Forum Discussion

Ahmad-KAISPE's avatar
Ahmad-KAISPE
Copper Contributor
Feb 07, 2020

Issue: Deploying a Model using Azure Machine Learning Service

Hi All,
I created a classifier model using Azure Machine Learning service, after successfully registering a model i built the correct environment for container instance providing scoring  file, environment file and configuration file  Unfortunately  when I am deploying my solution it's giving me the error, however here is my deployment service logs to get more details:

**service Logs**

 

 2020-02-07T06:21:10,612616835+00:00 - rsyslog/run
    2020-02-07T06:21:10,616528746+00:00 - iot-server/run
    2020-02-07T06:21:10,617958751+00:00 - gunicorn/run
    2020-02-07T06:21:10,627065178+00:00 - nginx/run
    EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting...
    2020-02-07T06:21:11,108893523+00:00 - iot-server/finish 1 0
    2020-02-07T06:21:11,116794547+00:00 - Exit code 1 is normal. Not restarting iot-server.
    Starting gunicorn 19.9.0
    Listening at: http://127.0.0.1:31311 (12)
    Using worker: sync
    worker timeout is set to 300
    Booting worker with pid: 45
    Initializing logger
    Starting up app insights client
    Starting up request id generator
    Starting up app insight hooks
    Invoking user's init function
    2020-02-07 06:21:15,494 | azureml.core.run | DEBUG | Could not load run context RunEnvironmentException:
     Message: Could not load a submitted run, if outside of an execution context, use experiment.start_logging to initialize an azureml.core.Run.
     InnerException None
     ErrorResponse
    {
        "error": {
            "message": "Could not load a submitted run, if outside of an execution context, use experiment.start_logging to initialize an azureml.core.Run."
        }
    }, switching offline: False
    2020-02-07 06:21:15,495 | azureml.core.run | DEBUG | Could not load the run context and allow_offline set to False
    2020-02-07 06:21:15,495 | azureml.core.model | DEBUG | Checking root for demo_Model.pkl because candidate dir azureml-models had 1 nodes: azureml-models/demomodel/8/demo_Model.pkl
    User's init function failed
    Encountered Exception Traceback (most recent call last):
      File "/var/azureml-server/aml_blueprint.py", line 163, in register
        main.init()
      File "/var/azureml-app/main.py", line 88, in init
        driver_module.init()
      File "score.py", line 13, in init
        model_path = Model.get_model_path('demo_Model.pkl')
      File "/opt/miniconda/lib/python3.6/site-packages/azureml/core/model.py", line 697, in get_model_path
        return Model._get_model_path_local(model_name, version)
      File "/opt/miniconda/lib/python3.6/site-packages/azureml/core/model.py", line 718, in _get_model_path_local
        return Model._get_model_path_local_from_root(model_name)
      File "/opt/miniconda/lib/python3.6/site-packages/azureml/core/model.py", line 761, in _get_model_path_local_from_root
        "set logging level to DEBUG.".format(candidate_model_path))
    azureml.exceptions._azureml_exception.ModelNotFoundException: ModelNotFoundException:
     Message: Model not found in cache or in root at ./demo_Model.pkl. For more info,set logging level to DEBUG.
     InnerException None
     ErrorResponse
    {
        "error": {
            "message": "Model not found in cache or in root at ./demo_Model.pkl. For more info,set logging level to DEBUG."
        }
    }
   
    /opt/miniconda/lib/python3.6/site-packages/sklearn/externals/joblib/__init__.py:15: FutureWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.
      warnings.warn(msg, category=FutureWarning)
    Worker exiting (pid: 45)
    Shutting down: Master
    Reason: Worker failed to boot.
    2020-02-07T06:21:15,663509630+00:00 - gunicorn/finish 3 0
    2020-02-07T06:21:15,664398433+00:00 - Exit code 3 is not normal. Killing image.
 
**Error**
    Running..............................................................................................................................................................................................................................................
   
   
    TimedOut
   
    ERROR - Service deployment polling reached non-successful terminal state, current service state: Unhealthy
    More information can be found using '.get_logs()'
    Error:
    {
      "code": "DeploymentTimedOut",
      "statusCode": 504,
      "message": "The deployment operation polling has TimedOut. The service creation is taking longer than our normal time. We are still trying to achieve the desired state for the web service. Please check the webservice state for the current webservice health. From SDK you can run print(service.state) to know the current state of the webservice."
    }
   
    ERROR - Service deployment polling reached non-successful terminal state, current service state: Unhealthy
    More information can be found using '.get_logs()'
    Error:
    {
      "code": "DeploymentTimedOut",
      "statusCode": 504,
      "message": "The deployment operation polling has TimedOut. The service creation is taking longer than our normal time. We are still trying to achieve the desired state for the web service. Please check the webservice state for the current webservice health. From SDK you can run print(service.state) to know the current state of the webservice."
    }
   
    ---------------------------------------------------------------------------
    WebserviceException                       Traceback (most recent call last)
    ~/anaconda3_501/lib/python3.6/site-packages/azureml/core/webservice/webservice.py in wait_for_deployment(self, show_output)
        530                                           'Error:\n'
    --> 531                                           '{}'.format(self.state, logs_response, error_response), logger=module_logger)
        532             print('{} service creation operation finished, operation "{}"'.format(self._webservice_type,
   
    WebserviceException: WebserviceException:
     Message: Service deployment polling reached non-successful terminal state, current service state: Unhealthy
    More information can be found using '.get_logs()'
    Error:
    {
      "code": "DeploymentTimedOut",
      "statusCode": 504,
      "message": "The deployment operation polling has TimedOut. The service creation is taking longer than our normal time. We are still trying to achieve the desired state for the web service. Please check the webservice state for the current webservice health. From SDK you can run print(service.state) to know the current state of the webservice."
    }
     InnerException None
     ErrorResponse
    {
        "error": {
            "message": "Service deployment polling reached non-successful terminal state, current service state: Unhealthy\nMore information can be found using '.get_logs()'\nError:\n{\n  \"code\": \"DeploymentTimedOut\",\n  \"statusCode\": 504,\n  \"message\": \"The deployment operation polling has TimedOut. The service creation is taking longer than our normal time. We are still trying to achieve the desired state for the web service. Please check the webservice state for the current webservice health. From SDK you can run print(service.state) to know the current state of the webservice.\"\n}"
        }
    }
   
    During handling of the above exception, another exception occurred:
   
    WebserviceException                       Traceback (most recent call last)
    <timed exec> in <module>
   
    ~/anaconda3_501/lib/python3.6/site-packages/azureml/core/webservice/webservice.py in wait_for_deployment(self, show_output)
        538                                           'Current state is {}'.format(self.state), logger=module_logger)
        539             else:
    --> 540                 raise WebserviceException(e.message, logger=module_logger)
        541
        542     def _wait_for_operation_to_complete(self, show_output):
   
    WebserviceException: WebserviceException:
     Message: Service deployment polling reached non-successful terminal state, current service state: Unhealthy
    More information can be found using '.get_logs()'
    Error:
    {
      "code": "DeploymentTimedOut",
      "statusCode": 504,
      "message": "The deployment operation polling has TimedOut. The service creation is taking longer than our normal time. We are still trying to achieve the desired state for the web service. Please check the webservice state for the current webservice health. From SDK you can run print(service.state) to know the current state of the webservice."
    }
     InnerException None
     ErrorResponse
    {
        "error": {
            "message": "Service deployment polling reached non-successful terminal state, current service state: Unhealthy\nMore information can be found using '.get_logs()'\nError:\n{\n  \"code\": \"DeploymentTimedOut\",\n  \"statusCode\": 504,\n  \"message\": \"The deployment operation polling has TimedOut. The service creation is taking longer than our normal time. We are still trying to achieve the desired state for the web service. Please check the webservice state for the current webservice health. From SDK you can run print(service.state) to know the current state of the webservice.\"\n}"
        }
    }
That's how my webservice code look like:
    %%time
    from azureml.core.webservice import Webservice
    from azureml.core.model import Model
    from azureml.core.model import InferenceConfig
    from azureml.core.environment import Environment
   
    myenv = Environment.from_conda_specification(name="myenv", file_path="myenv.yml")
    inference_config = InferenceConfig(entry_script="score.py", environment=myenv)
   
    service = Model.deploy(workspace=ws,
                           name='myimage',
                           models=[model],
                           inference_config=inference_config,
                           deployment_config=aciconfig)
   
    service.wait_for_deployment(show_output=True)
 
can anyone tell me what it actually means? How can i solve this?
Thanks
Ahmad
No RepliesBe the first to reply

Resources