000/analytics.js?page.id=BlogMessagePage&entity.id=board%3Aaiplatformblog&entity.id=message%3A4084674","strategy":"afterInteractive"}]}