Getting the best possible performance out of an application always presents challenges. This fact is especially true when developing machine learning (ML) and artificial intelligence (AI) applications. Over the years, Intel has worked closely with the ecosystem to optimize a broad range of frameworks and libraries for better performance.
This brief discusses the performance benefits derived from incorporating Intel-optimized ML libraries into Databricks Runtime for Machine Learning on 2nd Generation Intel® Xeon® Platinum processors. The paper focuses on two of the most popular frameworks used in ML and deep learning (DL): scikit-learn and TensorFlow.
Intel-optimized ML libraries
The Intel oneAPI AI Analytics Toolkit gives data scientists, AI developers, and researchers familiar Python tools and frameworks to accelerate end-to-end data science and analytics pipelines on Intel architecture. The components are built using oneAPI libraries for low-level compute optimizations. This toolkit improves performance from preprocessing through ML, and it provides interoperability for efficient model development. Two popular ML and DL frameworks are scikit-learn and TensorFlow.
Scikit-learn
Scikit-learn is a popular open source ML library for the Python programming language. It features various classification, regression, and clustering algorithms, including support for:
Vector machines
Random forests
Gradient boosting
k-means
DBSCAN
This ML library is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.
The Intel Extension for Scikit-learn, available through the Intel oneAPI AI Analytics Toolkit, can help boost ML performance and give data scientists more time to focus on their models. Intel has invested in optimizing the performance of Python itself with the Intel Distribution for Python, and it has optimized key data science libraries used with scikit-learn, such as XGBoost, NumPy, and SciPy. For more information on using these extensions, read the following article: https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4.
TensorFlow
TensorFlow is another popular open source framework for developing end-to-end ML and DL applications. It has a comprehensive, flexible ecosystem of tools and libraries that lets researchers easily build and deploy applications.
Databricks is a unified data-analytics platform for data engineering, ML, and collaborative data science. It offers comprehensive environments for developing data-intensive applications. Databricks Runtime for Machine Learning is an integrated end-to-end environment that incorporates:
Managed services for experiment tracking
Model training
Feature development and management
Feature and model serving.
It includes the most popular ML/DL libraries, such as TensorFlow, PyTorch, Keras, and XGBoost, and it also includes libraries required for distributed training, such as Horovod. For more information, visit the Databricks web page at https://docs.databricks.com/runtime/mlruntime.html.
Databricks has been integrated with Microsoft Azure. This integration brings great convenience to managing production infrastructure and running production workloads. Though cloud services aren’t free, there are opportunities to reduce the cost of ownership by using optimized libraries. This article uses Databricks on Azure to demonstrate the solution and the performance results achieved in Intel testing.
Intel-optimized ML libraries on Azure Databricks
Databricks Runtime for Machine Learning includes the stock versions of scikit-learn and TensorFlow. To boost performance, however, Intel engineers replaced these versions with Intel-optimized versions and tested the results. Databricks provides initialization scripts to facilitate customization at https://docs.databricks.com/clusters/init-scripts.html.
These scripts run during the startup of each cluster node. Intel also developed two initialization scripts to incorporate the Intel-optimized versions of scikit-learn and TensorFlow. The right script for your needs depends on whether you want the statically patched version or not:
init_intel_optimized_ml.sh installs statically patched scikit-learn and TensorFlow in the runtime environment.
init_intel_optimized_ml_ex.sh installs the Intel Extension for Scikit-learn and TensorFlow in the runtime environment.
The following instructions describe how to create a cluster using either script. First, copy the initialization script to Databricks File System (DBFS) by completing the following steps:
Download either init_intel_optimized_ml.sh or init_intel_optimized_ml_ex.sh to a local folder.
In the left sidebar, click the Data icon.
Click the DBFS button, and then click Upload at the top. If the DBFS button isn’t shown, follow the guidance provided in “Manage the DBFS file browser” to enable it.
In the Upload Data to DBFS dialog, select a target directory (for example, FileStore).
Browse to the local file that you downloaded to the local folder, and then upload it in the Files box.
Next, launch the Databricks cluster using the uploaded initialization script:
On the Cluster Configuration page, click the Advanced Options toggle.
At the bottom-right, click the Init Scripts tab.
In the Destination drop-down menu, select the DBFS destination type.
Specify the path to the previously uploaded initialization script (that is, dbfs:/FileStore/init_intel_optimized_ml.sh or dbfs:/FileStore/init_intel_optimized_ml_ex.sh).
The Intel engineers compared scikit-learn and TensorFlow performance for both training and prediction between two Databricks clusters. The baseline cluster was created using default libraries without the initialization script. The other cluster was created using Intel-optimized ML libraries through specifying the initialization script discussed previously.
Intel compared training and prediction performance for the libraries by creating one single-node Databricks cluster with the stock library and another using the Intel-optimized version. Both clusters used the Standard_F16s_v2 Azure instance type.
Table 1. Comparing the training and prediction performance of stock libraries and Intel-optimized libraries (all times in seconds)
Algorithm
Input configuration
Training time (seconds)
Prediction time (seconds)
Stock scikit-learn (baseline)
Intel Extension for Scikit-learn
Stock scikit-learn (baseline)
Intel Extension for Scikit-learn
kmeans
config1
17.91
17.87
3.76
0.39
ridge_regression
config1
1.47
0.10
0.07
0.06
linear_regression
config1
5.03
0.10
0.07
0.06
logistic_regression
config3
74.82
6.63
0.62
0.08
svm
config2
173.81
10.61
49.90
0.46
The Intel-optimized version of scikit-learn greatly improved training and prediction performance for each algorithm. For some algorithms, like svm and brute_knn, the Intel-optimized version of the scikit-learn library achieved an order of magnitude leap in performance. See Figures 1 and 2 for the training and prediction performance results, respectively.
Figure 1. Training performance of the Intel-optimized scikit-learn library over the stock version
Figure 2. Prediction performance of the Intel-optimized scikit-learn library over the stock version
TensorFlow training and prediction performance
Bidirectional Encoder Representations from Transformers, or BERT (https://github.com/google-research/bert), is a new method of pre-training language representations. This method obtains state-of-the-art results on a wide range of natural language processing (NLP) tasks. Model Zoo (https://github.com/IntelAI/models) contains links to pretrained models, sample scripts, and step-by-step tutorials for many popular open-source ML models optimized to run on Intel Xeon Scalable processors.
The Intel engineers used a single-node Databricks cluster with Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instance types for the TensorFlow performance evaluation. For each instance type, the Intel engineers compared the inference and training performance between the stock TensorFlow and Intel-optimized TensorFlow libraries.
The testing found that the latter delivers 1.92x, 2.12x, and 2.24x inference performance on Databricks Runtime for Machine Learning with Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instances, respectively (see Figure 3). For training, the Intel-optimized TensorFlow library delivers 1.93x, 1.76x, and 1.84x training performance on Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instances, respectively (see Figure 4).
Figure 3. Inference speedup of the Intel-optimized TensorFlow library over the stock version; performance varies by use, configurations, and other factors[i]
Figure 4. Training speedup for the Intel-optimized TensorFlow library over the stock version; performance varies by use, configurations, and other factors[i]
Concluding remarks
The Intel-optimized versions of the scikit-learn and TensorFlow libraries deliver significant improvements in training and inference performance on Intel XPUs. Intel has demonstrated that organizations can improve performance and reduce costs by replacing the stock scikit-learn and TensorFlow libraries included in Databricks Runtime for Machine Learning with the Intel-optimized versions.
When Databricks adds support for Databricks Container Services (https://docs.databricks.com/clusters/custom-containers.html) to the Databricks Runtime for Machine Learning, Intel will explore incorporating these optimized libraries through Docker images. This approach could make it easier to integrate with your continuous integration/continuous deployment (CI/CD) pipelines as part of your MLOps environment.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.
Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
[i] Based on Intel testing as of September 23, 2021. Baseline: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F32s_V2, 32 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 64 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0. New: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F64s_V2, 64 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 128 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0. New: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F72s_V2, 72 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 144 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0.
"}},"componentScriptGroups({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/community/NavbarDropdownToggle\"]})":[{"__ref":"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/common/QueryHandler\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCoverImage\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCoverImage-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeTitle\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTimeToRead\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageSubject\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageSubject-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserLink\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserLink-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserRank\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserRank-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTime\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTime-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageBody\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageBody-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCustomFields\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCustomFields-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageRevision\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageRevision-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageReplyButton\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageReplyButton-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageAuthorBio\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/ranks/UserRankLabel\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserRegistrationDate\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserRegistrationDate-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeDescription\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1745505309826"}],"message({\"id\":\"message:3769117\"})":{"__ref":"BlogReplyMessage:message:3769117"},"message({\"id\":\"message:3546868\"})":{"__ref":"BlogReplyMessage:message:3546868"},"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"components/tags/TagView/TagViewChip\"]})":[{"__ref":"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1745505309826"}],"cachedText({\"lastModified\":\"1745505309826\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeIcon\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1745505309826"}]},"CachedAsset:pages-1745484442433":{"__typename":"CachedAsset","id":"pages-1745484442433","value":[{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"BlogViewAllPostsPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId/all-posts/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"CasePortalPage","type":"CASE_PORTAL","urlPath":"/caseportal","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"CreateGroupHubPage","type":"GROUP_HUB","urlPath":"/groups/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"CaseViewPage","type":"CASE_DETAILS","urlPath":"/case/:caseId/:caseNumber","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"InboxPage","type":"COMMUNITY","urlPath":"/inbox","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"HelpFAQPage","type":"COMMUNITY","urlPath":"/help","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"IdeaMessagePage","type":"IDEA_POST","urlPath":"/idea/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"IdeaViewAllIdeasPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/all-ideas/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"LoginPage","type":"USER","urlPath":"/signin","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"BlogPostPage","type":"BLOG","urlPath":"/category/:categoryId/blogs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"UserBlogPermissions.Page","type":"COMMUNITY","urlPath":"/c/user-blog-permissions/page","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ThemeEditorPage","type":"COMMUNITY","urlPath":"/designer/themes","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"TkbViewAllArticlesPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId/all-articles/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllEvents","type":"CUSTOM","urlPath":"/Events","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"OccasionEditPage","type":"EVENT","urlPath":"/event/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"OAuthAuthorizationAllowPage","type":"USER","urlPath":"/auth/authorize/allow","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"PageEditorPage","type":"COMMUNITY","urlPath":"/designer/pages","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"PostPage","type":"COMMUNITY","urlPath":"/category/:categoryId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ForumBoardPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"TkbBoardPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"EventPostPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"UserBadgesPage","type":"COMMUNITY","urlPath":"/users/:login/:userId/badges","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"GroupHubMembershipAction","type":"GROUP_HUB","urlPath":"/membership/join/:nodeId/:membershipType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"MaintenancePage","type":"COMMUNITY","urlPath":"/maintenance","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"IdeaReplyPage","type":"IDEA_REPLY","urlPath":"/idea/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"UserSettingsPage","type":"USER","urlPath":"/mysettings/:userSettingsTab","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"GroupHubsPage","type":"GROUP_HUB","urlPath":"/groups","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ForumPostPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"OccasionRsvpActionPage","type":"OCCASION","urlPath":"/event/:boardId/:messageSubject/:messageId/rsvp/:responseType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"VerifyUserEmailPage","type":"USER","urlPath":"/verifyemail/:userId/:verifyEmailToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"AllOccasionsPage","type":"OCCASION","urlPath":"/category/:categoryId/events/:boardId/all-events/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"EventBoardPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"TkbReplyPage","type":"TKB_REPLY","urlPath":"/kb/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"IdeaBoardPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"CommunityGuideLinesPage","type":"COMMUNITY","urlPath":"/communityguidelines","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"CaseCreatePage","type":"SALESFORCE_CASE_CREATION","urlPath":"/caseportal/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"TkbEditPage","type":"TKB","urlPath":"/kb/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ForgotPasswordPage","type":"USER","urlPath":"/forgotpassword","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"IdeaEditPage","type":"IDEA","urlPath":"/idea/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"TagPage","type":"COMMUNITY","urlPath":"/tag/:tagName","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"BlogBoardPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"OccasionMessagePage","type":"OCCASION_TOPIC","urlPath":"/event/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ManageContentPage","type":"COMMUNITY","urlPath":"/managecontent","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ClosedMembershipNodeNonMembersPage","type":"GROUP_HUB","urlPath":"/closedgroup/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"CommunityPage","type":"COMMUNITY","urlPath":"/","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ForumMessagePage","type":"FORUM_TOPIC","urlPath":"/discussions/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"IdeaPostPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"CommunityHub.Page","type":"CUSTOM","urlPath":"/Directory","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"BlogMessagePage","type":"BLOG_ARTICLE","urlPath":"/blog/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"RegistrationPage","type":"USER","urlPath":"/register","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"EditGroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ForumEditPage","type":"FORUM","urlPath":"/discussions/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ResetPasswordPage","type":"USER","urlPath":"/resetpassword/:userId/:resetPasswordToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllBlogs.Page","type":"CUSTOM","urlPath":"/blogs","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"TkbMessagePage","type":"TKB_ARTICLE","urlPath":"/kb/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"BlogEditPage","type":"BLOG","urlPath":"/blog/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ManageUsersPage","type":"USER","urlPath":"/users/manage/:tab?/:manageUsersTab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ForumReplyPage","type":"FORUM_REPLY","urlPath":"/discussions/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"PrivacyPolicyPage","type":"COMMUNITY","urlPath":"/privacypolicy","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"NotificationPage","type":"COMMUNITY","urlPath":"/notifications","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"UserPage","type":"USER","urlPath":"/users/:login/:userId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"OccasionReplyPage","type":"OCCASION_REPLY","urlPath":"/event/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ManageMembersPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/manage/:tab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"SearchResultsPage","type":"COMMUNITY","urlPath":"/search","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"BlogReplyPage","type":"BLOG_REPLY","urlPath":"/blog/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"GroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"TermsOfServicePage","type":"COMMUNITY","urlPath":"/termsofservice","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"CategoryPage","type":"CATEGORY","urlPath":"/category/:categoryId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"ForumViewAllTopicsPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/all-topics/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"TkbPostPage","type":"TKB","urlPath":"/category/:categoryId/kbs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1745484442433,"localOverride":null,"page":{"id":"GroupHubPostPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"}],"localOverride":false},"CachedAsset:text:en_US-components/context/AppContext/AppContextProvider-0":{"__typename":"CachedAsset","id":"text:en_US-components/context/AppContext/AppContextProvider-0","value":{"noCommunity":"Cannot find community","noUser":"Cannot find current user","noNode":"Cannot find node with id {nodeId}","noMessage":"Cannot find message with id {messageId}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-0":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-0","value":{"title":"Loading..."},"localOverride":false},"User:user:-1":{"__typename":"User","id":"user:-1","uid":-1,"login":"Deleted","email":"","avatar":null,"rank":null,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":"ANONYMOUS","registrationTime":null,"confirmEmailStatus":false,"registrationAccessLevel":"VIEW","ssoRegistrationFields":[]},"ssoId":null,"profileSettings":{"__typename":"ProfileSettings","dateDisplayStyle":{"__typename":"InheritableStringSettingWithPossibleValues","key":"layout.friendly_dates_enabled","value":"false","localValue":"true","possibleValues":["true","false"]},"dateDisplayFormat":{"__typename":"InheritableStringSetting","key":"layout.format_pattern_date","value":"MMM dd yyyy","localValue":"MM-dd-yyyy"},"language":{"__typename":"InheritableStringSettingWithPossibleValues","key":"profile.language","value":"en-US","localValue":"en","possibleValues":["en-US"]}},"deleted":false},"Theme:customTheme1":{"__typename":"Theme","id":"customTheme1"},"Category:category:Azure":{"__typename":"Category","id":"category:Azure","entityType":"CATEGORY","displayId":"Azure","nodeType":"category","depth":3,"title":"Azure","shortTitle":"Azure","parent":{"__ref":"Category:category:products-services"},"categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:top":{"__typename":"Category","id":"category:top","displayId":"top","nodeType":"category","depth":0,"title":"Top","entityType":"CATEGORY","shortTitle":"Top"},"Category:category:communities":{"__typename":"Category","id":"category:communities","displayId":"communities","nodeType":"category","depth":1,"parent":{"__ref":"Category:category:top"},"title":"Communities","entityType":"CATEGORY","shortTitle":"Communities"},"Category:category:products-services":{"__typename":"Category","id":"category:products-services","displayId":"products-services","nodeType":"category","depth":2,"parent":{"__ref":"Category:category:communities"},"title":"Products","entityType":"CATEGORY","shortTitle":"Products"},"Blog:board:AzureDevCommunityBlog":{"__typename":"Blog","id":"board:AzureDevCommunityBlog","entityType":"BLOG","displayId":"AzureDevCommunityBlog","nodeType":"board","depth":4,"conversationStyle":"BLOG","title":"Microsoft Developer Community Blog","description":"","avatar":null,"profileSettings":{"__typename":"ProfileSettings","language":null},"parent":{"__ref":"Category:category:Azure"},"ancestors":{"__typename":"CoreNodeConnection","edges":[{"__typename":"CoreNodeEdge","node":{"__ref":"Community:community:gxcuf89792"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:communities"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:products-services"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:Azure"}}]},"userContext":{"__typename":"NodeUserContext","canAddAttachments":false,"canUpdateNode":false,"canPostMessages":false,"isSubscribed":false},"boardPolicies":{"__typename":"BoardPolicies","canPublishArticleOnCreate":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","args":[]}}},"shortTitle":"Microsoft Developer Community Blog","repliesProperties":{"__typename":"RepliesProperties","sortOrder":"REVERSE_PUBLISH_TIME","repliesFormat":"threaded"},"eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureDevCommunityBlog/","tagProperties":{"__typename":"TagNodeProperties","tagsEnabled":{"__typename":"PolicyResult","failureReason":null}},"requireTags":false,"tagType":"PRESET_ONLY"},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc","height":512,"width":512,"mimeType":"image/png"},"Rank:rank:4":{"__typename":"Rank","id":"rank:4","position":6,"name":"Microsoft","color":"333333","icon":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}"},"rankStyle":"OUTLINE"},"User:user:207010":{"__typename":"User","id":"user:207010","uid":207010,"login":"MarioInchiosa","deleted":false,"avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-6.svg?time=0"},"rank":{"__ref":"Rank:rank:4"},"email":"","messagesCount":2,"biography":null,"topicsCount":2,"kudosReceivedCount":3,"kudosGivenCount":14,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2018-09-24T10:18:00.346-07:00","confirmEmailStatus":null},"followersCount":null,"solutionsCount":0},"BlogTopicMessage:message:3524273":{"__typename":"BlogTopicMessage","uid":3524273,"subject":"Accelerating Azure Databricks Runtime for Machine Learning","id":"message:3524273","revisionNum":6,"repliesCount":2,"author":{"__ref":"User:user:207010"},"depth":0,"hasGivenKudo":false,"board":{"__ref":"Blog:board:AzureDevCommunityBlog"},"conversation":{"__ref":"Conversation:conversation:3524273"},"messagePolicies":{"__typename":"MessagePolicies","canPublishArticleOnEdit":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","args":[]}},"canModerateSpamMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","args":[]}}},"contentWorkflow":{"__typename":"ContentWorkflow","state":"PUBLISH","scheduledPublishTime":null,"scheduledTimezone":null,"userContext":{"__typename":"MessageWorkflowContext","canSubmitForReview":null,"canEdit":false,"canRecall":null,"canSubmitForPublication":null,"canReturnToAuthor":null,"canPublish":null,"canReturnToReview":null,"canSchedule":false},"shortScheduledTimezone":null},"readOnly":false,"editFrozen":false,"moderationData":{"__ref":"ModerationData:moderation_data:3524273"},"teaser":"
Data Scientists love working in the Azure Databricks environment when developing their machine learning and artificial intelligence models. By simply installing Intel-optimized versions of scikit-learn and TensorFlow as described in this blog post, they can see potentially large performance gains that will save them time and money.
","body":"
Intel Authors: Haifeng Chen and Lakshman Chari
\n
\n
Getting the best possible performance out of an application always presents challenges. This fact is especially true when developing machine learning (ML) and artificial intelligence (AI) applications. Over the years, Intel has worked closely with the ecosystem to optimize a broad range of frameworks and libraries for better performance.
\n
This brief discusses the performance benefits derived from incorporating Intel-optimized ML libraries into Databricks Runtime for Machine Learning on 2nd Generation Intel® Xeon® Platinum processors. The paper focuses on two of the most popular frameworks used in ML and deep learning (DL): scikit-learn and TensorFlow.
\n
\n
Intel-optimized ML libraries
\n
The Intel oneAPI AI Analytics Toolkit gives data scientists, AI developers, and researchers familiar Python tools and frameworks to accelerate end-to-end data science and analytics pipelines on Intel architecture. The components are built using oneAPI libraries for low-level compute optimizations. This toolkit improves performance from preprocessing through ML, and it provides interoperability for efficient model development. Two popular ML and DL frameworks are scikit-learn and TensorFlow.
\n
\n
Scikit-learn
\n
Scikit-learn is a popular open source ML library for the Python programming language. It features various classification, regression, and clustering algorithms, including support for:
\n
\n
Vector machines
\n
Random forests
\n
Gradient boosting
\n
k-means
\n
DBSCAN
\n
\n
This ML library is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.
\n
The Intel Extension for Scikit-learn, available through the Intel oneAPI AI Analytics Toolkit, can help boost ML performance and give data scientists more time to focus on their models. Intel has invested in optimizing the performance of Python itself with the Intel Distribution for Python, and it has optimized key data science libraries used with scikit-learn, such as XGBoost, NumPy, and SciPy. For more information on using these extensions, read the following article: https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4.
\n
\n
TensorFlow
\n
TensorFlow is another popular open source framework for developing end-to-end ML and DL applications. It has a comprehensive, flexible ecosystem of tools and libraries that lets researchers easily build and deploy applications.
Databricks is a unified data-analytics platform for data engineering, ML, and collaborative data science. It offers comprehensive environments for developing data-intensive applications. Databricks Runtime for Machine Learning is an integrated end-to-end environment that incorporates:
\n
\n
Managed services for experiment tracking
\n
Model training
\n
Feature development and management
\n
Feature and model serving.
\n
\n
It includes the most popular ML/DL libraries, such as TensorFlow, PyTorch, Keras, and XGBoost, and it also includes libraries required for distributed training, such as Horovod. For more information, visit the Databricks web page at https://docs.databricks.com/runtime/mlruntime.html.
\n
Databricks has been integrated with Microsoft Azure. This integration brings great convenience to managing production infrastructure and running production workloads. Though cloud services aren’t free, there are opportunities to reduce the cost of ownership by using optimized libraries. This article uses Databricks on Azure to demonstrate the solution and the performance results achieved in Intel testing.
\n
\n
Intel-optimized ML libraries on Azure Databricks
\n
Databricks Runtime for Machine Learning includes the stock versions of scikit-learn and TensorFlow. To boost performance, however, Intel engineers replaced these versions with Intel-optimized versions and tested the results. Databricks provides initialization scripts to facilitate customization at https://docs.databricks.com/clusters/init-scripts.html.
\n
These scripts run during the startup of each cluster node. Intel also developed two initialization scripts to incorporate the Intel-optimized versions of scikit-learn and TensorFlow. The right script for your needs depends on whether you want the statically patched version or not:
\n
\n
init_intel_optimized_ml.sh installs statically patched scikit-learn and TensorFlow in the runtime environment.
\n
init_intel_optimized_ml_ex.sh installs the Intel Extension for Scikit-learn and TensorFlow in the runtime environment.
\n
\n
The following instructions describe how to create a cluster using either script. First, copy the initialization script to Databricks File System (DBFS) by completing the following steps:
\n\n
Download either init_intel_optimized_ml.sh or init_intel_optimized_ml_ex.sh to a local folder.
\n
In the left sidebar, click the Data icon.
\n
Click the DBFS button, and then click Upload at the top. If the DBFS button isn’t shown, follow the guidance provided in “Manage the DBFS file browser” to enable it.
\n
In the Upload Data to DBFS dialog, select a target directory (for example, FileStore).
\n
Browse to the local file that you downloaded to the local folder, and then upload it in the Files box.
\n\n
\n
\n
Next, launch the Databricks cluster using the uploaded initialization script:
\n\n
On the Cluster Configuration page, click the Advanced Options toggle.
\n
At the bottom-right, click the Init Scripts tab.
\n
In the Destination drop-down menu, select the DBFS destination type.
\n
Specify the path to the previously uploaded initialization script (that is, dbfs:/FileStore/init_intel_optimized_ml.sh or dbfs:/FileStore/init_intel_optimized_ml_ex.sh).
The Intel engineers compared scikit-learn and TensorFlow performance for both training and prediction between two Databricks clusters. The baseline cluster was created using default libraries without the initialization script. The other cluster was created using Intel-optimized ML libraries through specifying the initialization script discussed previously.
Intel compared training and prediction performance for the libraries by creating one single-node Databricks cluster with the stock library and another using the Intel-optimized version. Both clusters used the Standard_F16s_v2 Azure instance type.
Table 1. Comparing the training and prediction performance of stock libraries and Intel-optimized libraries (all times in seconds)
\n
\n\n
\n
\n
Algorithm
\n
\n
\n
Input configuration
\n
\n
\n
Training time (seconds)
\n
\n
\n
Prediction time (seconds)
\n
\n
\n
\n
\n
Stock scikit-learn (baseline)
\n
\n
\n
Intel Extension for Scikit-learn
\n
\n
\n
Stock scikit-learn (baseline)
\n
\n
\n
Intel Extension for Scikit-learn
\n
\n
\n
\n
\n
kmeans
\n
\n
\n
config1
\n
\n
\n
17.91
\n
\n
\n
17.87
\n
\n
\n
3.76
\n
\n
\n
0.39
\n
\n
\n
\n
\n
ridge_regression
\n
\n
\n
config1
\n
\n
\n
1.47
\n
\n
\n
0.10
\n
\n
\n
0.07
\n
\n
\n
0.06
\n
\n
\n
\n
\n
linear_regression
\n
\n
\n
config1
\n
\n
\n
5.03
\n
\n
\n
0.10
\n
\n
\n
0.07
\n
\n
\n
0.06
\n
\n
\n
\n
\n
logistic_regression
\n
\n
\n
config3
\n
\n
\n
74.82
\n
\n
\n
6.63
\n
\n
\n
0.62
\n
\n
\n
0.08
\n
\n
\n
\n
\n
svm
\n
\n
\n
config2
\n
\n
\n
173.81
\n
\n
\n
10.61
\n
\n
\n
49.90
\n
\n
\n
0.46
\n
\n
\n\n
\n
\n
The Intel-optimized version of scikit-learn greatly improved training and prediction performance for each algorithm. For some algorithms, like svm and brute_knn, the Intel-optimized version of the scikit-learn library achieved an order of magnitude leap in performance. See Figures 1 and 2 for the training and prediction performance results, respectively.
\n
\n
\n
Figure 1. Training performance of the Intel-optimized scikit-learn library over the stock version
\n
\n
\n
Figure 2. Prediction performance of the Intel-optimized scikit-learn library over the stock version
\n
\n
TensorFlow training and prediction performance
\n
Bidirectional Encoder Representations from Transformers, or BERT (https://github.com/google-research/bert), is a new method of pre-training language representations. This method obtains state-of-the-art results on a wide range of natural language processing (NLP) tasks. Model Zoo (https://github.com/IntelAI/models) contains links to pretrained models, sample scripts, and step-by-step tutorials for many popular open-source ML models optimized to run on Intel Xeon Scalable processors.
The Intel engineers used a single-node Databricks cluster with Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instance types for the TensorFlow performance evaluation. For each instance type, the Intel engineers compared the inference and training performance between the stock TensorFlow and Intel-optimized TensorFlow libraries.
\n
The testing found that the latter delivers 1.92x, 2.12x, and 2.24x inference performance on Databricks Runtime for Machine Learning with Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instances, respectively (see Figure 3). For training, the Intel-optimized TensorFlow library delivers 1.93x, 1.76x, and 1.84x training performance on Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instances, respectively (see Figure 4).
\n
\n
\n
Figure 3. Inference speedup of the Intel-optimized TensorFlow library over the stock version; performance varies by use, configurations, and other factors[i]
\n
\n
\n
Figure 4. Training speedup for the Intel-optimized TensorFlow library over the stock version; performance varies by use, configurations, and other factors[i]
\n
\n
Concluding remarks
\n
The Intel-optimized versions of the scikit-learn and TensorFlow libraries deliver significant improvements in training and inference performance on Intel XPUs. Intel has demonstrated that organizations can improve performance and reduce costs by replacing the stock scikit-learn and TensorFlow libraries included in Databricks Runtime for Machine Learning with the Intel-optimized versions.
\n
When Databricks adds support for Databricks Container Services (https://docs.databricks.com/clusters/custom-containers.html) to the Databricks Runtime for Machine Learning, Intel will explore incorporating these optimized libraries through Docker images. This approach could make it easier to integrate with your continuous integration/continuous deployment (CI/CD) pipelines as part of your MLOps environment.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.
\n
Your costs and results may vary.
\n
Intel technologies may require enabled hardware, software or service activation.
\n
\n
\n
[i] Based on Intel testing as of September 23, 2021. Baseline: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F32s_V2, 32 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 64 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0. New: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F64s_V2, 64 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 128 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0. New: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F72s_V2, 72 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 144 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0.
","body@stringLength":"23500","rawBody":"
Intel Authors: Haifeng Chen and Lakshman Chari
\n
\n
Getting the best possible performance out of an application always presents challenges. This fact is especially true when developing machine learning (ML) and artificial intelligence (AI) applications. Over the years, Intel has worked closely with the ecosystem to optimize a broad range of frameworks and libraries for better performance.
\n
This brief discusses the performance benefits derived from incorporating Intel-optimized ML libraries into Databricks Runtime for Machine Learning on 2nd Generation Intel® Xeon® Platinum processors. The paper focuses on two of the most popular frameworks used in ML and deep learning (DL): scikit-learn and TensorFlow.
\n
\n
Intel-optimized ML libraries
\n
The Intel oneAPI AI Analytics Toolkit gives data scientists, AI developers, and researchers familiar Python tools and frameworks to accelerate end-to-end data science and analytics pipelines on Intel architecture. The components are built using oneAPI libraries for low-level compute optimizations. This toolkit improves performance from preprocessing through ML, and it provides interoperability for efficient model development. Two popular ML and DL frameworks are scikit-learn and TensorFlow.
\n
\n
Scikit-learn
\n
Scikit-learn is a popular open source ML library for the Python programming language. It features various classification, regression, and clustering algorithms, including support for:
\n
\n
Vector machines
\n
Random forests
\n
Gradient boosting
\n
k-means
\n
DBSCAN
\n
\n
This ML library is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.
\n
The Intel Extension for Scikit-learn, available through the Intel oneAPI AI Analytics Toolkit, can help boost ML performance and give data scientists more time to focus on their models. Intel has invested in optimizing the performance of Python itself with the Intel Distribution for Python, and it has optimized key data science libraries used with scikit-learn, such as XGBoost, NumPy, and SciPy. For more information on using these extensions, read the following article: https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4.
\n
\n
TensorFlow
\n
TensorFlow is another popular open source framework for developing end-to-end ML and DL applications. It has a comprehensive, flexible ecosystem of tools and libraries that lets researchers easily build and deploy applications.
Databricks is a unified data-analytics platform for data engineering, ML, and collaborative data science. It offers comprehensive environments for developing data-intensive applications. Databricks Runtime for Machine Learning is an integrated end-to-end environment that incorporates:
\n
\n
Managed services for experiment tracking
\n
Model training
\n
Feature development and management
\n
Feature and model serving.
\n
\n
It includes the most popular ML/DL libraries, such as TensorFlow, PyTorch, Keras, and XGBoost, and it also includes libraries required for distributed training, such as Horovod. For more information, visit the Databricks web page at https://docs.databricks.com/runtime/mlruntime.html.
\n
Databricks has been integrated with Microsoft Azure. This integration brings great convenience to managing production infrastructure and running production workloads. Though cloud services aren’t free, there are opportunities to reduce the cost of ownership by using optimized libraries. This article uses Databricks on Azure to demonstrate the solution and the performance results achieved in Intel testing.
\n
\n
Intel-optimized ML libraries on Azure Databricks
\n
Databricks Runtime for Machine Learning includes the stock versions of scikit-learn and TensorFlow. To boost performance, however, Intel engineers replaced these versions with Intel-optimized versions and tested the results. Databricks provides initialization scripts to facilitate customization at https://docs.databricks.com/clusters/init-scripts.html.
\n
These scripts run during the startup of each cluster node. Intel also developed two initialization scripts to incorporate the Intel-optimized versions of scikit-learn and TensorFlow. The right script for your needs depends on whether you want the statically patched version or not:
\n
\n
init_intel_optimized_ml.sh installs statically patched scikit-learn and TensorFlow in the runtime environment.
\n
init_intel_optimized_ml_ex.sh installs the Intel Extension for Scikit-learn and TensorFlow in the runtime environment.
\n
\n
The following instructions describe how to create a cluster using either script. First, copy the initialization script to Databricks File System (DBFS) by completing the following steps:
\n\n
Download either init_intel_optimized_ml.sh or init_intel_optimized_ml_ex.sh to a local folder.
\n
In the left sidebar, click the Data icon.
\n
Click the DBFS button, and then click Upload at the top. If the DBFS button isn’t shown, follow the guidance provided in “Manage the DBFS file browser” to enable it.
\n
In the Upload Data to DBFS dialog, select a target directory (for example, FileStore).
\n
Browse to the local file that you downloaded to the local folder, and then upload it in the Files box.
\n\n
\n
\n
Next, launch the Databricks cluster using the uploaded initialization script:
\n\n
On the Cluster Configuration page, click the Advanced Options toggle.
\n
At the bottom-right, click the Init Scripts tab.
\n
In the Destination drop-down menu, select the DBFS destination type.
\n
Specify the path to the previously uploaded initialization script (that is, dbfs:/FileStore/init_intel_optimized_ml.sh or dbfs:/FileStore/init_intel_optimized_ml_ex.sh).
The Intel engineers compared scikit-learn and TensorFlow performance for both training and prediction between two Databricks clusters. The baseline cluster was created using default libraries without the initialization script. The other cluster was created using Intel-optimized ML libraries through specifying the initialization script discussed previously.
Intel compared training and prediction performance for the libraries by creating one single-node Databricks cluster with the stock library and another using the Intel-optimized version. Both clusters used the Standard_F16s_v2 Azure instance type.
Table 1. Comparing the training and prediction performance of stock libraries and Intel-optimized libraries (all times in seconds)
\n
\n\n
\n
\n
Algorithm
\n
\n
\n
Input configuration
\n
\n
\n
Training time (seconds)
\n
\n
\n
Prediction time (seconds)
\n
\n
\n
\n
\n
Stock scikit-learn (baseline)
\n
\n
\n
Intel Extension for Scikit-learn
\n
\n
\n
Stock scikit-learn (baseline)
\n
\n
\n
Intel Extension for Scikit-learn
\n
\n
\n
\n
\n
kmeans
\n
\n
\n
config1
\n
\n
\n
17.91
\n
\n
\n
17.87
\n
\n
\n
3.76
\n
\n
\n
0.39
\n
\n
\n
\n
\n
ridge_regression
\n
\n
\n
config1
\n
\n
\n
1.47
\n
\n
\n
0.10
\n
\n
\n
0.07
\n
\n
\n
0.06
\n
\n
\n
\n
\n
linear_regression
\n
\n
\n
config1
\n
\n
\n
5.03
\n
\n
\n
0.10
\n
\n
\n
0.07
\n
\n
\n
0.06
\n
\n
\n
\n
\n
logistic_regression
\n
\n
\n
config3
\n
\n
\n
74.82
\n
\n
\n
6.63
\n
\n
\n
0.62
\n
\n
\n
0.08
\n
\n
\n
\n
\n
svm
\n
\n
\n
config2
\n
\n
\n
173.81
\n
\n
\n
10.61
\n
\n
\n
49.90
\n
\n
\n
0.46
\n
\n
\n\n
\n
\n
The Intel-optimized version of scikit-learn greatly improved training and prediction performance for each algorithm. For some algorithms, like svm and brute_knn, the Intel-optimized version of the scikit-learn library achieved an order of magnitude leap in performance. See Figures 1 and 2 for the training and prediction performance results, respectively.
\n
\n
\n
Figure 1. Training performance of the Intel-optimized scikit-learn library over the stock version
\n
\n
\n
Figure 2. Prediction performance of the Intel-optimized scikit-learn library over the stock version
\n
\n
TensorFlow training and prediction performance
\n
Bidirectional Encoder Representations from Transformers, or BERT (https://github.com/google-research/bert), is a new method of pre-training language representations. This method obtains state-of-the-art results on a wide range of natural language processing (NLP) tasks. Model Zoo (https://github.com/IntelAI/models) contains links to pretrained models, sample scripts, and step-by-step tutorials for many popular open-source ML models optimized to run on Intel Xeon Scalable processors.
The Intel engineers used a single-node Databricks cluster with Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instance types for the TensorFlow performance evaluation. For each instance type, the Intel engineers compared the inference and training performance between the stock TensorFlow and Intel-optimized TensorFlow libraries.
\n
The testing found that the latter delivers 1.92x, 2.12x, and 2.24x inference performance on Databricks Runtime for Machine Learning with Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instances, respectively (see Figure 3). For training, the Intel-optimized TensorFlow library delivers 1.93x, 1.76x, and 1.84x training performance on Standard_F32s_v2, Standard_F64s_v2, and Standard_F72s_v2 instances, respectively (see Figure 4).
\n
\n
\n
Figure 3. Inference speedup of the Intel-optimized TensorFlow library over the stock version; performance varies by use, configurations, and other factors[i]
\n
\n
\n
Figure 4. Training speedup for the Intel-optimized TensorFlow library over the stock version; performance varies by use, configurations, and other factors[i]
\n
\n
Concluding remarks
\n
The Intel-optimized versions of the scikit-learn and TensorFlow libraries deliver significant improvements in training and inference performance on Intel XPUs. Intel has demonstrated that organizations can improve performance and reduce costs by replacing the stock scikit-learn and TensorFlow libraries included in Databricks Runtime for Machine Learning with the Intel-optimized versions.
\n
When Databricks adds support for Databricks Container Services (https://docs.databricks.com/clusters/custom-containers.html) to the Databricks Runtime for Machine Learning, Intel will explore incorporating these optimized libraries through Docker images. This approach could make it easier to integrate with your continuous integration/continuous deployment (CI/CD) pipelines as part of your MLOps environment.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.
\n
Your costs and results may vary.
\n
Intel technologies may require enabled hardware, software or service activation.
\n
\n
\n
[i] Based on Intel testing as of September 23, 2021. Baseline: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F32s_V2, 32 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 64 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0. New: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F64s_V2, 64 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 128 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0. New: Processing times speedup: Intel-optimized TensorFlow/BERT-large: Azure-US-West, Standard_F72s_V2, 72 vCPUs, 1 instance, Intel Xeon Platinum 8168 processor at 2.70 GHz/Intel Xeon Platinum 8272CL processor at 2.60 GHz, 144 GB memory capacity/instance, direct-attached storage, Ubuntu 18.04.5 LTS, 5.4.0-1051-azure, Databricks Runtime 9.0 for ML, stock TensorFlow 2.3.1 vs. Intel TensorFlow 2.3.0.
Data Scientists love working in the Azure Databricks environment when developing their machine learning and artificial intelligence models. By simply installing Intel-optimized versions of scikit-learn and TensorFlow as described in this blog post, they can see potentially large performance gains that will save them time and money.
","introduction":"","coverImage":null,"coverImageProperties":{"__typename":"CoverImageProperties","style":"STANDARD","titlePosition":"BOTTOM","altText":""},"currentRevision":{"__ref":"Revision:revision:3524273_6"},"latestVersion":{"__typename":"FriendlyVersion","major":"1","minor":"0"},"metrics":{"__typename":"MessageMetrics","views":8464},"visibilityScope":"PUBLIC","canonicalUrl":null,"seoTitle":"Accelerating Azure Databricks Runtime for Machine Learning","seoDescription":"fast Databricks, optimize Databricks, speed up Databricks, Databricks, Databricks Runtime for Machine Learning, Databricks Runtime 9.0 for Machine Learning, Intel-optimized machine learning libraries, Intel machine learning libraries, Intel Distribution for Python, Intel Extension for Scikit-learn, Intel oneAPI, Intel oneAPI Deep Neural Network Library, Intel oneAPI DNNL, TensorFlow, Scikit-learn, experiment tracking, model training, model serving, machine learning, Bidirectional Encoder Representations from Transformers, Intel XPU, Apache Spark, BERT, XGBoost, NumPy, SciPy, Data Science","placeholder":false,"originalMessageForPlaceholder":null,"contributors":{"__typename":"UserConnection","edges":[]},"nonCoAuthorContributors":{"__typename":"UserConnection","edges":[]},"coAuthors":{"__typename":"UserConnection","edges":[]},"blogMessagePolicies":{"__typename":"BlogMessagePolicies","canDoAuthoringActionsOnBlog":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","key":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","args":[]}}},"archivalData":null,"replies":{"__typename":"MessageConnection","edges":[{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsMzc2OTExNywzNzY5MTE3","node":{"__ref":"BlogReplyMessage:message:3769117"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsMzc2OTExNywzNTQ2ODY4","node":{"__ref":"BlogReplyMessage:message:3546868"}}],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"customFields":[],"revisions({\"constraints\":{\"isPublished\":{\"eq\":true}},\"first\":1})":{"__typename":"RevisionConnection","totalCount":6}},"Conversation:conversation:3524273":{"__typename":"Conversation","id":"conversation:3524273","solved":false,"topic":{"__ref":"BlogTopicMessage:message:3524273"},"lastPostingActivityTime":"2023-03-15T14:11:26.204-07:00","lastPostTime":"2023-03-15T14:11:26.204-07:00","unreadReplyCount":2,"isSubscribed":false},"ModerationData:moderation_data:3524273":{"__typename":"ModerationData","id":"moderation_data:3524273","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4MWkwQzBEMUI5RjE0REZDRjIw?revision=6\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4MWkwQzBEMUI5RjE0REZDRjIw?revision=6","title":"MarioInchiosa_0-1655598395699.png","associationType":"BODY","width":876,"height":655,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4Nmk0QkFCNEFFQjQ1M0I0NTcw?revision=6\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4Nmk0QkFCNEFFQjQ1M0I0NTcw?revision=6","title":"MarioInchiosa_1-1655598483750.png","associationType":"BODY","width":695,"height":739,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4N2lGMTYwODU2RDY0NEJGRkJF?revision=6\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4N2lGMTYwODU2RDY0NEJGRkJF?revision=6","title":"MarioInchiosa_2-1655598572262.png","associationType":"BODY","width":892,"height":435,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4OGk0MTc3MDYxQjBBNzMwNUY2?revision=6\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4OGk0MTc3MDYxQjBBNzMwNUY2?revision=6","title":"MarioInchiosa_3-1655598605939.png","associationType":"BODY","width":906,"height":422,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4OWk2N0VFQkZCNTc0Q0Q1RkE3?revision=6\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY4OWk2N0VFQkZCNTc0Q0Q1RkE3?revision=6","title":"MarioInchiosa_4-1655598673533.png","associationType":"BODY","width":702,"height":463,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY5MGk2NDBCRUIxNTJDOTI4NkNC?revision=6\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS0zNTI0MjczLTM4MTY5MGk2NDBCRUIxNTJDOTI4NkNC?revision=6","title":"MarioInchiosa_5-1655598716808.png","associationType":"BODY","width":744,"height":464,"altText":null},"Revision:revision:3524273_6":{"__typename":"Revision","id":"revision:3524273_6","lastEditTime":"2022-06-18T18:02:48.759-07:00"},"CachedAsset:theme:customTheme1-1745484441894":{"__typename":"CachedAsset","id":"theme:customTheme1-1745484441894","value":{"id":"customTheme1","animation":{"fast":"150ms","normal":"250ms","slow":"500ms","slowest":"750ms","function":"cubic-bezier(0.07, 0.91, 0.51, 1)","__typename":"AnimationThemeSettings"},"avatar":{"borderRadius":"50%","collections":["default"],"__typename":"AvatarThemeSettings"},"basics":{"browserIcon":{"imageAssetName":"favicon-1730836283320.png","imageLastModified":"1730836286415","__typename":"ThemeAsset"},"customerLogo":{"imageAssetName":"favicon-1730836271365.png","imageLastModified":"1730836274203","__typename":"ThemeAsset"},"maximumWidthOfPageContent":"1300px","oneColumnNarrowWidth":"800px","gridGutterWidthMd":"30px","gridGutterWidthXs":"10px","pageWidthStyle":"WIDTH_OF_BROWSER","__typename":"BasicsThemeSettings"},"buttons":{"borderRadiusSm":"3px","borderRadius":"3px","borderRadiusLg":"5px","paddingY":"5px","paddingYLg":"7px","paddingYHero":"var(--lia-bs-btn-padding-y-lg)","paddingX":"12px","paddingXLg":"16px","paddingXHero":"60px","fontStyle":"NORMAL","fontWeight":"700","textTransform":"NONE","disabledOpacity":0.5,"primaryTextColor":"var(--lia-bs-white)","primaryTextHoverColor":"var(--lia-bs-white)","primaryTextActiveColor":"var(--lia-bs-white)","primaryBgColor":"var(--lia-bs-primary)","primaryBgHoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.85))","primaryBgActiveColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.7))","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","primaryBorderActive":"1px solid transparent","primaryBorderFocus":"1px solid var(--lia-bs-white)","primaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","secondaryTextColor":"var(--lia-bs-gray-900)","secondaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","secondaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","secondaryBgColor":"var(--lia-bs-gray-200)","secondaryBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","secondaryBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","secondaryBorder":"1px solid transparent","secondaryBorderHover":"1px solid transparent","secondaryBorderActive":"1px solid transparent","secondaryBorderFocus":"1px solid transparent","secondaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","tertiaryTextColor":"var(--lia-bs-gray-900)","tertiaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","tertiaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","tertiaryBgColor":"transparent","tertiaryBgHoverColor":"transparent","tertiaryBgActiveColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.04)","tertiaryBorder":"1px solid transparent","tertiaryBorderHover":"1px solid hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","tertiaryBorderActive":"1px solid transparent","tertiaryBorderFocus":"1px solid transparent","tertiaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","destructiveTextColor":"var(--lia-bs-danger)","destructiveTextHoverColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.95))","destructiveTextActiveColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.9))","destructiveBgColor":"var(--lia-bs-gray-200)","destructiveBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","destructiveBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","destructiveBorder":"1px solid transparent","destructiveBorderHover":"1px solid transparent","destructiveBorderActive":"1px solid transparent","destructiveBorderFocus":"1px solid transparent","destructiveBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","__typename":"ButtonsThemeSettings"},"border":{"color":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","mainContent":"NONE","sideContent":"LIGHT","radiusSm":"3px","radius":"5px","radiusLg":"9px","radius50":"100vw","__typename":"BorderThemeSettings"},"boxShadow":{"xs":"0 0 0 1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.08), 0 3px 0 -1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.16)","sm":"0 2px 4px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.12)","md":"0 5px 15px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","lg":"0 10px 30px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","__typename":"BoxShadowThemeSettings"},"cards":{"bgColor":"var(--lia-panel-bg-color)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":"var(--lia-box-shadow-xs)","__typename":"CardsThemeSettings"},"chip":{"maxWidth":"300px","height":"30px","__typename":"ChipThemeSettings"},"coreTypes":{"defaultMessageLinkColor":"var(--lia-bs-link-color)","defaultMessageLinkDecoration":"none","defaultMessageLinkFontStyle":"NORMAL","defaultMessageLinkFontWeight":"400","defaultMessageFontStyle":"NORMAL","defaultMessageFontWeight":"400","forumColor":"#4099E2","forumFontFamily":"var(--lia-bs-font-family-base)","forumFontWeight":"var(--lia-default-message-font-weight)","forumLineHeight":"var(--lia-bs-line-height-base)","forumFontStyle":"var(--lia-default-message-font-style)","forumMessageLinkColor":"var(--lia-default-message-link-color)","forumMessageLinkDecoration":"var(--lia-default-message-link-decoration)","forumMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","forumMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","forumSolvedColor":"#148563","blogColor":"#1CBAA0","blogFontFamily":"var(--lia-bs-font-family-base)","blogFontWeight":"var(--lia-default-message-font-weight)","blogLineHeight":"1.75","blogFontStyle":"var(--lia-default-message-font-style)","blogMessageLinkColor":"var(--lia-default-message-link-color)","blogMessageLinkDecoration":"var(--lia-default-message-link-decoration)","blogMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","blogMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","tkbColor":"#4C6B90","tkbFontFamily":"var(--lia-bs-font-family-base)","tkbFontWeight":"var(--lia-default-message-font-weight)","tkbLineHeight":"1.75","tkbFontStyle":"var(--lia-default-message-font-style)","tkbMessageLinkColor":"var(--lia-default-message-link-color)","tkbMessageLinkDecoration":"var(--lia-default-message-link-decoration)","tkbMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","tkbMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaColor":"#4099E2","qandaFontFamily":"var(--lia-bs-font-family-base)","qandaFontWeight":"var(--lia-default-message-font-weight)","qandaLineHeight":"var(--lia-bs-line-height-base)","qandaFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkColor":"var(--lia-default-message-link-color)","qandaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","qandaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaSolvedColor":"#3FA023","ideaColor":"#FF8000","ideaFontFamily":"var(--lia-bs-font-family-base)","ideaFontWeight":"var(--lia-default-message-font-weight)","ideaLineHeight":"var(--lia-bs-line-height-base)","ideaFontStyle":"var(--lia-default-message-font-style)","ideaMessageLinkColor":"var(--lia-default-message-link-color)","ideaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","ideaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","ideaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","contestColor":"#FCC845","contestFontFamily":"var(--lia-bs-font-family-base)","contestFontWeight":"var(--lia-default-message-font-weight)","contestLineHeight":"var(--lia-bs-line-height-base)","contestFontStyle":"var(--lia-default-message-link-font-style)","contestMessageLinkColor":"var(--lia-default-message-link-color)","contestMessageLinkDecoration":"var(--lia-default-message-link-decoration)","contestMessageLinkFontStyle":"ITALIC","contestMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","occasionColor":"#D13A1F","occasionFontFamily":"var(--lia-bs-font-family-base)","occasionFontWeight":"var(--lia-default-message-font-weight)","occasionLineHeight":"var(--lia-bs-line-height-base)","occasionFontStyle":"var(--lia-default-message-font-style)","occasionMessageLinkColor":"var(--lia-default-message-link-color)","occasionMessageLinkDecoration":"var(--lia-default-message-link-decoration)","occasionMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","occasionMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","grouphubColor":"#333333","categoryColor":"#949494","communityColor":"#FFFFFF","productColor":"#949494","__typename":"CoreTypesThemeSettings"},"colors":{"black":"#000000","white":"#FFFFFF","gray100":"#F7F7F7","gray200":"#F7F7F7","gray300":"#E8E8E8","gray400":"#D9D9D9","gray500":"#CCCCCC","gray600":"#717171","gray700":"#707070","gray800":"#545454","gray900":"#333333","dark":"#545454","light":"#F7F7F7","primary":"#0069D4","secondary":"#333333","bodyText":"#1E1E1E","bodyBg":"#FFFFFF","info":"#409AE2","success":"#41C5AE","warning":"#FCC844","danger":"#BC341B","alertSystem":"#FF6600","textMuted":"#707070","highlight":"#FFFCAD","outline":"var(--lia-bs-primary)","custom":["#D3F5A4","#243A5E"],"__typename":"ColorsThemeSettings"},"divider":{"size":"3px","marginLeft":"4px","marginRight":"4px","borderRadius":"50%","bgColor":"var(--lia-bs-gray-600)","bgColorActive":"var(--lia-bs-gray-600)","__typename":"DividerThemeSettings"},"dropdown":{"fontSize":"var(--lia-bs-font-size-sm)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius-sm)","dividerBg":"var(--lia-bs-gray-300)","itemPaddingY":"5px","itemPaddingX":"20px","headerColor":"var(--lia-bs-gray-700)","__typename":"DropdownThemeSettings"},"email":{"link":{"color":"#0069D4","hoverColor":"#0061c2","decoration":"none","hoverDecoration":"underline","__typename":"EmailLinkSettings"},"border":{"color":"#e4e4e4","__typename":"EmailBorderSettings"},"buttons":{"borderRadiusLg":"5px","paddingXLg":"16px","paddingYLg":"7px","fontWeight":"700","primaryTextColor":"#ffffff","primaryTextHoverColor":"#ffffff","primaryBgColor":"#0069D4","primaryBgHoverColor":"#005cb8","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","__typename":"EmailButtonsSettings"},"panel":{"borderRadius":"5px","borderColor":"#e4e4e4","__typename":"EmailPanelSettings"},"__typename":"EmailThemeSettings"},"emoji":{"skinToneDefault":"#ffcd43","skinToneLight":"#fae3c5","skinToneMediumLight":"#e2cfa5","skinToneMedium":"#daa478","skinToneMediumDark":"#a78058","skinToneDark":"#5e4d43","__typename":"EmojiThemeSettings"},"heading":{"color":"var(--lia-bs-body-color)","fontFamily":"Segoe UI","fontStyle":"NORMAL","fontWeight":"400","h1FontSize":"34px","h2FontSize":"32px","h3FontSize":"28px","h4FontSize":"24px","h5FontSize":"20px","h6FontSize":"16px","lineHeight":"1.3","subHeaderFontSize":"11px","subHeaderFontWeight":"500","h1LetterSpacing":"normal","h2LetterSpacing":"normal","h3LetterSpacing":"normal","h4LetterSpacing":"normal","h5LetterSpacing":"normal","h6LetterSpacing":"normal","subHeaderLetterSpacing":"2px","h1FontWeight":"var(--lia-bs-headings-font-weight)","h2FontWeight":"var(--lia-bs-headings-font-weight)","h3FontWeight":"var(--lia-bs-headings-font-weight)","h4FontWeight":"var(--lia-bs-headings-font-weight)","h5FontWeight":"var(--lia-bs-headings-font-weight)","h6FontWeight":"var(--lia-bs-headings-font-weight)","__typename":"HeadingThemeSettings"},"icons":{"size10":"10px","size12":"12px","size14":"14px","size16":"16px","size20":"20px","size24":"24px","size30":"30px","size40":"40px","size50":"50px","size60":"60px","size80":"80px","size120":"120px","size160":"160px","__typename":"IconsThemeSettings"},"imagePreview":{"bgColor":"var(--lia-bs-gray-900)","titleColor":"var(--lia-bs-white)","controlColor":"var(--lia-bs-white)","controlBgColor":"var(--lia-bs-gray-800)","__typename":"ImagePreviewThemeSettings"},"input":{"borderColor":"var(--lia-bs-gray-600)","disabledColor":"var(--lia-bs-gray-600)","focusBorderColor":"var(--lia-bs-primary)","labelMarginBottom":"10px","btnFontSize":"var(--lia-bs-font-size-sm)","focusBoxShadow":"0 0 0 3px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","checkLabelMarginBottom":"2px","checkboxBorderRadius":"3px","borderRadiusSm":"var(--lia-bs-border-radius-sm)","borderRadius":"var(--lia-bs-border-radius)","borderRadiusLg":"var(--lia-bs-border-radius-lg)","formTextMarginTop":"4px","textAreaBorderRadius":"var(--lia-bs-border-radius)","activeFillColor":"var(--lia-bs-primary)","__typename":"InputThemeSettings"},"loading":{"dotDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.2)","dotLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.5)","barDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.06)","barLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.4)","__typename":"LoadingThemeSettings"},"link":{"color":"var(--lia-bs-primary)","hoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) - 10%))","decoration":"none","hoverDecoration":"underline","__typename":"LinkThemeSettings"},"listGroup":{"itemPaddingY":"15px","itemPaddingX":"15px","borderColor":"var(--lia-bs-gray-300)","__typename":"ListGroupThemeSettings"},"modal":{"contentTextColor":"var(--lia-bs-body-color)","contentBg":"var(--lia-bs-white)","backgroundBg":"var(--lia-bs-black)","smSize":"440px","mdSize":"760px","lgSize":"1080px","backdropOpacity":0.3,"contentBoxShadowXs":"var(--lia-bs-box-shadow-sm)","contentBoxShadow":"var(--lia-bs-box-shadow)","headerFontWeight":"700","__typename":"ModalThemeSettings"},"navbar":{"position":"FIXED","background":{"attachment":null,"clip":null,"color":"var(--lia-bs-white)","imageAssetName":"","imageLastModified":"0","origin":null,"position":"CENTER_CENTER","repeat":"NO_REPEAT","size":"COVER","__typename":"BackgroundProps"},"backgroundOpacity":0.8,"paddingTop":"15px","paddingBottom":"15px","borderBottom":"1px solid var(--lia-bs-border-color)","boxShadow":"var(--lia-bs-box-shadow-sm)","brandMarginRight":"30px","brandMarginRightSm":"10px","brandLogoHeight":"30px","linkGap":"10px","linkJustifyContent":"flex-start","linkPaddingY":"5px","linkPaddingX":"10px","linkDropdownPaddingY":"9px","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkColor":"var(--lia-bs-body-color)","linkHoverColor":"var(--lia-bs-primary)","linkFontSize":"var(--lia-bs-font-size-sm)","linkFontStyle":"NORMAL","linkFontWeight":"400","linkTextTransform":"NONE","linkLetterSpacing":"normal","linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkBgColor":"transparent","linkBgHoverColor":"transparent","linkBorder":"none","linkBorderHover":"none","linkBoxShadow":"none","linkBoxShadowHover":"none","linkTextBorderBottom":"none","linkTextBorderBottomHover":"none","dropdownPaddingTop":"10px","dropdownPaddingBottom":"15px","dropdownPaddingX":"10px","dropdownMenuOffset":"2px","dropdownDividerMarginTop":"10px","dropdownDividerMarginBottom":"10px","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","controllerIconColor":"var(--lia-bs-body-color)","controllerIconHoverColor":"var(--lia-bs-body-color)","controllerTextColor":"var(--lia-nav-controller-icon-color)","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","controllerHighlightColor":"hsla(30, 100%, 50%)","controllerHighlightTextColor":"var(--lia-yiq-light)","controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerColor":"var(--lia-nav-controller-icon-color)","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","hamburgerBgColor":"transparent","hamburgerBgHoverColor":"transparent","hamburgerBorder":"none","hamburgerBorderHover":"none","collapseMenuMarginLeft":"20px","collapseMenuDividerBg":"var(--lia-nav-link-color)","collapseMenuDividerOpacity":0.16,"__typename":"NavbarThemeSettings"},"pager":{"textColor":"var(--lia-bs-link-color)","textFontWeight":"var(--lia-font-weight-md)","textFontSize":"var(--lia-bs-font-size-sm)","__typename":"PagerThemeSettings"},"panel":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-bs-border-radius)","borderColor":"var(--lia-bs-border-color)","boxShadow":"none","__typename":"PanelThemeSettings"},"popover":{"arrowHeight":"8px","arrowWidth":"16px","maxWidth":"300px","minWidth":"100px","headerBg":"var(--lia-bs-white)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius)","boxShadow":"0 0.5rem 1rem hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.15)","__typename":"PopoverThemeSettings"},"prism":{"color":"#000000","bgColor":"#f5f2f0","fontFamily":"var(--font-family-monospace)","fontSize":"var(--lia-bs-font-size-base)","fontWeightBold":"var(--lia-bs-font-weight-bold)","fontStyleItalic":"italic","tabSize":2,"highlightColor":"#b3d4fc","commentColor":"#62707e","punctuationColor":"#6f6f6f","namespaceOpacity":"0.7","propColor":"#990055","selectorColor":"#517a00","operatorColor":"#906736","operatorBgColor":"hsla(0, 0%, 100%, 0.5)","keywordColor":"#0076a9","functionColor":"#d3284b","variableColor":"#c14700","__typename":"PrismThemeSettings"},"rte":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":" var(--lia-panel-box-shadow)","customColor1":"#bfedd2","customColor2":"#fbeeb8","customColor3":"#f8cac6","customColor4":"#eccafa","customColor5":"#c2e0f4","customColor6":"#2dc26b","customColor7":"#f1c40f","customColor8":"#e03e2d","customColor9":"#b96ad9","customColor10":"#3598db","customColor11":"#169179","customColor12":"#e67e23","customColor13":"#ba372a","customColor14":"#843fa1","customColor15":"#236fa1","customColor16":"#ecf0f1","customColor17":"#ced4d9","customColor18":"#95a5a6","customColor19":"#7e8c8d","customColor20":"#34495e","customColor21":"#000000","customColor22":"#ffffff","defaultMessageHeaderMarginTop":"40px","defaultMessageHeaderMarginBottom":"20px","defaultMessageItemMarginTop":"0","defaultMessageItemMarginBottom":"10px","diffAddedColor":"hsla(170, 53%, 51%, 0.4)","diffChangedColor":"hsla(43, 97%, 63%, 0.4)","diffNoneColor":"hsla(0, 0%, 80%, 0.4)","diffRemovedColor":"hsla(9, 74%, 47%, 0.4)","specialMessageHeaderMarginTop":"40px","specialMessageHeaderMarginBottom":"20px","specialMessageItemMarginTop":"0","specialMessageItemMarginBottom":"10px","__typename":"RteThemeSettings"},"tags":{"bgColor":"var(--lia-bs-gray-200)","bgHoverColor":"var(--lia-bs-gray-400)","borderRadius":"var(--lia-bs-border-radius-sm)","color":"var(--lia-bs-body-color)","hoverColor":"var(--lia-bs-body-color)","fontWeight":"var(--lia-font-weight-md)","fontSize":"var(--lia-font-size-xxs)","textTransform":"UPPERCASE","letterSpacing":"0.5px","__typename":"TagsThemeSettings"},"toasts":{"borderRadius":"var(--lia-bs-border-radius)","paddingX":"12px","__typename":"ToastsThemeSettings"},"typography":{"fontFamilyBase":"Segoe UI","fontStyleBase":"NORMAL","fontWeightBase":"400","fontWeightLight":"300","fontWeightNormal":"400","fontWeightMd":"500","fontWeightBold":"700","letterSpacingSm":"normal","letterSpacingXs":"normal","lineHeightBase":"1.5","fontSizeBase":"16px","fontSizeXxs":"11px","fontSizeXs":"12px","fontSizeSm":"14px","fontSizeLg":"20px","fontSizeXl":"24px","smallFontSize":"14px","customFonts":[{"source":"SERVER","name":"Segoe UI","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"},{"style":"NORMAL","weight":"300","__typename":"FontStyleData"},{"style":"NORMAL","weight":"600","__typename":"FontStyleData"},{"style":"NORMAL","weight":"700","__typename":"FontStyleData"},{"style":"ITALIC","weight":"400","__typename":"FontStyleData"}],"assetNames":["SegoeUI-normal-400.woff2","SegoeUI-normal-300.woff2","SegoeUI-normal-600.woff2","SegoeUI-normal-700.woff2","SegoeUI-italic-400.woff2"],"__typename":"CustomFont"},{"source":"SERVER","name":"MWF Fluent Icons","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"}],"assetNames":["MWFFluentIcons-normal-400.woff2"],"__typename":"CustomFont"}],"__typename":"TypographyThemeSettings"},"unstyledListItem":{"marginBottomSm":"5px","marginBottomMd":"10px","marginBottomLg":"15px","marginBottomXl":"20px","marginBottomXxl":"25px","__typename":"UnstyledListItemThemeSettings"},"yiq":{"light":"#ffffff","dark":"#000000","__typename":"YiqThemeSettings"},"colorLightness":{"primaryDark":0.36,"primaryLight":0.74,"primaryLighter":0.89,"primaryLightest":0.95,"infoDark":0.39,"infoLight":0.72,"infoLighter":0.85,"infoLightest":0.93,"successDark":0.24,"successLight":0.62,"successLighter":0.8,"successLightest":0.91,"warningDark":0.39,"warningLight":0.68,"warningLighter":0.84,"warningLightest":0.93,"dangerDark":0.41,"dangerLight":0.72,"dangerLighter":0.89,"dangerLightest":0.95,"__typename":"ColorLightnessThemeSettings"},"localOverride":false,"__typename":"Theme"},"localOverride":false},"CachedAsset:text:en_US-components/common/EmailVerification-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/common/EmailVerification-1745505309826","value":{"email.verification.title":"Email Verification Required","email.verification.message.update.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. To change your email, visit My Settings.","email.verification.message.resend.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. Resend email."},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-1745505309826","value":{"title":"Loading..."},"localOverride":false},"CachedAsset:quilt:o365.prod:pages/blogs/BlogMessagePage:board:AzureDevCommunityBlog-1745502713091":{"__typename":"CachedAsset","id":"quilt:o365.prod:pages/blogs/BlogMessagePage:board:AzureDevCommunityBlog-1745502713091","value":{"id":"BlogMessagePage","container":{"id":"Common","headerProps":{"backgroundImageProps":null,"backgroundColor":null,"addComponents":null,"removeComponents":["community.widget.bannerWidget"],"componentOrder":null,"__typename":"QuiltContainerSectionProps"},"headerComponentProps":{"community.widget.breadcrumbWidget":{"disableLastCrumbForDesktop":false}},"footerProps":null,"footerComponentProps":null,"items":[{"id":"blog-article","layout":"ONE_COLUMN","bgColor":null,"showTitle":null,"showDescription":null,"textPosition":null,"textColor":null,"sectionEditLevel":"LOCKED","bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"OneColumnQuiltSection","columnMap":{"main":[{"id":"blogs.widget.blogArticleWidget","className":"lia-blog-container","props":null,"__typename":"QuiltComponent"}],"__typename":"OneSectionColumns"}},{"id":"section-1729184836777","layout":"MAIN_SIDE","bgColor":"transparent","showTitle":false,"showDescription":false,"textPosition":"CENTER","textColor":"var(--lia-bs-body-color)","sectionEditLevel":null,"bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"MainSideQuiltSection","columnMap":{"main":[],"side":[],"__typename":"MainSideSectionColumns"}}],"__typename":"QuiltContainer"},"__typename":"Quilt","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-pages/blogs/BlogMessagePage-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-pages/blogs/BlogMessagePage-1745505309826","value":{"title":"{contextMessageSubject} | {communityTitle}","errorMissing":"This blog post cannot be found","name":"Blog Message Page","section.blog-article.title":"Blog Post","archivedMessageTitle":"This Content Has Been Archived","section.section-1729184836777.title":"","section.section-1729184836777.description":"","section.CncIde.title":"Blog Post","section.tifEmD.description":"","section.tifEmD.title":""},"localOverride":false},"CachedAsset:quiltWrapper:o365.prod:Common:1745505310225":{"__typename":"CachedAsset","id":"quiltWrapper:o365.prod:Common:1745505310225","value":{"id":"Common","header":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"community.widget.navbarWidget","props":{"showUserName":true,"showRegisterLink":true,"useIconLanguagePicker":true,"useLabelLanguagePicker":true,"className":"QuiltComponent_lia-component-edit-mode__0nCcm","links":{"sideLinks":[],"mainLinks":[{"children":[],"linkType":"INTERNAL","id":"gxcuf89792","params":{},"routeName":"CommunityPage"},{"children":[],"linkType":"EXTERNAL","id":"external-link","url":"/Directory","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft365","params":{"categoryId":"microsoft365"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows","params":{"categoryId":"Windows"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"Common-microsoft365-copilot-link","params":{"categoryId":"Microsoft365Copilot"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-teams","params":{"categoryId":"MicrosoftTeams"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-securityand-compliance","params":{"categoryId":"microsoft-security"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"azure","params":{"categoryId":"Azure"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"Common-content_management-link","params":{"categoryId":"Content_Management"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"exchange","params":{"categoryId":"Exchange"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows-server","params":{"categoryId":"Windows-Server"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"outlook","params":{"categoryId":"Outlook"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-endpoint-manager","params":{"categoryId":"microsoftintune"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-2","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities","url":"/","target":"BLANK"},{"children":[{"linkType":"INTERNAL","id":"a-i","params":{"categoryId":"AI"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"education-sector","params":{"categoryId":"EducationSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"partner-community","params":{"categoryId":"PartnerCommunity"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"i-t-ops-talk","params":{"categoryId":"ITOpsTalk"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"healthcare-and-life-sciences","params":{"categoryId":"HealthcareAndLifeSciences"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-mechanics","params":{"categoryId":"MicrosoftMechanics"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"public-sector","params":{"categoryId":"PublicSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-m-b","params":{"categoryId":"MicrosoftforNonprofits"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"io-t","params":{"categoryId":"IoT"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"startupsat-microsoft","params":{"categoryId":"StartupsatMicrosoft"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"driving-adoption","params":{"categoryId":"DrivingAdoption"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-1","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities-1","url":"/","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external","url":"/Blogs","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external-1","url":"/Events","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft-learn-1","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-learn-blog","params":{"boardId":"MicrosoftLearnBlog","categoryId":"MicrosoftLearn"},"routeName":"BlogBoardPage"},{"linkType":"EXTERNAL","id":"external-10","url":"https://learningroomdirectory.microsoft.com/","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-3","url":"https://docs.microsoft.com/learn/dynamics365/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-4","url":"https://docs.microsoft.com/learn/m365/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-5","url":"https://docs.microsoft.com/learn/topics/sci/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-6","url":"https://docs.microsoft.com/learn/powerplatform/?wt.mc_id=techcom_header-webpage-powerplatform","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-7","url":"https://docs.microsoft.com/learn/github/?wt.mc_id=techcom_header-webpage-github","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-8","url":"https://docs.microsoft.com/learn/teams/?wt.mc_id=techcom_header-webpage-teams","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-9","url":"https://docs.microsoft.com/learn/dotnet/?wt.mc_id=techcom_header-webpage-dotnet","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-2","url":"https://docs.microsoft.com/learn/azure/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"}],"linkType":"INTERNAL","id":"microsoft-learn","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"children":[],"linkType":"INTERNAL","id":"community-info-center","params":{"categoryId":"Community-Info-Center"},"routeName":"CategoryPage"}]},"style":{"boxShadow":"var(--lia-bs-box-shadow-sm)","controllerHighlightColor":"hsla(30, 100%, 50%)","linkFontWeight":"400","dropdownDividerMarginBottom":"10px","hamburgerBorderHover":"none","linkBoxShadowHover":"none","linkFontSize":"14px","backgroundOpacity":0.8,"controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerBgColor":"transparent","hamburgerColor":"var(--lia-nav-controller-icon-color)","linkTextBorderBottom":"none","brandLogoHeight":"30px","linkBgHoverColor":"transparent","linkLetterSpacing":"normal","collapseMenuDividerOpacity":0.16,"dropdownPaddingBottom":"15px","paddingBottom":"15px","dropdownMenuOffset":"2px","hamburgerBgHoverColor":"transparent","borderBottom":"1px solid var(--lia-bs-border-color)","hamburgerBorder":"none","dropdownPaddingX":"10px","brandMarginRightSm":"10px","linkBoxShadow":"none","collapseMenuDividerBg":"var(--lia-nav-link-color)","linkColor":"var(--lia-bs-body-color)","linkJustifyContent":"flex-start","dropdownPaddingTop":"10px","controllerHighlightTextColor":"var(--lia-yiq-dark)","controllerTextColor":"var(--lia-nav-controller-icon-color)","background":{"imageAssetName":"","color":"var(--lia-bs-white)","size":"COVER","repeat":"NO_REPEAT","position":"CENTER_CENTER","imageLastModified":""},"linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkHoverColor":"var(--lia-bs-body-color)","position":"FIXED","linkBorder":"none","linkTextBorderBottomHover":"2px solid var(--lia-bs-body-color)","brandMarginRight":"30px","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","linkBorderHover":"none","collapseMenuMarginLeft":"20px","linkFontStyle":"NORMAL","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","linkPaddingX":"10px","linkPaddingY":"5px","paddingTop":"15px","linkTextTransform":"NONE","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","linkBgColor":"transparent","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkDropdownPaddingY":"9px","controllerIconColor":"var(--lia-bs-body-color)","dropdownDividerMarginTop":"10px","linkGap":"10px","controllerIconHoverColor":"var(--lia-bs-body-color)"},"showSearchIcon":false,"languagePickerStyle":"iconAndLabel"},"__typename":"QuiltComponent"},{"id":"community.widget.breadcrumbWidget","props":{"backgroundColor":"transparent","linkHighlightColor":"var(--lia-bs-primary)","visualEffects":{"showBottomBorder":true},"linkTextColor":"var(--lia-bs-gray-700)"},"__typename":"QuiltComponent"},{"id":"custom.widget.community_banner","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"usePageWidth":false,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"},{"id":"custom.widget.HeroBanner","props":{"widgetVisibility":"signedInOrAnonymous","usePageWidth":false,"useTitle":true,"cMax_items":3,"useBackground":false,"title":"","lazyLoad":false,"widgetChooser":"custom.widget.HeroBanner"},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"footer":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"custom.widget.MicrosoftFooter","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"__typename":"QuiltWrapper","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/ActionFeedback-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/common/ActionFeedback-1745505309826","value":{"joinedGroupHub.title":"Welcome","joinedGroupHub.message":"You are now a member of this group and are subscribed to updates.","groupHubInviteNotFound.title":"Invitation Not Found","groupHubInviteNotFound.message":"Sorry, we could not find your invitation to the group. The owner may have canceled the invite.","groupHubNotFound.title":"Group Not Found","groupHubNotFound.message":"The grouphub you tried to join does not exist. It may have been deleted.","existingGroupHubMember.title":"Already Joined","existingGroupHubMember.message":"You are already a member of this group.","accountLocked.title":"Account Locked","accountLocked.message":"Your account has been locked due to multiple failed attempts. Try again in {lockoutTime} minutes.","editedGroupHub.title":"Changes Saved","editedGroupHub.message":"Your group has been updated.","leftGroupHub.title":"Goodbye","leftGroupHub.message":"You are no longer a member of this group and will not receive future updates.","deletedGroupHub.title":"Deleted","deletedGroupHub.message":"The group has been deleted.","groupHubCreated.title":"Group Created","groupHubCreated.message":"{groupHubName} is ready to use","accountClosed.title":"Account Closed","accountClosed.message":"The account has been closed and you will now be redirected to the homepage","resetTokenExpired.title":"Reset Password Link has Expired","resetTokenExpired.message":"Try resetting your password again","invalidUrl.title":"Invalid URL","invalidUrl.message":"The URL you're using is not recognized. Verify your URL and try again.","accountClosedForUser.title":"Account Closed","accountClosedForUser.message":"{userName}'s account is closed","inviteTokenInvalid.title":"Invitation Invalid","inviteTokenInvalid.message":"Your invitation to the community has been canceled or expired.","inviteTokenError.title":"Invitation Verification Failed","inviteTokenError.message":"The url you are utilizing is not recognized. Verify your URL and try again","pageNotFound.title":"Access Denied","pageNotFound.message":"You do not have access to this area of the community or it doesn't exist","eventAttending.title":"Responded as Attending","eventAttending.message":"You'll be notified when there's new activity and reminded as the event approaches","eventInterested.title":"Responded as Interested","eventInterested.message":"You'll be notified when there's new activity and reminded as the event approaches","eventNotFound.title":"Event Not Found","eventNotFound.message":"The event you tried to respond to does not exist.","redirectToRelatedPage.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.message":"The content you are trying to access is archived","redirectToRelatedPage.message":"The content you are trying to access is archived","relatedUrl.archivalLink.flyoutMessage":"The content you are trying to access is archived View Archived Content"},"localOverride":false},"CachedAsset:component:custom.widget.community_banner-en-1745484480471":{"__typename":"CachedAsset","id":"component:custom.widget.community_banner-en-1745484480471","value":{"component":{"id":"custom.widget.community_banner","template":{"id":"community_banner","markupLanguage":"HANDLEBARS","style":".community-banner {\n a.top-bar.btn {\n top: 0px;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0px;\n background: #0068b8;\n color: white;\n padding: 10px 0px;\n display: block;\n box-shadow: none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0px !important;\n font-size: 14px;\n }\n}\n","texts":null,"defaults":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.community_banner","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_community_banner_community-banner_1x9u2_1 {\n a.custom_widget_community_banner_top-bar_1x9u2_2.custom_widget_community_banner_btn_1x9u2_2 {\n top: 0;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0;\n background: #0068b8;\n color: white;\n padding: 0.625rem 0;\n display: block;\n box-shadow: none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0 !important;\n font-size: 0.875rem;\n }\n}\n","tokens":{"community-banner":"custom_widget_community_banner_community-banner_1x9u2_1","top-bar":"custom_widget_community_banner_top-bar_1x9u2_2","btn":"custom_widget_community_banner_btn_1x9u2_2"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.HeroBanner-en-1745484480471":{"__typename":"CachedAsset","id":"component:custom.widget.HeroBanner-en-1745484480471","value":{"component":{"id":"custom.widget.HeroBanner","template":{"id":"HeroBanner","markupLanguage":"REACT","style":null,"texts":{"searchPlaceholderText":"Search this community","followActionText":"Follow","unfollowActionText":"Following","searchOnHoverText":"Please enter your search term(s) and then press return key to complete a search.","blogs.sidebar.pagetitle":"Latest Blogs | Microsoft Tech Community","followThisNode":"Follow this node","unfollowThisNode":"Unfollow this node"},"defaults":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.HeroBanner","form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"__typename":"Component","localOverride":false},"globalCss":null,"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"}},"localOverride":false},"CachedAsset:component:custom.widget.MicrosoftFooter-en-1745484480471":{"__typename":"CachedAsset","id":"component:custom.widget.MicrosoftFooter-en-1745484480471","value":{"component":{"id":"custom.widget.MicrosoftFooter","template":{"id":"MicrosoftFooter","markupLanguage":"HANDLEBARS","style":".context-uhf {\n min-width: 280px;\n font-size: 15px;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.c-uhff-link {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.c-uhff {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.c-uhff-nav {\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n .c-heading-4 {\n color: #616161;\n word-break: break-word;\n font-size: 15px;\n line-height: 20px;\n padding: 36px 0 4px;\n font-weight: 600;\n }\n .c-uhff-nav-row {\n .c-uhff-nav-group {\n display: block;\n float: left;\n min-height: 1px;\n vertical-align: text-top;\n padding: 0 12px;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.c-list.f-bare {\n font-size: 11px;\n line-height: 16px;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 8px 0;\n margin: 0;\n }\n }\n }\n }\n}\n.c-uhff-base {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 30px 5% 16px;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.c-uhff-ccpa {\n font-size: 11px;\n line-height: 16px;\n float: left;\n margin: 3px 0;\n }\n a.c-uhff-ccpa:hover {\n text-decoration: underline;\n }\n ul.c-list {\n font-size: 11px;\n line-height: 16px;\n float: right;\n margin: 3px 0;\n color: #616161;\n li {\n padding: 0 24px 4px 0;\n display: inline-block;\n }\n }\n .c-list.f-bare {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 30px 24px 16px;\n }\n}\n\n.social-share {\n position: fixed;\n top: 60%;\n transform: translateY(-50%);\n left: 0;\n z-index: 1000;\n}\n\n.sharing-options {\n list-style: none;\n padding: 0;\n margin: 0;\n display: block;\n flex-direction: column;\n background-color: white;\n width: 43px;\n border-radius: 0px 7px 7px 0px;\n}\n.linkedin-icon {\n border-top-right-radius: 7px;\n}\n.linkedin-icon:hover {\n border-radius: 0;\n}\n.social-share-rss-image {\n border-bottom-right-radius: 7px;\n}\n.social-share-rss-image:hover {\n border-radius: 0;\n}\n\n.social-link-footer {\n position: relative;\n display: block;\n margin: -2px 0;\n transition: all 0.2s ease;\n}\n.social-link-footer:hover .linkedin-icon {\n border-radius: 0;\n}\n.social-link-footer:hover .social-share-rss-image {\n border-radius: 0;\n}\n\n.social-link-footer img {\n width: 40px;\n height: auto;\n transition: filter 0.3s ease;\n}\n\n.social-share-list {\n width: 40px;\n}\n.social-share-rss-image {\n width: 40px;\n}\n\n.share-icon {\n border: 2px solid transparent;\n display: inline-block;\n position: relative;\n}\n\n.share-icon:hover {\n opacity: 1;\n border: 2px solid white;\n box-sizing: border-box;\n}\n\n.share-icon:hover .label {\n opacity: 1;\n visibility: visible;\n border: 2px solid white;\n box-sizing: border-box;\n border-left: none;\n}\n\n.label {\n position: absolute;\n left: 100%;\n white-space: nowrap;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n color: white;\n border-radius: 0 10 0 10px;\n top: 50%;\n transform: translateY(-50%);\n height: 40px;\n border-radius: 0 6px 6px 0;\n display: flex;\n align-items: center;\n justify-content: center;\n padding: 20px 5px 20px 8px;\n margin-left: -1px;\n}\n.linkedin {\n background-color: #0474b4;\n}\n.facebook {\n background-color: #3c5c9c;\n}\n.twitter {\n background-color: white;\n color: black;\n}\n.reddit {\n background-color: #fc4404;\n}\n.mail {\n background-color: #848484;\n}\n.bluesky {\n background-color: white;\n color: black;\n}\n.rss {\n background-color: #ec7b1c;\n}\n#RSS {\n width: 40px;\n height: 40px;\n}\n\n@media (max-width: 991px) {\n .social-share {\n display: none;\n }\n}\n","texts":{"New tab":"What's New","New 1":"Surface Laptop Studio 2","New 2":"Surface Laptop Go 3","New 3":"Surface Pro 9","New 4":"Surface Laptop 5","New 5":"Surface Studio 2+","New 6":"Copilot in Windows","New 7":"Microsoft 365","New 8":"Windows 11 apps","Store tab":"Microsoft Store","Store 1":"Account Profile","Store 2":"Download Center","Store 3":"Microsoft Store Support","Store 4":"Returns","Store 5":"Order tracking","Store 6":"Certified Refurbished","Store 7":"Microsoft Store Promise","Store 8":"Flexible Payments","Education tab":"Education","Edu 1":"Microsoft in education","Edu 2":"Devices for education","Edu 3":"Microsoft Teams for Education","Edu 4":"Microsoft 365 Education","Edu 5":"How to buy for your school","Edu 6":"Educator Training and development","Edu 7":"Deals for students and parents","Edu 8":"Azure for students","Business tab":"Business","Bus 1":"Microsoft Cloud","Bus 2":"Microsoft Security","Bus 3":"Dynamics 365","Bus 4":"Microsoft 365","Bus 5":"Microsoft Power Platform","Bus 6":"Microsoft Teams","Bus 7":"Microsoft Industry","Bus 8":"Small Business","Developer tab":"Developer & IT","Dev 1":"Azure","Dev 2":"Developer Center","Dev 3":"Documentation","Dev 4":"Microsoft Learn","Dev 5":"Microsoft Tech Community","Dev 6":"Azure Marketplace","Dev 7":"AppSource","Dev 8":"Visual Studio","Company tab":"Company","Com 1":"Careers","Com 2":"About Microsoft","Com 3":"Company News","Com 4":"Privacy at Microsoft","Com 5":"Investors","Com 6":"Diversity and inclusion","Com 7":"Accessiblity","Com 8":"Sustainibility"},"defaults":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.MicrosoftFooter","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_MicrosoftFooter_context-uhf_105bp_1 {\n min-width: 17.5rem;\n font-size: 0.9375rem;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-link_105bp_12 {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff_105bp_12 {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.custom_widget_MicrosoftFooter_c-uhff-nav_105bp_35 {\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n .custom_widget_MicrosoftFooter_c-heading-4_105bp_49 {\n color: #616161;\n word-break: break-word;\n font-size: 0.9375rem;\n line-height: 1.25rem;\n padding: 2.25rem 0 0.25rem;\n font-weight: 600;\n }\n .custom_widget_MicrosoftFooter_c-uhff-nav-row_105bp_57 {\n .custom_widget_MicrosoftFooter_c-uhff-nav-group_105bp_58 {\n display: block;\n float: left;\n min-height: 0.0625rem;\n vertical-align: text-top;\n padding: 0 0.75rem;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.custom_widget_MicrosoftFooter_c-list_105bp_78.custom_widget_MicrosoftFooter_f-bare_105bp_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 0.5rem 0;\n margin: 0;\n }\n }\n }\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff-base_105bp_94 {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 1.875rem 5% 1rem;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: left;\n margin: 0.1875rem 0;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107:hover {\n text-decoration: underline;\n }\n ul.custom_widget_MicrosoftFooter_c-list_105bp_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: right;\n margin: 0.1875rem 0;\n color: #616161;\n li {\n padding: 0 1.5rem 0.25rem 0;\n display: inline-block;\n }\n }\n .custom_widget_MicrosoftFooter_c-list_105bp_78.custom_widget_MicrosoftFooter_f-bare_105bp_78 {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 1.875rem 1.5rem 1rem;\n }\n}\n.custom_widget_MicrosoftFooter_social-share_105bp_138 {\n position: fixed;\n top: 60%;\n transform: translateY(-50%);\n left: 0;\n z-index: 1000;\n}\n.custom_widget_MicrosoftFooter_sharing-options_105bp_146 {\n list-style: none;\n padding: 0;\n margin: 0;\n display: block;\n flex-direction: column;\n background-color: white;\n width: 2.6875rem;\n border-radius: 0 0.4375rem 0.4375rem 0;\n}\n.custom_widget_MicrosoftFooter_linkedin-icon_105bp_156 {\n border-top-right-radius: 7px;\n}\n.custom_widget_MicrosoftFooter_linkedin-icon_105bp_156:hover {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n border-bottom-right-radius: 7px;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162:hover {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169 {\n position: relative;\n display: block;\n margin: -0.125rem 0;\n transition: all 0.2s ease;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169:hover .custom_widget_MicrosoftFooter_linkedin-icon_105bp_156 {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169:hover .custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169 img {\n width: 2.5rem;\n height: auto;\n transition: filter 0.3s ease;\n}\n.custom_widget_MicrosoftFooter_social-share-list_105bp_188 {\n width: 2.5rem;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n width: 2.5rem;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195 {\n border: 2px solid transparent;\n display: inline-block;\n position: relative;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195:hover {\n opacity: 1;\n border: 2px solid white;\n box-sizing: border-box;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195:hover .custom_widget_MicrosoftFooter_label_105bp_207 {\n opacity: 1;\n visibility: visible;\n border: 2px solid white;\n box-sizing: border-box;\n border-left: none;\n}\n.custom_widget_MicrosoftFooter_label_105bp_207 {\n position: absolute;\n left: 100%;\n white-space: nowrap;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n color: white;\n border-radius: 0 10 0 0.625rem;\n top: 50%;\n transform: translateY(-50%);\n height: 2.5rem;\n border-radius: 0 0.375rem 0.375rem 0;\n display: flex;\n align-items: center;\n justify-content: center;\n padding: 1.25rem 0.3125rem 1.25rem 0.5rem;\n margin-left: -0.0625rem;\n}\n.custom_widget_MicrosoftFooter_linkedin_105bp_156 {\n background-color: #0474b4;\n}\n.custom_widget_MicrosoftFooter_facebook_105bp_237 {\n background-color: #3c5c9c;\n}\n.custom_widget_MicrosoftFooter_twitter_105bp_240 {\n background-color: white;\n color: black;\n}\n.custom_widget_MicrosoftFooter_reddit_105bp_244 {\n background-color: #fc4404;\n}\n.custom_widget_MicrosoftFooter_mail_105bp_247 {\n background-color: #848484;\n}\n.custom_widget_MicrosoftFooter_bluesky_105bp_250 {\n background-color: white;\n color: black;\n}\n.custom_widget_MicrosoftFooter_rss_105bp_254 {\n background-color: #ec7b1c;\n}\n#custom_widget_MicrosoftFooter_RSS_105bp_1 {\n width: 2.5rem;\n height: 2.5rem;\n}\n@media (max-width: 991px) {\n .custom_widget_MicrosoftFooter_social-share_105bp_138 {\n display: none;\n }\n}\n","tokens":{"context-uhf":"custom_widget_MicrosoftFooter_context-uhf_105bp_1","c-uhff-link":"custom_widget_MicrosoftFooter_c-uhff-link_105bp_12","c-uhff":"custom_widget_MicrosoftFooter_c-uhff_105bp_12","c-uhff-nav":"custom_widget_MicrosoftFooter_c-uhff-nav_105bp_35","c-heading-4":"custom_widget_MicrosoftFooter_c-heading-4_105bp_49","c-uhff-nav-row":"custom_widget_MicrosoftFooter_c-uhff-nav-row_105bp_57","c-uhff-nav-group":"custom_widget_MicrosoftFooter_c-uhff-nav-group_105bp_58","c-list":"custom_widget_MicrosoftFooter_c-list_105bp_78","f-bare":"custom_widget_MicrosoftFooter_f-bare_105bp_78","c-uhff-base":"custom_widget_MicrosoftFooter_c-uhff-base_105bp_94","c-uhff-ccpa":"custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107","social-share":"custom_widget_MicrosoftFooter_social-share_105bp_138","sharing-options":"custom_widget_MicrosoftFooter_sharing-options_105bp_146","linkedin-icon":"custom_widget_MicrosoftFooter_linkedin-icon_105bp_156","social-share-rss-image":"custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162","social-link-footer":"custom_widget_MicrosoftFooter_social-link-footer_105bp_169","social-share-list":"custom_widget_MicrosoftFooter_social-share-list_105bp_188","share-icon":"custom_widget_MicrosoftFooter_share-icon_105bp_195","label":"custom_widget_MicrosoftFooter_label_105bp_207","linkedin":"custom_widget_MicrosoftFooter_linkedin_105bp_156","facebook":"custom_widget_MicrosoftFooter_facebook_105bp_237","twitter":"custom_widget_MicrosoftFooter_twitter_105bp_240","reddit":"custom_widget_MicrosoftFooter_reddit_105bp_244","mail":"custom_widget_MicrosoftFooter_mail_105bp_247","bluesky":"custom_widget_MicrosoftFooter_bluesky_105bp_250","rss":"custom_widget_MicrosoftFooter_rss_105bp_254","RSS":"custom_widget_MicrosoftFooter_RSS_105bp_1"}},"form":null},"localOverride":false},"CachedAsset:text:en_US-components/community/Breadcrumb-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/community/Breadcrumb-1745505309826","value":{"navLabel":"Breadcrumbs","dropdown":"Additional parent page navigation"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBanner-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBanner-1745505309826","value":{"messageMarkedAsSpam":"This post has been marked as spam","messageMarkedAsSpam@board:TKB":"This article has been marked as spam","messageMarkedAsSpam@board:BLOG":"This post has been marked as spam","messageMarkedAsSpam@board:FORUM":"This discussion has been marked as spam","messageMarkedAsSpam@board:OCCASION":"This event has been marked as spam","messageMarkedAsSpam@board:IDEA":"This idea has been marked as spam","manageSpam":"Manage Spam","messageMarkedAsAbuse":"This post has been marked as abuse","messageMarkedAsAbuse@board:TKB":"This article has been marked as abuse","messageMarkedAsAbuse@board:BLOG":"This post has been marked as abuse","messageMarkedAsAbuse@board:FORUM":"This discussion has been marked as abuse","messageMarkedAsAbuse@board:OCCASION":"This event has been marked as abuse","messageMarkedAsAbuse@board:IDEA":"This idea has been marked as abuse","preModCommentAuthorText":"This comment will be published as soon as it is approved","preModCommentModeratorText":"This comment is awaiting moderation","messageMarkedAsOther":"This post has been rejected due to other reasons","messageMarkedAsOther@board:TKB":"This article has been rejected due to other reasons","messageMarkedAsOther@board:BLOG":"This post has been rejected due to other reasons","messageMarkedAsOther@board:FORUM":"This discussion has been rejected due to other reasons","messageMarkedAsOther@board:OCCASION":"This event has been rejected due to other reasons","messageMarkedAsOther@board:IDEA":"This idea has been rejected due to other reasons","messageArchived":"This post was archived on {date}","relatedUrl":"View Related Content","relatedContentText":"Showing related content","archivedContentLink":"View Archived Content"},"localOverride":false},"Category:category:Exchange":{"__typename":"Category","id":"category:Exchange","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Outlook":{"__typename":"Category","id":"category:Outlook","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Community-Info-Center":{"__typename":"Category","id":"category:Community-Info-Center","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:EducationSector":{"__typename":"Category","id":"category:EducationSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:DrivingAdoption":{"__typename":"Category","id":"category:DrivingAdoption","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows-Server":{"__typename":"Category","id":"category:Windows-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftTeams":{"__typename":"Category","id":"category:MicrosoftTeams","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PublicSector":{"__typename":"Category","id":"category:PublicSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft365":{"__typename":"Category","id":"category:microsoft365","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:IoT":{"__typename":"Category","id":"category:IoT","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:HealthcareAndLifeSciences":{"__typename":"Category","id":"category:HealthcareAndLifeSciences","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:ITOpsTalk":{"__typename":"Category","id":"category:ITOpsTalk","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftLearn":{"__typename":"Category","id":"category:MicrosoftLearn","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Blog:board:MicrosoftLearnBlog":{"__typename":"Blog","id":"board:MicrosoftLearnBlog","blogPolicies":{"__typename":"BlogPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}},"boardPolicies":{"__typename":"BoardPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:AI":{"__typename":"Category","id":"category:AI","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftMechanics":{"__typename":"Category","id":"category:MicrosoftMechanics","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftforNonprofits":{"__typename":"Category","id":"category:MicrosoftforNonprofits","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:StartupsatMicrosoft":{"__typename":"Category","id":"category:StartupsatMicrosoft","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PartnerCommunity":{"__typename":"Category","id":"category:PartnerCommunity","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Microsoft365Copilot":{"__typename":"Category","id":"category:Microsoft365Copilot","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows":{"__typename":"Category","id":"category:Windows","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Content_Management":{"__typename":"Category","id":"category:Content_Management","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-security":{"__typename":"Category","id":"category:microsoft-security","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoftintune":{"__typename":"Category","id":"category:microsoftintune","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"QueryVariables:TopicReplyList:message:3524273:6":{"__typename":"QueryVariables","id":"TopicReplyList:message:3524273:6","value":{"id":"message:3524273","first":10,"sorts":{"postTime":{"direction":"DESC"}},"repliesFirst":3,"repliesFirstDepthThree":1,"repliesSorts":{"postTime":{"direction":"DESC"}},"useAvatar":true,"useAuthorLogin":true,"useAuthorRank":true,"useBody":true,"useKudosCount":true,"useTimeToRead":false,"useMedia":false,"useReadOnlyIcon":false,"useRepliesCount":true,"useSearchSnippet":false,"useAcceptedSolutionButton":false,"useSolvedBadge":false,"useAttachments":false,"attachmentsFirst":5,"useTags":true,"useNodeAncestors":false,"useUserHoverCard":false,"useNodeHoverCard":false,"useModerationStatus":true,"usePreviewSubjectModal":false,"useMessageStatus":true}},"ROOT_MUTATION":{"__typename":"Mutation"},"CachedAsset:text:en_US-components/community/Navbar-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/community/Navbar-1745505309826","value":{"community":"Community Home","inbox":"Inbox","manageContent":"Manage Content","tos":"Terms of Service","forgotPassword":"Forgot Password","themeEditor":"Theme Editor","edit":"Edit Navigation Bar","skipContent":"Skip to content","gxcuf89792":"Tech Community","external-1":"Events","s-m-b":"Nonprofit Community","windows-server":"Windows Server","education-sector":"Education Sector","driving-adoption":"Driving Adoption","Common-content_management-link":"Content Management","microsoft-learn":"Microsoft Learn","s-q-l-server":"Content Management","partner-community":"Microsoft Partner Community","microsoft365":"Microsoft 365","external-9":".NET","external-8":"Teams","external-7":"Github","products-services":"Products","external-6":"Power Platform","communities-1":"Topics","external-5":"Microsoft Security","planner":"Outlook","external-4":"Microsoft 365","external-3":"Dynamics 365","azure":"Azure","healthcare-and-life-sciences":"Healthcare and Life Sciences","external-2":"Azure","microsoft-mechanics":"Microsoft Mechanics","microsoft-learn-1":"Community","external-10":"Learning Room Directory","microsoft-learn-blog":"Blog","windows":"Windows","i-t-ops-talk":"ITOps Talk","external-link-1":"View All","microsoft-securityand-compliance":"Microsoft Security","public-sector":"Public Sector","community-info-center":"Lounge","external-link-2":"View All","microsoft-teams":"Microsoft Teams","external":"Blogs","microsoft-endpoint-manager":"Microsoft Intune","startupsat-microsoft":"Startups at Microsoft","exchange":"Exchange","a-i":"AI and Machine Learning","io-t":"Internet of Things (IoT)","Common-microsoft365-copilot-link":"Microsoft 365 Copilot","outlook":"Microsoft 365 Copilot","external-link":"Community Hubs","communities":"Products"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarHamburgerDropdown-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarHamburgerDropdown-1745505309826","value":{"hamburgerLabel":"Side Menu"},"localOverride":false},"CachedAsset:text:en_US-components/community/BrandLogo-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/community/BrandLogo-1745505309826","value":{"logoAlt":"Khoros","themeLogoAlt":"Brand Logo"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarTextLinks-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarTextLinks-1745505309826","value":{"more":"More"},"localOverride":false},"CachedAsset:text:en_US-components/authentication/AuthenticationLink-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/authentication/AuthenticationLink-1745505309826","value":{"title.login":"Sign In","title.registration":"Register","title.forgotPassword":"Forgot Password","title.multiAuthLogin":"Sign In"},"localOverride":false},"CachedAsset:text:en_US-components/nodes/NodeLink-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/nodes/NodeLink-1745505309826","value":{"place":"Place {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageView/MessageViewStandard-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageView/MessageViewStandard-1745505309826","value":{"anonymous":"Anonymous","author":"{messageAuthorLogin}","authorBy":"{messageAuthorLogin}","board":"{messageBoardTitle}","replyToUser":" to {parentAuthor}","showMoreReplies":"Show More","replyText":"Reply","repliesText":"Replies","markedAsSolved":"Marked as Solved","movedMessagePlaceholder.BLOG":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.TKB":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.FORUM":"{count, plural, =0 {This reply has been} other {These replies have been} }","movedMessagePlaceholder.IDEA":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.OCCASION":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholderUrlText":"moved.","messageStatus":"Status: ","statusChanged":"Status changed: {previousStatus} to {currentStatus}","statusAdded":"Status added: {status}","statusRemoved":"Status removed: {status}","labelExpand":"expand replies","labelCollapse":"collapse replies","unhelpfulReason.reason1":"Content is outdated","unhelpfulReason.reason2":"Article is missing information","unhelpfulReason.reason3":"Content is for a different Product","unhelpfulReason.reason4":"Doesn't match what I was searching for"},"localOverride":false},"CachedAsset:text:en_US-components/messages/ThreadedReplyList-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/ThreadedReplyList-1745505309826","value":{"title":"{count, plural, one{# Reply} other{# Replies}}","title@board:BLOG":"{count, plural, one{# Comment} other{# Comments}}","title@board:TKB":"{count, plural, one{# Comment} other{# Comments}}","title@board:IDEA":"{count, plural, one{# Comment} other{# Comments}}","title@board:OCCASION":"{count, plural, one{# Comment} other{# Comments}}","noRepliesTitle":"No Replies","noRepliesTitle@board:BLOG":"No Comments","noRepliesTitle@board:TKB":"No Comments","noRepliesTitle@board:IDEA":"No Comments","noRepliesTitle@board:OCCASION":"No Comments","noRepliesDescription":"Be the first to reply","noRepliesDescription@board:BLOG":"Be the first to comment","noRepliesDescription@board:TKB":"Be the first to comment","noRepliesDescription@board:IDEA":"Be the first to comment","noRepliesDescription@board:OCCASION":"Be the first to comment","messageReadOnlyAlert:BLOG":"Comments have been turned off for this post","messageReadOnlyAlert:TKB":"Comments have been turned off for this article","messageReadOnlyAlert:IDEA":"Comments have been turned off for this idea","messageReadOnlyAlert:FORUM":"Replies have been turned off for this discussion","messageReadOnlyAlert:OCCASION":"Comments have been turned off for this event"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyCallToAction-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyCallToAction-1745505309826","value":{"leaveReply":"Leave a reply...","leaveReply@board:BLOG@message:root":"Leave a comment...","leaveReply@board:TKB@message:root":"Leave a comment...","leaveReply@board:IDEA@message:root":"Leave a comment...","leaveReply@board:OCCASION@message:root":"Leave a comment...","repliesTurnedOff.FORUM":"Replies are turned off for this topic","repliesTurnedOff.BLOG":"Comments are turned off for this topic","repliesTurnedOff.TKB":"Comments are turned off for this topic","repliesTurnedOff.IDEA":"Comments are turned off for this topic","repliesTurnedOff.OCCASION":"Comments are turned off for this topic","infoText":"Stop poking me!"},"localOverride":false},"Rank:rank:37":{"__typename":"Rank","id":"rank:37","position":18,"name":"Copper Contributor","color":"333333","icon":null,"rankStyle":"TEXT"},"User:user:1779412":{"__typename":"User","id":"user:1779412","uid":1779412,"login":"leomaurodesenv","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2023-03-15T14:08:48.544-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-12.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:1779412"},"ModerationData:moderation_data:3769117":{"__typename":"ModerationData","id":"moderation_data:3769117","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3769117":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:1779412"},"id":"message:3769117","revisionNum":1,"uid":3769117,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AzureDevCommunityBlog"},"parent":{"__ref":"BlogTopicMessage:message:3524273"},"conversation":{"__ref":"Conversation:conversation:3524273"},"subject":"Re: Accelerating Azure Databricks Runtime for Machine Learning","moderationData":{"__ref":"ModerationData:moderation_data:3769117"},"body":"
By performance, you mean process time only? Are you not concerned about the metrics itself?
Is this intel:scikit-learn updated over time?
Did the metric results change with the intel updates?
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"197","kudosSumWeight":0,"repliesCount":0,"postTime":"2023-03-15T14:11:26.204-07:00","lastPublishTime":"2023-03-15T14:11:26.204-07:00","metrics":{"__typename":"MessageMetrics","views":757},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureDevCommunityBlog/message:3524273/message:3769117","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"Rank:rank:35":{"__typename":"Rank","id":"rank:35","position":16,"name":"Iron Contributor","color":"333333","icon":null,"rankStyle":"TEXT"},"User:user:264066":{"__typename":"User","id":"user:264066","uid":264066,"login":"jaymcc510","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2019-01-11T08:50:52.513-08:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-8.svg?time=0"},"rank":{"__ref":"Rank:rank:35"},"entityType":"USER","eventPath":"community:gxcuf89792/user:264066"},"ModerationData:moderation_data:3546868":{"__typename":"ModerationData","id":"moderation_data:3546868","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:3546868":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:264066"},"id":"message:3546868","revisionNum":1,"uid":3546868,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AzureDevCommunityBlog"},"parent":{"__ref":"BlogTopicMessage:message:3524273"},"conversation":{"__ref":"Conversation:conversation:3524273"},"subject":"Re: Accelerating Azure Databricks Runtime for Machine Learning","moderationData":{"__ref":"ModerationData:moderation_data:3546868"},"body":"
excellent and educational
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"33","kudosSumWeight":0,"repliesCount":0,"postTime":"2022-06-24T01:29:25.376-07:00","lastPublishTime":"2022-06-24T01:29:25.376-07:00","metrics":{"__typename":"MessageMetrics","views":1178},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureDevCommunityBlog/message:3524273/message:3546868","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarDropdownToggle-1745505309826","value":{"ariaLabelClosed":"Press the down arrow to open the menu"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/QueryHandler-1745505309826","value":{"title":"Query Handler"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCoverImage-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCoverImage-1745505309826","value":{"coverImageTitle":"Cover Image"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeTitle-1745505309826","value":{"nodeTitle":"{nodeTitle, select, community {Community} other {{nodeTitle}}} "},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTimeToRead-1745505309826","value":{"minReadText":"{min} MIN READ"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageSubject-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageSubject-1745505309826","value":{"noSubject":"(no subject)"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserLink-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserLink-1745505309826","value":{"authorName":"View Profile: {author}","anonymous":"Anonymous"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserRank-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserRank-1745505309826","value":{"rankName":"{rankName}","userRank":"Author rank {rankName}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTime-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTime-1745505309826","value":{"postTime":"Published: {time}","lastPublishTime":"Last Update: {time}","conversation.lastPostingActivityTime":"Last posting activity time: {time}","conversation.lastPostTime":"Last post time: {time}","moderationData.rejectTime":"Rejected time: {time}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBody-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBody-1745505309826","value":{"showMessageBody":"Show More","mentionsErrorTitle":"{mentionsType, select, board {Board} user {User} message {Message} other {}} No Longer Available","mentionsErrorMessage":"The {mentionsType} you are trying to view has been removed from the community.","videoProcessing":"Video is being processed. Please try again in a few minutes.","bannerTitle":"Video provider requires cookies to play the video. Accept to continue or {url} it directly on the provider's site.","buttonTitle":"Accept","urlText":"watch"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCustomFields-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCustomFields-1745505309826","value":{"CustomField.default.label":"Value of {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageRevision-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageRevision-1745505309826","value":{"lastUpdatedDatePublished":"{publishCount, plural, one{Published} other{Updated}} {date}","lastUpdatedDateDraft":"Created {date}","version":"Version {major}.{minor}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyButton-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyButton-1745505309826","value":{"repliesCount":"{count}","title":"Reply","title@board:BLOG@message:root":"Comment","title@board:TKB@message:root":"Comment","title@board:IDEA@message:root":"Comment","title@board:OCCASION@message:root":"Comment"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageAuthorBio-1745505309826","value":{"sendMessage":"Send Message","actionMessage":"Follow this blog board to get notified when there's new activity","coAuthor":"CO-PUBLISHER","contributor":"CONTRIBUTOR","userProfile":"View Profile","iconlink":"Go to {name} {type}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserAvatar-1745505309826","value":{"altText":"{login}'s avatar","altTextGeneric":"User's avatar"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/ranks/UserRankLabel-1745505309826","value":{"altTitle":"Icon for {rankName} rank"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserRegistrationDate-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserRegistrationDate-1745505309826","value":{"noPrefix":"{date}","withPrefix":"Joined {date}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeAvatar-1745505309826","value":{"altTitle":"Node avatar for {nodeTitle}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeDescription-1745505309826","value":{"description":"{description}"},"localOverride":false},"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-components/tags/TagView/TagViewChip-1745505309826","value":{"tagLabelName":"Tag name {tagName}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1745505309826":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeIcon-1745505309826","value":{"contentType":"Content Type {style, select, FORUM {Forum} BLOG {Blog} TKB {Knowledge Base} IDEA {Ideas} OCCASION {Events} other {}} icon"},"localOverride":false}}}},"page":"/blogs/BlogMessagePage/BlogMessagePage","query":{"boardId":"azuredevcommunityblog","messageSubject":"accelerating-azure-databricks-runtime-for-machine-learning","messageId":"3524273"},"buildId":"HEhyUrv5OXNBIbfCLaOrw","runtimeConfig":{"buildInformationVisible":false,"logLevelApp":"info","logLevelMetrics":"info","openTelemetryClientEnabled":false,"openTelemetryConfigName":"o365","openTelemetryServiceVersion":"25.1.0","openTelemetryUniverse":"prod","openTelemetryCollector":"http://localhost:4318","openTelemetryRouteChangeAllowedTime":"5000","apolloDevToolsEnabled":false,"inboxMuteWipFeatureEnabled":false},"isFallback":false,"isExperimentalCompile":false,"dynamicIds":["./components/community/Navbar/NavbarWidget.tsx","./components/community/Breadcrumb/BreadcrumbWidget.tsx","./components/customComponent/CustomComponent/CustomComponent.tsx","./components/blogs/BlogArticleWidget/BlogArticleWidget.tsx","./components/external/components/ExternalComponent.tsx","./components/messages/MessageView/MessageViewStandard/MessageViewStandard.tsx","./components/messages/ThreadedReplyList/ThreadedReplyList.tsx","../shared/client/components/common/List/UnstyledList/UnstyledList.tsx","./components/messages/MessageView/MessageView.tsx","../shared/client/components/common/List/UnwrappedList/UnwrappedList.tsx","./components/tags/TagView/TagView.tsx","./components/tags/TagView/TagViewChip/TagViewChip.tsx"],"appGip":true,"scriptLoader":[{"id":"analytics","src":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/pagescripts/1730819800000/analytics.js?page.id=BlogMessagePage&entity.id=board%3Aazuredevcommunityblog&entity.id=message%3A3524273","strategy":"afterInteractive"}]}