The recent advances in LLMs have created opportunities for businesses to gain new insight into their unstructured text data. A classic example of this has been using the popular Retrieval Augmented Generation pattern (e.g. https://github.com/Azure/GPT-RAG) in which enterprise documents are used as context to answer user questions. These implementations can reduce time spent sifting through lengthy documentation and promote awareness throughout an organization.
But what about using LLMs to extract insights from structured relational data such as SQL databases? Many enterprises possess enormous amounts of SQL data that currently requires technical expertise to query or build business dashboards to make this data accessible to end users. However, it is costly to build these dashboards and they are limited in their scope.
With LLMs, there is a new potential to enable non-technical users to extract information from SQL databases by using an LLM to dynamically generate SQL queries, execute those SQL queries, and use the results as context to an LLM to provide a response to the end user. This use case has potential to enhance understanding of business data and reduce time and money spent on extracting data from SQL databases.
This guide will show multiple approaches to building a chat application that leverages SQL data as context. We will start with the simplest architecture and work progressively toward more sophisticated methods to address limitations.
Note: Truncated prompts will be provided in the examples below, but more complete and comprehensive prompts will be included in the final section.
Architecture 1: Few Shot SQL Generation
In this first implementation of an NL to SQL chat app, the LLM builds a SQL query based on the user’s question and a fixed SQL schema that is included in the system prompt.
Figure 1 – Few Shot SQL Generation
User asks a question: through a front end UI, the user submits a question. For example, “What was the product line with the highest revenue in 2022?”
App makes a request to the LLM: the LLM is invoked with a prompt that might look like the following (for more comprehensive prompts see Appendix A),
“You are an expert at providing facts from a SQL Database. Given the user question, produce a PostgresSQL query which, when executed provides the correct answer to the question. Only use the tables and schema given below to answer the question. SQL Schema: {Schema}
User Question: {Question}”
LLM responds with a SQL query: the LLM will generate a SQL query string as a response that might look like, “SELECT p.product_line, SUM(s.revenue) AS total_revenue … “. This string gets stored as a variable, to be used in the next step.
SQL Query string is executed, result is saved: the previous string that was generated is sent to the SQL query to be executed. The result of the SQL query will be saved as a text string (e.g. “Home Appliances, $12,500,000”) Note: this poses a potential risk of SQL injection, ensure you are limiting permissions, and see final section regarding Security and Safety
Final LLM call performed: A second request is sent to the LLM, this time with the user’s original question, and the result of SQL Query. The prompt might look like:
“Given the original question, the corresponding PostgreSQL query, and the execution results, produce a truthful and accurate natural language response to the original question.
Question: {question}”
Final Response: The LLM responds with the answer to the user’s question, based on the SQL query results.
Benefits / Limitations: This architecture is quite simple and benefits in terms of latency by having only two LLM calls. However, this setup is limited because the LLM does not have any examples of valid SQL queries to reference.
Architecture 2: Few Shot SQL Generation with RAG
This implementation is similar to the previous architecture, but rather than having a fixed set of few-shot examples, we create a data preparation step in which example queries are embedded into a vector database and then retrieved at run time.
Figure 2 – Few Shot SQL Generation with RAG
Below, we discuss the new steps that differentiate Architecture 2 from Architecture 1:
Offline Data Prep: In order to best leverage the few shot examples framework, a set of example user questions and corresponding SQL queries (50-100 samples) should be collected and stored in JSON or CSV format. Then, each of these pairs should be embedded in a vector database such as Azure AI Search (Search over JSON blobs - Azure AI Search | Microsoft Learn).
{
"question": "Which product line had the highest sales in FY2022?"
"sql_query": "SELECT value FROM table_1..."
}
(Runtime) User submits question - After the data preparation in step 1, the application starts in the same way as Architecture 1. The user submits a question, and the app sends the question first to the embeddings deployment of Azure OpenAI.
Embed user’s question: Make a request to a text embeddings model, such as text-ada-002, to convert the user’s question to a vector.
Retrieve few shot examples: Then retrieve the top 5 examples with the closest similarity (using Azure AI Search cosine similarity algorithm) and include them in the SQL Generation request to GPT-4.
Steps 5-8: Proceed in the same order as Architecture 1. The SQL string is generated, executed, and the results are used as context to provide the final response to the end user.
Benefits / Limitations: This architecture is quite simple and benefits in terms of latency by having only two LLM calls. However, this setup is limited because the LLM does not have any examples of valid SQL queries to reference.
Architecture 3: Fine Tuning SQL Generation with GPT 3.5T
One of the central challenges in building an NL to SQL based chat application is handling latency. One method to reduce latency is by opting to fine tune a smaller model, such as GPT 3.5T for the SQL generation step.
Figure 3 – Fine Tuning SQL Generation with GPT 3.5T
This architecture follows roughly the same pattern as architecture 1, but with a preparatory fine tuning step.
Steps 2-7 – Same as architecture 1, but directed toward the fine tuned instance of GPT 3.5T.
Note: If sufficient NL / SQL samples are available, fine tuning could be used with RAG to include few shot examples in addition to the fine tuning. Users should experiment with the exact number of samples to include to get best results and ensure to test with unseen samples.
Evaluation
In order to evaluate an NL to SQL project you will need to evaluate the accuracy of the generated SQL query, the final response, and latency for each step. Below, we outline some of the key metrics to capture during the evaluation stage.
Manual Metrics:
The simplest way of evaluating the application is to have a human evaluator look at the final response and determine if it answer’s the user’s original question correctly. An example of this is End-to-End Accuracy.
End-to-End Accuracy – does the final response correctly answer the user’s question?
How to implement: Output all question and answers to a spreadsheet, and have a human validator enter 1 or 0 in each row to indicate whether the answer was correct or incorrect. Correct Answers / Total Answers = Accuracy.
One of the limitations with this method is that it requires a human to review each response, which can be labor-intensive. Additionally, if the answer is marked incorrect, it may not be clear which part of the process failed. For this reason, we also introduce a set of automated metrics to evaluate each step of the process.
Automated Metrics:
Below we introduce four automated metrics, which can be executed immediately without human reviewers in a scalable fashion.
Validity of SQL Query – Is the generated SQL query valid?
How to Implement: This can be scored using a python library like sqlvalidator, or by implementing logic into the code to log each instance in which the SQL query fails.
SQL Critic Score – Does the SQL Query and result correctly translate the original question?
How to implement: Use the LLM to evaluate itself by sending a prompt with instructions to validate the accuracy of the SQL Query and include the original question, SQL query, and result in the request (see Appendix B Example 5)
End-to-End Relevance – Is the generated NL response relevant to the user’s initial question?
How to implement: Send a prompt to the LLM with instructions to compare the NL response to the user’s initial question and evaluate its relevance (see Appendix B Example 6)
End-to-End Groundedness – Does the generated NL response logically follow from the context provided to it (i.e. the SQL Query)?
How to implement: Send a prompt to the LLM with instructions to compare the NL response to the SQL query and results and determine if the response logically follows (see Appendix B Example 7)
Figure 4 – NL to SQL Evaluation Metrics
Safety and Security
LLMs introduce new risks to a web application. In this case, the LLM is generating SQL code that will be executed. This introduces a attack surface, and the appropriate boundaries should be introduced prior to releasing to public.
NL to SQL systems require various safety precautions to ensure accurate, secure, and unbiased results. Here are some key aspects to consider.
Risks:
SQL Injection
Handling ambiguity and vagueness
Mitigating bias
Unintentionally writing to database
Mitigations:
Granular permissions and proper authorization – refine access based on roles and groups.
Ensure access to known users.
Implement parameterized queries that separate data from the query itself.
Ensure read-only and only execute permissions.
Implement strict input validation and sanitization procedures with whitelisting, regular expressions, data type checks, escaping.
"You are an expert in providing facts from an SQL database. Given the user question, produce a PostgreSQL query which, when executed, provides the correct answer to the question. Only use the tables and schema given below to answer the questions. Learn query patterns from the similar question-answer pairs provided as examples below. Directly start your response with the executable query. Do not start with '''sql. Do not make up new table and column names. Only use the ones available in the schema below.
SQL Schema:
{schema}
Examples:
{examples}"
Example 2: SQL to NL System Prompt
"Given the original question, the corresponding PostgreSQL query, and the execution results, produce a truthful and accurate natural language response to the original question, that is only based on the execution results. Your answer should be detailed and accurate, for numerical responses make sure you infer the appropriate units. If the question is complex, you can provide a multi-sentence response. Make sure that you provide a response that is easy to understand."
Example 3: NL to SQL User Prompt
"Your response should be an executable query, do not start with '''sql Provide detailed reasoning behind the PostgreSQL query, please provide it as a comment using -- at the beginning of the line. Formatting example:
SELECT some_name, val FROM some_table WHERE a = number AND b = another_number -- This query selects some_name and val from some_table where a = number and b = another_number. Queries should return a minimal amount of rows, and should not return more rows than necessary.
Given the information above, give a numeric score of 0 to the Generated SQL if it doesn't correctly handle the User question, and give a numeric score of 1 if the Generated SQL query correctly handles the User question.
If the SQL query yields an error, give a numeric score of 0.
If the SQL query doesn't error out, but doesn't correctly handle the User question, give a numeric score of 0.
If the SQL execution results are empty, most likely it didn't handle the User's question. Think hard if you want to give it a 1 or a 0.
Score: "
Example 6: End to End Relevance
"You are an AI assistant. You will be given the definition of an evaluation metric for assessing the quality of an answer to a question-answering task. Your job is to compute an accurate evaluation score using the provided evaluation metric.
You will be presented with a CONTEXT and an ANSWER about that CONTEXT. You need to decide whether the ANSWER is entailed by the CONTEXT by choosing one of the following rating:
10: The ANSWER follows logically from the information contained in the CONTEXT.
0: The ANSWER is logically false from the information contained in the CONTEXT.
an integer score between 0 and 10 and if such integer score does not exists, use 0: It is not possible to determine whether the ANSWER is true or false without further information.
Read the passage of information thoroughly and select the correct answer from the three answer labels. Read the CONTEXT thoroughly to ensure you know what the CONTEXT entails.
Note the ANSWER is generated by a computer system, it can contain certain symbols, which should not be a negative factor in the evaluation.
Independent Examples:
Example Task #1 Input:
"CONTEXT":
Query: {Sample SQL Query}
Query results: {Sample SQL Query Result}
"ANSWER": "{Valid Answer}”
Example Task #1 Output:
10
Example Task #2 Input:
"CONTEXT":
Query: "{SQL Query}”
Query results: {SQL Query Results}
"ANSWER": "{NL Response}"
Example Task #2 Output:
10
"""
Example 7: End to End groundedness
“Is the answer relevant and related to the question?
Thanks a lot for putting the time into writing this guide, I found it very clear and useful for my ongoing architectural LLM's designs.
I just wanted to point out that the Benefits / Limitations section of the second architecture is actually referring to the first architecture. It would be great if you could edit it to refer to the second paradigm.
Extra Context: We are currently implementing our solution in Semantic Kernel.
1. Regarding RAG Approaches:
How accurate can Retrieval-Augmented Generation (RAG) get? Many existing works suggest that the accuracy might not be optimal. Do you have any insights on improving the accuracy of RAG?
I am curious if implement pre-processing or post-processing to the RAG context will yield better results, maybe by adding more metadata like column description. What is your take on this?
2. LLM Agent schema selector:
Some approaches mention using schema information in step 2. However, passing all the schema information into an LLM to select the top tables could result in token limitations.
I am trying to replicate the work described in https://arxiv.org/abs/2312.11242 for the selector. However, even a single table can have a few hundred columns, each with its own descriptions, making it easy to hit token limitations.
Hello YaoJing - two possible ways you could handle this situation: 1. Embed all table schemas, as well as the table name and table description (if available) into a vector DB. Include one entry for each table. Then at run time, query the vector DB based on the user's question and include the top n records as context.
2. When the user asks a question, query a cheap, fast model, such as GPT 3.5 T or Phi 3 and include all table names and description. Ask the LLM to select the top n tables which are most relevant to the user's question. Then include these tables in the subsequent request to generate the SQL query.
Great article! A question here, in a normal production environment. The SQL schema is huge, passing the whole Database Schema would eat up most of the token. Is there a way to fix this?
This is a great guide from architecture point of view, also from evaluation perspective. Thanks a lot!
"}},"componentScriptGroups({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/community/NavbarDropdownToggle\"]})":[{"__ref":"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/common/QueryHandler\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCoverImage\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCoverImage-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeTitle\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTimeToRead\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageSubject\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageSubject-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserLink\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserLink-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserRank\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserRank-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageTime\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageTime-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageBody\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageBody-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageCustomFields\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageCustomFields-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageRevision\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageRevision-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageReplyButton\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageReplyButton-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageAuthorBio\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/ranks/UserRankLabel\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserRegistrationDate\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserRegistrationDate-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1745505309846"}],"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeDescription\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1745505309846"}],"message({\"id\":\"message:4140672\"})":{"__ref":"BlogReplyMessage:message:4140672"},"message({\"id\":\"message:4390239\"})":{"__ref":"BlogReplyMessage:message:4390239"},"message({\"id\":\"message:4199919\"})":{"__ref":"BlogReplyMessage:message:4199919"},"message({\"id\":\"message:4186207\"})":{"__ref":"BlogReplyMessage:message:4186207"},"message({\"id\":\"message:4185741\"})":{"__ref":"BlogReplyMessage:message:4185741"},"message({\"id\":\"message:4184789\"})":{"__ref":"BlogReplyMessage:message:4184789"},"cachedText({\"lastModified\":\"1745505309846\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeIcon\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1745505309846"}]},"CachedAsset:pages-1744410785191":{"__typename":"CachedAsset","id":"pages-1744410785191","value":[{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"BlogViewAllPostsPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId/all-posts/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"CasePortalPage","type":"CASE_PORTAL","urlPath":"/caseportal","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"CreateGroupHubPage","type":"GROUP_HUB","urlPath":"/groups/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"CaseViewPage","type":"CASE_DETAILS","urlPath":"/case/:caseId/:caseNumber","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"InboxPage","type":"COMMUNITY","urlPath":"/inbox","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"HelpFAQPage","type":"COMMUNITY","urlPath":"/help","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"IdeaMessagePage","type":"IDEA_POST","urlPath":"/idea/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"IdeaViewAllIdeasPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/all-ideas/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"LoginPage","type":"USER","urlPath":"/signin","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"BlogPostPage","type":"BLOG","urlPath":"/category/:categoryId/blogs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"UserBlogPermissions.Page","type":"COMMUNITY","urlPath":"/c/user-blog-permissions/page","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ThemeEditorPage","type":"COMMUNITY","urlPath":"/designer/themes","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"TkbViewAllArticlesPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId/all-articles/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllEvents","type":"CUSTOM","urlPath":"/Events","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"OccasionEditPage","type":"EVENT","urlPath":"/event/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"OAuthAuthorizationAllowPage","type":"USER","urlPath":"/auth/authorize/allow","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"PageEditorPage","type":"COMMUNITY","urlPath":"/designer/pages","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"PostPage","type":"COMMUNITY","urlPath":"/category/:categoryId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ForumBoardPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"TkbBoardPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"EventPostPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"UserBadgesPage","type":"COMMUNITY","urlPath":"/users/:login/:userId/badges","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"GroupHubMembershipAction","type":"GROUP_HUB","urlPath":"/membership/join/:nodeId/:membershipType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"MaintenancePage","type":"COMMUNITY","urlPath":"/maintenance","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"IdeaReplyPage","type":"IDEA_REPLY","urlPath":"/idea/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"UserSettingsPage","type":"USER","urlPath":"/mysettings/:userSettingsTab","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"GroupHubsPage","type":"GROUP_HUB","urlPath":"/groups","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ForumPostPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"OccasionRsvpActionPage","type":"OCCASION","urlPath":"/event/:boardId/:messageSubject/:messageId/rsvp/:responseType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"VerifyUserEmailPage","type":"USER","urlPath":"/verifyemail/:userId/:verifyEmailToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"AllOccasionsPage","type":"OCCASION","urlPath":"/category/:categoryId/events/:boardId/all-events/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"EventBoardPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"TkbReplyPage","type":"TKB_REPLY","urlPath":"/kb/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"IdeaBoardPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"CommunityGuideLinesPage","type":"COMMUNITY","urlPath":"/communityguidelines","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"CaseCreatePage","type":"SALESFORCE_CASE_CREATION","urlPath":"/caseportal/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"TkbEditPage","type":"TKB","urlPath":"/kb/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ForgotPasswordPage","type":"USER","urlPath":"/forgotpassword","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"IdeaEditPage","type":"IDEA","urlPath":"/idea/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"TagPage","type":"COMMUNITY","urlPath":"/tag/:tagName","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"BlogBoardPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"OccasionMessagePage","type":"OCCASION_TOPIC","urlPath":"/event/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ManageContentPage","type":"COMMUNITY","urlPath":"/managecontent","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ClosedMembershipNodeNonMembersPage","type":"GROUP_HUB","urlPath":"/closedgroup/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"CommunityPage","type":"COMMUNITY","urlPath":"/","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ForumMessagePage","type":"FORUM_TOPIC","urlPath":"/discussions/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"IdeaPostPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"CommunityHub.Page","type":"CUSTOM","urlPath":"/Directory","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"BlogMessagePage","type":"BLOG_ARTICLE","urlPath":"/blog/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"RegistrationPage","type":"USER","urlPath":"/register","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"EditGroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ForumEditPage","type":"FORUM","urlPath":"/discussions/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ResetPasswordPage","type":"USER","urlPath":"/resetpassword/:userId/:resetPasswordToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllBlogs.Page","type":"CUSTOM","urlPath":"/blogs","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"TkbMessagePage","type":"TKB_ARTICLE","urlPath":"/kb/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"BlogEditPage","type":"BLOG","urlPath":"/blog/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ManageUsersPage","type":"USER","urlPath":"/users/manage/:tab?/:manageUsersTab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ForumReplyPage","type":"FORUM_REPLY","urlPath":"/discussions/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"PrivacyPolicyPage","type":"COMMUNITY","urlPath":"/privacypolicy","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"NotificationPage","type":"COMMUNITY","urlPath":"/notifications","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"UserPage","type":"USER","urlPath":"/users/:login/:userId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"OccasionReplyPage","type":"OCCASION_REPLY","urlPath":"/event/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ManageMembersPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/manage/:tab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"SearchResultsPage","type":"COMMUNITY","urlPath":"/search","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"BlogReplyPage","type":"BLOG_REPLY","urlPath":"/blog/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"GroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"TermsOfServicePage","type":"COMMUNITY","urlPath":"/termsofservice","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"CategoryPage","type":"CATEGORY","urlPath":"/category/:categoryId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"ForumViewAllTopicsPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/all-topics/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"TkbPostPage","type":"TKB","urlPath":"/category/:categoryId/kbs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1744410785191,"localOverride":null,"page":{"id":"GroupHubPostPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"}],"localOverride":false},"CachedAsset:text:en_US-components/context/AppContext/AppContextProvider-0":{"__typename":"CachedAsset","id":"text:en_US-components/context/AppContext/AppContextProvider-0","value":{"noCommunity":"Cannot find community","noUser":"Cannot find current user","noNode":"Cannot find node with id {nodeId}","noMessage":"Cannot find message with id {messageId}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-0":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-0","value":{"title":"Loading..."},"localOverride":false},"User:user:-1":{"__typename":"User","id":"user:-1","uid":-1,"login":"Deleted","email":"","avatar":null,"rank":null,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":"ANONYMOUS","registrationTime":null,"confirmEmailStatus":false,"registrationAccessLevel":"VIEW","ssoRegistrationFields":[]},"ssoId":null,"profileSettings":{"__typename":"ProfileSettings","dateDisplayStyle":{"__typename":"InheritableStringSettingWithPossibleValues","key":"layout.friendly_dates_enabled","value":"false","localValue":"true","possibleValues":["true","false"]},"dateDisplayFormat":{"__typename":"InheritableStringSetting","key":"layout.format_pattern_date","value":"MMM dd yyyy","localValue":"MM-dd-yyyy"},"language":{"__typename":"InheritableStringSettingWithPossibleValues","key":"profile.language","value":"en-US","localValue":"en","possibleValues":["en-US"]}},"deleted":false},"Theme:customTheme1":{"__typename":"Theme","id":"customTheme1"},"Category:category:Azure":{"__typename":"Category","id":"category:Azure","entityType":"CATEGORY","displayId":"Azure","nodeType":"category","depth":3,"title":"Azure","shortTitle":"Azure","parent":{"__ref":"Category:category:products-services"},"categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:top":{"__typename":"Category","id":"category:top","displayId":"top","nodeType":"category","depth":0,"title":"Top","entityType":"CATEGORY","shortTitle":"Top"},"Category:category:communities":{"__typename":"Category","id":"category:communities","displayId":"communities","nodeType":"category","depth":1,"parent":{"__ref":"Category:category:top"},"title":"Communities","entityType":"CATEGORY","shortTitle":"Communities"},"Category:category:products-services":{"__typename":"Category","id":"category:products-services","displayId":"products-services","nodeType":"category","depth":2,"parent":{"__ref":"Category:category:communities"},"title":"Products","entityType":"CATEGORY","shortTitle":"Products"},"Blog:board:AzureArchitectureBlog":{"__typename":"Blog","id":"board:AzureArchitectureBlog","entityType":"BLOG","displayId":"AzureArchitectureBlog","nodeType":"board","depth":4,"conversationStyle":"BLOG","title":"Azure Architecture Blog","description":"","avatar":null,"profileSettings":{"__typename":"ProfileSettings","language":null},"parent":{"__ref":"Category:category:Azure"},"ancestors":{"__typename":"CoreNodeConnection","edges":[{"__typename":"CoreNodeEdge","node":{"__ref":"Community:community:gxcuf89792"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:communities"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:products-services"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:Azure"}}]},"userContext":{"__typename":"NodeUserContext","canAddAttachments":false,"canUpdateNode":false,"canPostMessages":false,"isSubscribed":false},"boardPolicies":{"__typename":"BoardPolicies","canPublishArticleOnCreate":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","args":[]}}},"shortTitle":"Azure Architecture Blog","repliesProperties":{"__typename":"RepliesProperties","sortOrder":"REVERSE_PUBLISH_TIME","repliesFormat":"threaded"},"eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureArchitectureBlog/","tagProperties":{"__typename":"TagNodeProperties","tagsEnabled":{"__typename":"PolicyResult","failureReason":null}},"requireTags":false,"tagType":"PRESET_ONLY"},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc","height":512,"width":512,"mimeType":"image/png"},"Rank:rank:4":{"__typename":"Rank","id":"rank:4","position":6,"name":"Microsoft","color":"333333","icon":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}"},"rankStyle":"OUTLINE"},"User:user:2464653":{"__typename":"User","id":"user:2464653","uid":2464653,"login":"markremmey","deleted":false,"avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-3.svg?time=0"},"rank":{"__ref":"Rank:rank:4"},"email":"","messagesCount":2,"biography":null,"topicsCount":1,"kudosReceivedCount":9,"kudosGivenCount":1,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-05-09T12:54:18.348-07:00","confirmEmailStatus":null},"followersCount":null,"solutionsCount":0,"entityType":"USER","eventPath":"community:gxcuf89792/user:2464653"},"BlogTopicMessage:message:4136387":{"__typename":"BlogTopicMessage","uid":4136387,"subject":"NL to SQL Architecture Alternatives","id":"message:4136387","revisionNum":24,"repliesCount":6,"author":{"__ref":"User:user:2464653"},"depth":0,"hasGivenKudo":false,"board":{"__ref":"Blog:board:AzureArchitectureBlog"},"conversation":{"__ref":"Conversation:conversation:4136387"},"messagePolicies":{"__typename":"MessagePolicies","canPublishArticleOnEdit":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","args":[]}},"canModerateSpamMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","args":[]}}},"contentWorkflow":{"__typename":"ContentWorkflow","state":"PUBLISH","scheduledPublishTime":null,"scheduledTimezone":null,"userContext":{"__typename":"MessageWorkflowContext","canSubmitForReview":null,"canEdit":false,"canRecall":null,"canSubmitForPublication":null,"canReturnToAuthor":null,"canPublish":null,"canReturnToReview":null,"canSchedule":false},"shortScheduledTimezone":null},"readOnly":false,"editFrozen":false,"moderationData":{"__ref":"ModerationData:moderation_data:4136387"},"teaser":"
","body":"
\n
Introduction
\n
The recent advances in LLMs have created opportunities for businesses to gain new insight into their unstructured text data. A classic example of this has been using the popular Retrieval Augmented Generation pattern (e.g. https://github.com/Azure/GPT-RAG) in which enterprise documents are used as context to answer user questions. These implementations can reduce time spent sifting through lengthy documentation and promote awareness throughout an organization.
\n
\n
But what about using LLMs to extract insights from structured relational data such as SQL databases? Many enterprises possess enormous amounts of SQL data that currently requires technical expertise to query or build business dashboards to make this data accessible to end users. However, it is costly to build these dashboards and they are limited in their scope.
\n
\n
With LLMs, there is a new potential to enable non-technical users to extract information from SQL databases by using an LLM to dynamically generate SQL queries, execute those SQL queries, and use the results as context to an LLM to provide a response to the end user. This use case has potential to enhance understanding of business data and reduce time and money spent on extracting data from SQL databases.
\n
\n
This guide will show multiple approaches to building a chat application that leverages SQL data as context. We will start with the simplest architecture and work progressively toward more sophisticated methods to address limitations.
\n
\n
Note: Truncated prompts will be provided in the examples below, but more complete and comprehensive prompts will be included in the final section.
\n
\n
Architecture 1: Few Shot SQL Generation
\n
In this first implementation of an NL to SQL chat app, the LLM builds a SQL query based on the user’s question and a fixed SQL schema that is included in the system prompt.
\n
\n
Figure 1 – Few Shot SQL Generation
\n
\n\n
User asks a question: through a front end UI, the user submits a question. For example, “What was the product line with the highest revenue in 2022?”
\n
App makes a request to the LLM: the LLM is invoked with a prompt that might look like the following (for more comprehensive prompts see Appendix A),
\n\n
“You are an expert at providing facts from a SQL Database. Given the user question, produce a PostgresSQL query which, when executed provides the correct answer to the question. Only use the tables and schema given below to answer the question. SQL Schema: {Schema}
\n
User Question: {Question}”
\n
\n\n
LLM responds with a SQL query: the LLM will generate a SQL query string as a response that might look like, “SELECT p.product_line, SUM(s.revenue) AS total_revenue … “. This string gets stored as a variable, to be used in the next step.
\n
SQL Query string is executed, result is saved: the previous string that was generated is sent to the SQL query to be executed. The result of the SQL query will be saved as a text string (e.g. “Home Appliances, $12,500,000”) Note: this poses a potential risk of SQL injection, ensure you are limiting permissions, and see final section regarding Security and Safety
\n
Final LLM call performed: A second request is sent to the LLM, this time with the user’s original question, and the result of SQL Query. The prompt might look like:
\n\n
“Given the original question, the corresponding PostgreSQL query, and the execution results, produce a truthful and accurate natural language response to the original question.
\n
Question: {question}”
\n\n
Final Response: The LLM responds with the answer to the user’s question, based on the SQL query results.
\n\n
\n
Benefits / Limitations: This architecture is quite simple and benefits in terms of latency by having only two LLM calls. However, this setup is limited because the LLM does not have any examples of valid SQL queries to reference.
\n
\n
Architecture 2: Few Shot SQL Generation with RAG
\n
This implementation is similar to the previous architecture, but rather than having a fixed set of few-shot examples, we create a data preparation step in which example queries are embedded into a vector database and then retrieved at run time.
\n
\n
Figure 2 – Few Shot SQL Generation with RAG
\n
\n
Below, we discuss the new steps that differentiate Architecture 2 from Architecture 1:
\n\n
Offline Data Prep: In order to best leverage the few shot examples framework, a set of example user questions and corresponding SQL queries (50-100 samples) should be collected and stored in JSON or CSV format. Then, each of these pairs should be embedded in a vector database such as Azure AI Search (Search over JSON blobs - Azure AI Search | Microsoft Learn).
{\n \"question\": \"Which product line had the highest sales in FY2022?\"\n \"sql_query\": \"SELECT value FROM table_1...\"\n}
\n
(Runtime) User submits question - After the data preparation in step 1, the application starts in the same way as Architecture 1. The user submits a question, and the app sends the question first to the embeddings deployment of Azure OpenAI.
\n
Embed user’s question: Make a request to a text embeddings model, such as text-ada-002, to convert the user’s question to a vector.
\n
Retrieve few shot examples: Then retrieve the top 5 examples with the closest similarity (using Azure AI Search cosine similarity algorithm) and include them in the SQL Generation request to GPT-4.
\n
Steps 5-8: Proceed in the same order as Architecture 1. The SQL string is generated, executed, and the results are used as context to provide the final response to the end user.
\n\n
Benefits / Limitations: This architecture is quite simple and benefits in terms of latency by having only two LLM calls. However, this setup is limited because the LLM does not have any examples of valid SQL queries to reference.
\n
\n
Architecture 3: Fine Tuning SQL Generation with GPT 3.5T
\n
One of the central challenges in building an NL to SQL based chat application is handling latency. One method to reduce latency is by opting to fine tune a smaller model, such as GPT 3.5T for the SQL generation step.
\n
\n
\n
Figure 3 – Fine Tuning SQL Generation with GPT 3.5T
\n
\n
This architecture follows roughly the same pattern as architecture 1, but with a preparatory fine tuning step.
Steps 2-7 – Same as architecture 1, but directed toward the fine tuned instance of GPT 3.5T.
\n\n
Note: If sufficient NL / SQL samples are available, fine tuning could be used with RAG to include few shot examples in addition to the fine tuning. Users should experiment with the exact number of samples to include to get best results and ensure to test with unseen samples.
\n
\n
Evaluation
\n
In order to evaluate an NL to SQL project you will need to evaluate the accuracy of the generated SQL query, the final response, and latency for each step. Below, we outline some of the key metrics to capture during the evaluation stage.
\n
\n
Manual Metrics:
\n
The simplest way of evaluating the application is to have a human evaluator look at the final response and determine if it answer’s the user’s original question correctly. An example of this is End-to-End Accuracy.
\n\n
End-to-End Accuracy – does the final response correctly answer the user’s question?\n
\n
How to implement: Output all question and answers to a spreadsheet, and have a human validator enter 1 or 0 in each row to indicate whether the answer was correct or incorrect. Correct Answers / Total Answers = Accuracy.
\n
\n
\n\n
One of the limitations with this method is that it requires a human to review each response, which can be labor-intensive. Additionally, if the answer is marked incorrect, it may not be clear which part of the process failed. For this reason, we also introduce a set of automated metrics to evaluate each step of the process.
\n
\n
Automated Metrics:
\n
Below we introduce four automated metrics, which can be executed immediately without human reviewers in a scalable fashion.
\n
\n\n
Validity of SQL Query – Is the generated SQL query valid?\n
\n
How to Implement: This can be scored using a python library like sqlvalidator, or by implementing logic into the code to log each instance in which the SQL query fails.
\n
\n
\n
SQL Critic Score – Does the SQL Query and result correctly translate the original question?\n
\n
How to implement: Use the LLM to evaluate itself by sending a prompt with instructions to validate the accuracy of the SQL Query and include the original question, SQL query, and result in the request (see Appendix B Example 5)
\n
\n
\n
End-to-End Relevance – Is the generated NL response relevant to the user’s initial question?\n
\n
How to implement: Send a prompt to the LLM with instructions to compare the NL response to the user’s initial question and evaluate its relevance (see Appendix B Example 6)
\n
\n
\n
End-to-End Groundedness – Does the generated NL response logically follow from the context provided to it (i.e. the SQL Query)?\n
\n
How to implement: Send a prompt to the LLM with instructions to compare the NL response to the SQL query and results and determine if the response logically follows (see Appendix B Example 7)
\n
\n
\n\n
\n
Figure 4 – NL to SQL Evaluation Metrics
\n
\n
Safety and Security
\n
LLMs introduce new risks to a web application. In this case, the LLM is generating SQL code that will be executed. This introduces a attack surface, and the appropriate boundaries should be introduced prior to releasing to public.
\n
\n
NL to SQL systems require various safety precautions to ensure accurate, secure, and unbiased results. Here are some key aspects to consider.
\n
\n
Risks:
\n
\n
SQL Injection
\n
Handling ambiguity and vagueness
\n
Mitigating bias
\n
Unintentionally writing to database
\n
\n
\n
Mitigations:
\n
\n
Granular permissions and proper authorization – refine access based on roles and groups.
\n
Ensure access to known users.
\n
Implement parameterized queries that separate data from the query itself.
\n
Ensure read-only and only execute permissions.
\n
Implement strict input validation and sanitization procedures with whitelisting, regular expressions, data type checks, escaping.
\"You are an expert in providing facts from an SQL database. Given the user question, produce a PostgreSQL query which, when executed, provides the correct answer to the question. Only use the tables and schema given below to answer the questions. Learn query patterns from the similar question-answer pairs provided as examples below. Directly start your response with the executable query. Do not start with '''sql. Do not make up new table and column names. Only use the ones available in the schema below.
\n
\n
SQL Schema:
\n
{schema}
\n
\n
Examples:
\n
{examples}\"
\n
\n
Example 2: SQL to NL System Prompt
\n
\"Given the original question, the corresponding PostgreSQL query, and the execution results, produce a truthful and accurate natural language response to the original question, that is only based on the execution results. Your answer should be detailed and accurate, for numerical responses make sure you infer the appropriate units. If the question is complex, you can provide a multi-sentence response. Make sure that you provide a response that is easy to understand.\"
\n
\n
Example 3: NL to SQL User Prompt
\n
\"Your response should be an executable query, do not start with '''sql Provide detailed reasoning behind the PostgreSQL query, please provide it as a comment using -- at the beginning of the line. Formatting example:
\n
SELECT some_name, val FROM some_table WHERE a = number AND b = another_number -- This query selects some_name and val from some_table where a = number and b = another_number. Queries should return a minimal amount of rows, and should not return more rows than necessary.
Given the information above, give a numeric score of 0 to the Generated SQL if it doesn't correctly handle the User question, and give a numeric score of 1 if the Generated SQL query correctly handles the User question.
\n
If the SQL query yields an error, give a numeric score of 0.
\n
If the SQL query doesn't error out, but doesn't correctly handle the User question, give a numeric score of 0.
\n
If the SQL execution results are empty, most likely it didn't handle the User's question. Think hard if you want to give it a 1 or a 0.
\n
Score: \"
\n
\n
Example 6: End to End Relevance
\n
\"You are an AI assistant. You will be given the definition of an evaluation metric for assessing the quality of an answer to a question-answering task. Your job is to compute an accurate evaluation score using the provided evaluation metric.
\n
\n
You will be presented with a CONTEXT and an ANSWER about that CONTEXT. You need to decide whether the ANSWER is entailed by the CONTEXT by choosing one of the following rating:
\n
\n
10: The ANSWER follows logically from the information contained in the CONTEXT.
\n
0: The ANSWER is logically false from the information contained in the CONTEXT.
\n
an integer score between 0 and 10 and if such integer score does not exists, use 0: It is not possible to determine whether the ANSWER is true or false without further information.
\n
\n
Read the passage of information thoroughly and select the correct answer from the three answer labels. Read the CONTEXT thoroughly to ensure you know what the CONTEXT entails.
\n
\n
Note the ANSWER is generated by a computer system, it can contain certain symbols, which should not be a negative factor in the evaluation.
\n
\n
Independent Examples:
\n
Example Task #1 Input:
\n
\"CONTEXT\":
\n
Query: {Sample SQL Query}
\n
Query results: {Sample SQL Query Result}
\n
\n
\"ANSWER\": \"{Valid Answer}”
\n
\n
Example Task #1 Output:
\n
10
\n
\n
Example Task #2 Input:
\n
\"CONTEXT\":
\n
Query: \"{SQL Query}”
\n
Query results: {SQL Query Results}
\n
\n
\"ANSWER\": \"{NL Response}\"
\n
\n
Example Task #2 Output:
\n
10
\n
\"\"\"
\n
\n
Example 7: End to End groundedness
\n
“Is the answer relevant and related to the question?
\n
If the answer is yes, output 1.
\n
Respond 0 otherwise.
\n
\n
Question: {question}
\n
Answer: {answer}
\n
Score:”
","body@stringLength":"24379","rawBody":"
\n
Introduction
\n
The recent advances in LLMs have created opportunities for businesses to gain new insight into their unstructured text data. A classic example of this has been using the popular Retrieval Augmented Generation pattern (e.g. https://github.com/Azure/GPT-RAG) in which enterprise documents are used as context to answer user questions. These implementations can reduce time spent sifting through lengthy documentation and promote awareness throughout an organization.
\n
\n
But what about using LLMs to extract insights from structured relational data such as SQL databases? Many enterprises possess enormous amounts of SQL data that currently requires technical expertise to query or build business dashboards to make this data accessible to end users. However, it is costly to build these dashboards and they are limited in their scope.
\n
\n
With LLMs, there is a new potential to enable non-technical users to extract information from SQL databases by using an LLM to dynamically generate SQL queries, execute those SQL queries, and use the results as context to an LLM to provide a response to the end user. This use case has potential to enhance understanding of business data and reduce time and money spent on extracting data from SQL databases.
\n
\n
This guide will show multiple approaches to building a chat application that leverages SQL data as context. We will start with the simplest architecture and work progressively toward more sophisticated methods to address limitations.
\n
\n
Note: Truncated prompts will be provided in the examples below, but more complete and comprehensive prompts will be included in the final section.
\n
\n
Architecture 1: Few Shot SQL Generation
\n
In this first implementation of an NL to SQL chat app, the LLM builds a SQL query based on the user’s question and a fixed SQL schema that is included in the system prompt.
\n
\n
Figure 1 – Few Shot SQL Generation
\n
\n\n
User asks a question: through a front end UI, the user submits a question. For example, “What was the product line with the highest revenue in 2022?”
\n
App makes a request to the LLM: the LLM is invoked with a prompt that might look like the following (for more comprehensive prompts see Appendix A),
\n\n
“You are an expert at providing facts from a SQL Database. Given the user question, produce a PostgresSQL query which, when executed provides the correct answer to the question. Only use the tables and schema given below to answer the question. SQL Schema: {Schema}
\n
User Question: {Question}”
\n
\n\n
LLM responds with a SQL query: the LLM will generate a SQL query string as a response that might look like, “SELECT p.product_line, SUM(s.revenue) AS total_revenue … “. This string gets stored as a variable, to be used in the next step.
\n
SQL Query string is executed, result is saved: the previous string that was generated is sent to the SQL query to be executed. The result of the SQL query will be saved as a text string (e.g. “Home Appliances, $12,500,000”) Note: this poses a potential risk of SQL injection, ensure you are limiting permissions, and see final section regarding Security and Safety
\n
Final LLM call performed: A second request is sent to the LLM, this time with the user’s original question, and the result of SQL Query. The prompt might look like:
\n\n
“Given the original question, the corresponding PostgreSQL query, and the execution results, produce a truthful and accurate natural language response to the original question.
\n
Question: {question}”
\n\n
Final Response: The LLM responds with the answer to the user’s question, based on the SQL query results.
\n\n
\n
Benefits / Limitations: This architecture is quite simple and benefits in terms of latency by having only two LLM calls. However, this setup is limited because the LLM does not have any examples of valid SQL queries to reference.
\n
\n
Architecture 2: Few Shot SQL Generation with RAG
\n
This implementation is similar to the previous architecture, but rather than having a fixed set of few-shot examples, we create a data preparation step in which example queries are embedded into a vector database and then retrieved at run time.
\n
\n
Figure 2 – Few Shot SQL Generation with RAG
\n
\n
Below, we discuss the new steps that differentiate Architecture 2 from Architecture 1:
\n\n
Offline Data Prep: In order to best leverage the few shot examples framework, a set of example user questions and corresponding SQL queries (50-100 samples) should be collected and stored in JSON or CSV format. Then, each of these pairs should be embedded in a vector database such as Azure AI Search (Search over JSON blobs - Azure AI Search | Microsoft Learn).{\n \"question\": \"Which product line had the highest sales in FY2022?\"\n \"sql_query\": \"SELECT value FROM table_1...\"\n}
\n
(Runtime) User submits question - After the data preparation in step 1, the application starts in the same way as Architecture 1. The user submits a question, and the app sends the question first to the embeddings deployment of Azure OpenAI.
\n
Embed user’s question: Make a request to a text embeddings model, such as text-ada-002, to convert the user’s question to a vector.
\n
Retrieve few shot examples: Then retrieve the top 5 examples with the closest similarity (using Azure AI Search cosine similarity algorithm) and include them in the SQL Generation request to GPT-4.
\n
Steps 5-8: Proceed in the same order as Architecture 1. The SQL string is generated, executed, and the results are used as context to provide the final response to the end user.
\n\n
Benefits / Limitations: This architecture is quite simple and benefits in terms of latency by having only two LLM calls. However, this setup is limited because the LLM does not have any examples of valid SQL queries to reference.
\n
\n
Architecture 3: Fine Tuning SQL Generation with GPT 3.5T
\n
One of the central challenges in building an NL to SQL based chat application is handling latency. One method to reduce latency is by opting to fine tune a smaller model, such as GPT 3.5T for the SQL generation step.
\n
\n
\n
Figure 3 – Fine Tuning SQL Generation with GPT 3.5T
\n
\n
This architecture follows roughly the same pattern as architecture 1, but with a preparatory fine tuning step.
Steps 2-7 – Same as architecture 1, but directed toward the fine tuned instance of GPT 3.5T.
\n\n
Note: If sufficient NL / SQL samples are available, fine tuning could be used with RAG to include few shot examples in addition to the fine tuning. Users should experiment with the exact number of samples to include to get best results and ensure to test with unseen samples.
\n
\n
Evaluation
\n
In order to evaluate an NL to SQL project you will need to evaluate the accuracy of the generated SQL query, the final response, and latency for each step. Below, we outline some of the key metrics to capture during the evaluation stage.
\n
\n
Manual Metrics:
\n
The simplest way of evaluating the application is to have a human evaluator look at the final response and determine if it answer’s the user’s original question correctly. An example of this is End-to-End Accuracy.
\n\n
End-to-End Accuracy – does the final response correctly answer the user’s question?\n
\n
How to implement: Output all question and answers to a spreadsheet, and have a human validator enter 1 or 0 in each row to indicate whether the answer was correct or incorrect. Correct Answers / Total Answers = Accuracy.
\n
\n
\n\n
One of the limitations with this method is that it requires a human to review each response, which can be labor-intensive. Additionally, if the answer is marked incorrect, it may not be clear which part of the process failed. For this reason, we also introduce a set of automated metrics to evaluate each step of the process.
\n
\n
Automated Metrics:
\n
Below we introduce four automated metrics, which can be executed immediately without human reviewers in a scalable fashion.
\n
\n\n
Validity of SQL Query – Is the generated SQL query valid?\n
\n
How to Implement: This can be scored using a python library like sqlvalidator, or by implementing logic into the code to log each instance in which the SQL query fails.
\n
\n
\n
SQL Critic Score – Does the SQL Query and result correctly translate the original question?\n
\n
How to implement: Use the LLM to evaluate itself by sending a prompt with instructions to validate the accuracy of the SQL Query and include the original question, SQL query, and result in the request (see Appendix B Example 5)
\n
\n
\n
End-to-End Relevance – Is the generated NL response relevant to the user’s initial question?\n
\n
How to implement: Send a prompt to the LLM with instructions to compare the NL response to the user’s initial question and evaluate its relevance (see Appendix B Example 6)
\n
\n
\n
End-to-End Groundedness – Does the generated NL response logically follow from the context provided to it (i.e. the SQL Query)?\n
\n
How to implement: Send a prompt to the LLM with instructions to compare the NL response to the SQL query and results and determine if the response logically follows (see Appendix B Example 7)
\n
\n
\n\n
\n
Figure 4 – NL to SQL Evaluation Metrics
\n
\n
Safety and Security
\n
LLMs introduce new risks to a web application. In this case, the LLM is generating SQL code that will be executed. This introduces a attack surface, and the appropriate boundaries should be introduced prior to releasing to public.
\n
\n
NL to SQL systems require various safety precautions to ensure accurate, secure, and unbiased results. Here are some key aspects to consider.
\n
\n
Risks:
\n
\n
SQL Injection
\n
Handling ambiguity and vagueness
\n
Mitigating bias
\n
Unintentionally writing to database
\n
\n
\n
Mitigations:
\n
\n
Granular permissions and proper authorization – refine access based on roles and groups.
\n
Ensure access to known users.
\n
Implement parameterized queries that separate data from the query itself.
\n
Ensure read-only and only execute permissions.
\n
Implement strict input validation and sanitization procedures with whitelisting, regular expressions, data type checks, escaping.
\"You are an expert in providing facts from an SQL database. Given the user question, produce a PostgreSQL query which, when executed, provides the correct answer to the question. Only use the tables and schema given below to answer the questions. Learn query patterns from the similar question-answer pairs provided as examples below. Directly start your response with the executable query. Do not start with '''sql. Do not make up new table and column names. Only use the ones available in the schema below.
\n
\n
SQL Schema:
\n
{schema}
\n
\n
Examples:
\n
{examples}\"
\n
\n
Example 2: SQL to NL System Prompt
\n
\"Given the original question, the corresponding PostgreSQL query, and the execution results, produce a truthful and accurate natural language response to the original question, that is only based on the execution results. Your answer should be detailed and accurate, for numerical responses make sure you infer the appropriate units. If the question is complex, you can provide a multi-sentence response. Make sure that you provide a response that is easy to understand.\"
\n
\n
Example 3: NL to SQL User Prompt
\n
\"Your response should be an executable query, do not start with '''sql Provide detailed reasoning behind the PostgreSQL query, please provide it as a comment using -- at the beginning of the line. Formatting example:
\n
SELECT some_name, val FROM some_table WHERE a = number AND b = another_number -- This query selects some_name and val from some_table where a = number and b = another_number. Queries should return a minimal amount of rows, and should not return more rows than necessary.
Given the information above, give a numeric score of 0 to the Generated SQL if it doesn't correctly handle the User question, and give a numeric score of 1 if the Generated SQL query correctly handles the User question.
\n
If the SQL query yields an error, give a numeric score of 0.
\n
If the SQL query doesn't error out, but doesn't correctly handle the User question, give a numeric score of 0.
\n
If the SQL execution results are empty, most likely it didn't handle the User's question. Think hard if you want to give it a 1 or a 0.
\n
Score: \"
\n
\n
Example 6: End to End Relevance
\n
\"You are an AI assistant. You will be given the definition of an evaluation metric for assessing the quality of an answer to a question-answering task. Your job is to compute an accurate evaluation score using the provided evaluation metric.
\n
\n
You will be presented with a CONTEXT and an ANSWER about that CONTEXT. You need to decide whether the ANSWER is entailed by the CONTEXT by choosing one of the following rating:
\n
\n
10: The ANSWER follows logically from the information contained in the CONTEXT.
\n
0: The ANSWER is logically false from the information contained in the CONTEXT.
\n
an integer score between 0 and 10 and if such integer score does not exists, use 0: It is not possible to determine whether the ANSWER is true or false without further information.
\n
\n
Read the passage of information thoroughly and select the correct answer from the three answer labels. Read the CONTEXT thoroughly to ensure you know what the CONTEXT entails.
\n
\n
Note the ANSWER is generated by a computer system, it can contain certain symbols, which should not be a negative factor in the evaluation.
\n
\n
Independent Examples:
\n
Example Task #1 Input:
\n
\"CONTEXT\":
\n
Query: {Sample SQL Query}
\n
Query results: {Sample SQL Query Result}
\n
\n
\"ANSWER\": \"{Valid Answer}”
\n
\n
Example Task #1 Output:
\n
10
\n
\n
Example Task #2 Input:
\n
\"CONTEXT\":
\n
Query: \"{SQL Query}”
\n
Query results: {SQL Query Results}
\n
\n
\"ANSWER\": \"{NL Response}\"
\n
\n
Example Task #2 Output:
\n
10
\n
\"\"\"
\n
\n
Example 7: End to End groundedness
\n
“Is the answer relevant and related to the question?
","introduction":"","coverImage":null,"coverImageProperties":{"__typename":"CoverImageProperties","style":"STANDARD","titlePosition":"BOTTOM","altText":""},"currentRevision":{"__ref":"Revision:revision:4136387_24"},"latestVersion":{"__typename":"FriendlyVersion","major":"3","minor":"0"},"metrics":{"__typename":"MessageMetrics","views":23224},"visibilityScope":"PUBLIC","canonicalUrl":null,"seoTitle":"Natural Language to SQL Architecture","seoDescription":"A guide to implementing a NL to SQL chat application by showing three architecture alternatives.","placeholder":false,"originalMessageForPlaceholder":null,"contributors":{"__typename":"UserConnection","edges":[]},"nonCoAuthorContributors":{"__typename":"UserConnection","edges":[]},"coAuthors":{"__typename":"UserConnection","edges":[]},"blogMessagePolicies":{"__typename":"BlogMessagePolicies","canDoAuthoringActionsOnBlog":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","key":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","args":[]}}},"archivalData":null,"replies":{"__typename":"MessageConnection","edges":[{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDM5MDIzOSw0MzkwMjM5","node":{"__ref":"BlogReplyMessage:message:4390239"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDM5MDIzOSw0MTk5OTE5","node":{"__ref":"BlogReplyMessage:message:4199919"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDM5MDIzOSw0MTg2MjA3","node":{"__ref":"BlogReplyMessage:message:4186207"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDM5MDIzOSw0MTg1NzQx","node":{"__ref":"BlogReplyMessage:message:4185741"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDM5MDIzOSw0MTg0Nzg5","node":{"__ref":"BlogReplyMessage:message:4184789"}},{"__typename":"MessageEdge","cursor":"MjUuMXwyLjF8aXwxMHwxMzI6MHxpbnQsNDM5MDIzOSw0MTQwNjcy","node":{"__ref":"BlogReplyMessage:message:4140672"}}],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"customFields":[],"revisions({\"constraints\":{\"isPublished\":{\"eq\":true}},\"first\":1})":{"__typename":"RevisionConnection","totalCount":24}},"Conversation:conversation:4136387":{"__typename":"Conversation","id":"conversation:4136387","solved":false,"topic":{"__ref":"BlogTopicMessage:message:4136387"},"lastPostingActivityTime":"2025-03-06T10:00:19.330-08:00","lastPostTime":"2025-03-06T10:00:19.330-08:00","unreadReplyCount":6,"isSubscribed":false},"ModerationData:moderation_data:4136387":{"__typename":"ModerationData","id":"moderation_data:4136387","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ3MGlDRTM1OEY1MERGN0FCMDhG?revision=24\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ3MGlDRTM1OEY1MERGN0FCMDhG?revision=24","title":"Architecture 2.png","associationType":"TEASER","width":1560,"height":796,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ2NGlFMjJCMjI0QTc4OUE0M0RD?revision=24\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ2NGlFMjJCMjI0QTc4OUE0M0RD?revision=24","title":"Architecture 1.png","associationType":"BODY","width":1560,"height":894,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ2NWkxMzkyOTdDRTE5MjcyRkI4?revision=24\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ2NWkxMzkyOTdDRTE5MjcyRkI4?revision=24","title":"Architecture 2.png","associationType":"BODY","width":1560,"height":796,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ5NGkxQTREMUVGM0UwQkQxNDQx?revision=24\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ5NGkxQTREMUVGM0UwQkQxNDQx?revision=24","title":"Architecture 3.png","associationType":"BODY","width":730,"height":425,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ5OGlDNzgwRTYyOUE1NEQ5RTlD?revision=24\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MTM2Mzg3LTU3OTQ5OGlDNzgwRTYyOUE1NEQ5RTlD?revision=24","title":"Metrics.png","associationType":"BODY","width":1850,"height":1032,"altText":null},"Revision:revision:4136387_24":{"__typename":"Revision","id":"revision:4136387_24","lastEditTime":"2024-05-15T10:15:17.886-07:00"},"CachedAsset:theme:customTheme1-1744410784616":{"__typename":"CachedAsset","id":"theme:customTheme1-1744410784616","value":{"id":"customTheme1","animation":{"fast":"150ms","normal":"250ms","slow":"500ms","slowest":"750ms","function":"cubic-bezier(0.07, 0.91, 0.51, 1)","__typename":"AnimationThemeSettings"},"avatar":{"borderRadius":"50%","collections":["default"],"__typename":"AvatarThemeSettings"},"basics":{"browserIcon":{"imageAssetName":"favicon-1730836283320.png","imageLastModified":"1730836286415","__typename":"ThemeAsset"},"customerLogo":{"imageAssetName":"favicon-1730836271365.png","imageLastModified":"1730836274203","__typename":"ThemeAsset"},"maximumWidthOfPageContent":"1300px","oneColumnNarrowWidth":"800px","gridGutterWidthMd":"30px","gridGutterWidthXs":"10px","pageWidthStyle":"WIDTH_OF_BROWSER","__typename":"BasicsThemeSettings"},"buttons":{"borderRadiusSm":"3px","borderRadius":"3px","borderRadiusLg":"5px","paddingY":"5px","paddingYLg":"7px","paddingYHero":"var(--lia-bs-btn-padding-y-lg)","paddingX":"12px","paddingXLg":"16px","paddingXHero":"60px","fontStyle":"NORMAL","fontWeight":"700","textTransform":"NONE","disabledOpacity":0.5,"primaryTextColor":"var(--lia-bs-white)","primaryTextHoverColor":"var(--lia-bs-white)","primaryTextActiveColor":"var(--lia-bs-white)","primaryBgColor":"var(--lia-bs-primary)","primaryBgHoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.85))","primaryBgActiveColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.7))","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","primaryBorderActive":"1px solid transparent","primaryBorderFocus":"1px solid var(--lia-bs-white)","primaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","secondaryTextColor":"var(--lia-bs-gray-900)","secondaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","secondaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","secondaryBgColor":"var(--lia-bs-gray-200)","secondaryBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","secondaryBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","secondaryBorder":"1px solid transparent","secondaryBorderHover":"1px solid transparent","secondaryBorderActive":"1px solid transparent","secondaryBorderFocus":"1px solid transparent","secondaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","tertiaryTextColor":"var(--lia-bs-gray-900)","tertiaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","tertiaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","tertiaryBgColor":"transparent","tertiaryBgHoverColor":"transparent","tertiaryBgActiveColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.04)","tertiaryBorder":"1px solid transparent","tertiaryBorderHover":"1px solid hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","tertiaryBorderActive":"1px solid transparent","tertiaryBorderFocus":"1px solid transparent","tertiaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","destructiveTextColor":"var(--lia-bs-danger)","destructiveTextHoverColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.95))","destructiveTextActiveColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.9))","destructiveBgColor":"var(--lia-bs-gray-200)","destructiveBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","destructiveBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","destructiveBorder":"1px solid transparent","destructiveBorderHover":"1px solid transparent","destructiveBorderActive":"1px solid transparent","destructiveBorderFocus":"1px solid transparent","destructiveBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","__typename":"ButtonsThemeSettings"},"border":{"color":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","mainContent":"NONE","sideContent":"LIGHT","radiusSm":"3px","radius":"5px","radiusLg":"9px","radius50":"100vw","__typename":"BorderThemeSettings"},"boxShadow":{"xs":"0 0 0 1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.08), 0 3px 0 -1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.16)","sm":"0 2px 4px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.12)","md":"0 5px 15px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","lg":"0 10px 30px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","__typename":"BoxShadowThemeSettings"},"cards":{"bgColor":"var(--lia-panel-bg-color)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":"var(--lia-box-shadow-xs)","__typename":"CardsThemeSettings"},"chip":{"maxWidth":"300px","height":"30px","__typename":"ChipThemeSettings"},"coreTypes":{"defaultMessageLinkColor":"var(--lia-bs-link-color)","defaultMessageLinkDecoration":"none","defaultMessageLinkFontStyle":"NORMAL","defaultMessageLinkFontWeight":"400","defaultMessageFontStyle":"NORMAL","defaultMessageFontWeight":"400","forumColor":"#4099E2","forumFontFamily":"var(--lia-bs-font-family-base)","forumFontWeight":"var(--lia-default-message-font-weight)","forumLineHeight":"var(--lia-bs-line-height-base)","forumFontStyle":"var(--lia-default-message-font-style)","forumMessageLinkColor":"var(--lia-default-message-link-color)","forumMessageLinkDecoration":"var(--lia-default-message-link-decoration)","forumMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","forumMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","forumSolvedColor":"#148563","blogColor":"#1CBAA0","blogFontFamily":"var(--lia-bs-font-family-base)","blogFontWeight":"var(--lia-default-message-font-weight)","blogLineHeight":"1.75","blogFontStyle":"var(--lia-default-message-font-style)","blogMessageLinkColor":"var(--lia-default-message-link-color)","blogMessageLinkDecoration":"var(--lia-default-message-link-decoration)","blogMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","blogMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","tkbColor":"#4C6B90","tkbFontFamily":"var(--lia-bs-font-family-base)","tkbFontWeight":"var(--lia-default-message-font-weight)","tkbLineHeight":"1.75","tkbFontStyle":"var(--lia-default-message-font-style)","tkbMessageLinkColor":"var(--lia-default-message-link-color)","tkbMessageLinkDecoration":"var(--lia-default-message-link-decoration)","tkbMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","tkbMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaColor":"#4099E2","qandaFontFamily":"var(--lia-bs-font-family-base)","qandaFontWeight":"var(--lia-default-message-font-weight)","qandaLineHeight":"var(--lia-bs-line-height-base)","qandaFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkColor":"var(--lia-default-message-link-color)","qandaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","qandaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaSolvedColor":"#3FA023","ideaColor":"#FF8000","ideaFontFamily":"var(--lia-bs-font-family-base)","ideaFontWeight":"var(--lia-default-message-font-weight)","ideaLineHeight":"var(--lia-bs-line-height-base)","ideaFontStyle":"var(--lia-default-message-font-style)","ideaMessageLinkColor":"var(--lia-default-message-link-color)","ideaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","ideaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","ideaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","contestColor":"#FCC845","contestFontFamily":"var(--lia-bs-font-family-base)","contestFontWeight":"var(--lia-default-message-font-weight)","contestLineHeight":"var(--lia-bs-line-height-base)","contestFontStyle":"var(--lia-default-message-link-font-style)","contestMessageLinkColor":"var(--lia-default-message-link-color)","contestMessageLinkDecoration":"var(--lia-default-message-link-decoration)","contestMessageLinkFontStyle":"ITALIC","contestMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","occasionColor":"#D13A1F","occasionFontFamily":"var(--lia-bs-font-family-base)","occasionFontWeight":"var(--lia-default-message-font-weight)","occasionLineHeight":"var(--lia-bs-line-height-base)","occasionFontStyle":"var(--lia-default-message-font-style)","occasionMessageLinkColor":"var(--lia-default-message-link-color)","occasionMessageLinkDecoration":"var(--lia-default-message-link-decoration)","occasionMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","occasionMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","grouphubColor":"#333333","categoryColor":"#949494","communityColor":"#FFFFFF","productColor":"#949494","__typename":"CoreTypesThemeSettings"},"colors":{"black":"#000000","white":"#FFFFFF","gray100":"#F7F7F7","gray200":"#F7F7F7","gray300":"#E8E8E8","gray400":"#D9D9D9","gray500":"#CCCCCC","gray600":"#717171","gray700":"#707070","gray800":"#545454","gray900":"#333333","dark":"#545454","light":"#F7F7F7","primary":"#0069D4","secondary":"#333333","bodyText":"#1E1E1E","bodyBg":"#FFFFFF","info":"#409AE2","success":"#41C5AE","warning":"#FCC844","danger":"#BC341B","alertSystem":"#FF6600","textMuted":"#707070","highlight":"#FFFCAD","outline":"var(--lia-bs-primary)","custom":["#D3F5A4","#243A5E"],"__typename":"ColorsThemeSettings"},"divider":{"size":"3px","marginLeft":"4px","marginRight":"4px","borderRadius":"50%","bgColor":"var(--lia-bs-gray-600)","bgColorActive":"var(--lia-bs-gray-600)","__typename":"DividerThemeSettings"},"dropdown":{"fontSize":"var(--lia-bs-font-size-sm)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius-sm)","dividerBg":"var(--lia-bs-gray-300)","itemPaddingY":"5px","itemPaddingX":"20px","headerColor":"var(--lia-bs-gray-700)","__typename":"DropdownThemeSettings"},"email":{"link":{"color":"#0069D4","hoverColor":"#0061c2","decoration":"none","hoverDecoration":"underline","__typename":"EmailLinkSettings"},"border":{"color":"#e4e4e4","__typename":"EmailBorderSettings"},"buttons":{"borderRadiusLg":"5px","paddingXLg":"16px","paddingYLg":"7px","fontWeight":"700","primaryTextColor":"#ffffff","primaryTextHoverColor":"#ffffff","primaryBgColor":"#0069D4","primaryBgHoverColor":"#005cb8","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","__typename":"EmailButtonsSettings"},"panel":{"borderRadius":"5px","borderColor":"#e4e4e4","__typename":"EmailPanelSettings"},"__typename":"EmailThemeSettings"},"emoji":{"skinToneDefault":"#ffcd43","skinToneLight":"#fae3c5","skinToneMediumLight":"#e2cfa5","skinToneMedium":"#daa478","skinToneMediumDark":"#a78058","skinToneDark":"#5e4d43","__typename":"EmojiThemeSettings"},"heading":{"color":"var(--lia-bs-body-color)","fontFamily":"Segoe UI","fontStyle":"NORMAL","fontWeight":"400","h1FontSize":"34px","h2FontSize":"32px","h3FontSize":"28px","h4FontSize":"24px","h5FontSize":"20px","h6FontSize":"16px","lineHeight":"1.3","subHeaderFontSize":"11px","subHeaderFontWeight":"500","h1LetterSpacing":"normal","h2LetterSpacing":"normal","h3LetterSpacing":"normal","h4LetterSpacing":"normal","h5LetterSpacing":"normal","h6LetterSpacing":"normal","subHeaderLetterSpacing":"2px","h1FontWeight":"var(--lia-bs-headings-font-weight)","h2FontWeight":"var(--lia-bs-headings-font-weight)","h3FontWeight":"var(--lia-bs-headings-font-weight)","h4FontWeight":"var(--lia-bs-headings-font-weight)","h5FontWeight":"var(--lia-bs-headings-font-weight)","h6FontWeight":"var(--lia-bs-headings-font-weight)","__typename":"HeadingThemeSettings"},"icons":{"size10":"10px","size12":"12px","size14":"14px","size16":"16px","size20":"20px","size24":"24px","size30":"30px","size40":"40px","size50":"50px","size60":"60px","size80":"80px","size120":"120px","size160":"160px","__typename":"IconsThemeSettings"},"imagePreview":{"bgColor":"var(--lia-bs-gray-900)","titleColor":"var(--lia-bs-white)","controlColor":"var(--lia-bs-white)","controlBgColor":"var(--lia-bs-gray-800)","__typename":"ImagePreviewThemeSettings"},"input":{"borderColor":"var(--lia-bs-gray-600)","disabledColor":"var(--lia-bs-gray-600)","focusBorderColor":"var(--lia-bs-primary)","labelMarginBottom":"10px","btnFontSize":"var(--lia-bs-font-size-sm)","focusBoxShadow":"0 0 0 3px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","checkLabelMarginBottom":"2px","checkboxBorderRadius":"3px","borderRadiusSm":"var(--lia-bs-border-radius-sm)","borderRadius":"var(--lia-bs-border-radius)","borderRadiusLg":"var(--lia-bs-border-radius-lg)","formTextMarginTop":"4px","textAreaBorderRadius":"var(--lia-bs-border-radius)","activeFillColor":"var(--lia-bs-primary)","__typename":"InputThemeSettings"},"loading":{"dotDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.2)","dotLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.5)","barDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.06)","barLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.4)","__typename":"LoadingThemeSettings"},"link":{"color":"var(--lia-bs-primary)","hoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) - 10%))","decoration":"none","hoverDecoration":"underline","__typename":"LinkThemeSettings"},"listGroup":{"itemPaddingY":"15px","itemPaddingX":"15px","borderColor":"var(--lia-bs-gray-300)","__typename":"ListGroupThemeSettings"},"modal":{"contentTextColor":"var(--lia-bs-body-color)","contentBg":"var(--lia-bs-white)","backgroundBg":"var(--lia-bs-black)","smSize":"440px","mdSize":"760px","lgSize":"1080px","backdropOpacity":0.3,"contentBoxShadowXs":"var(--lia-bs-box-shadow-sm)","contentBoxShadow":"var(--lia-bs-box-shadow)","headerFontWeight":"700","__typename":"ModalThemeSettings"},"navbar":{"position":"FIXED","background":{"attachment":null,"clip":null,"color":"var(--lia-bs-white)","imageAssetName":"","imageLastModified":"0","origin":null,"position":"CENTER_CENTER","repeat":"NO_REPEAT","size":"COVER","__typename":"BackgroundProps"},"backgroundOpacity":0.8,"paddingTop":"15px","paddingBottom":"15px","borderBottom":"1px solid var(--lia-bs-border-color)","boxShadow":"var(--lia-bs-box-shadow-sm)","brandMarginRight":"30px","brandMarginRightSm":"10px","brandLogoHeight":"30px","linkGap":"10px","linkJustifyContent":"flex-start","linkPaddingY":"5px","linkPaddingX":"10px","linkDropdownPaddingY":"9px","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkColor":"var(--lia-bs-body-color)","linkHoverColor":"var(--lia-bs-primary)","linkFontSize":"var(--lia-bs-font-size-sm)","linkFontStyle":"NORMAL","linkFontWeight":"400","linkTextTransform":"NONE","linkLetterSpacing":"normal","linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkBgColor":"transparent","linkBgHoverColor":"transparent","linkBorder":"none","linkBorderHover":"none","linkBoxShadow":"none","linkBoxShadowHover":"none","linkTextBorderBottom":"none","linkTextBorderBottomHover":"none","dropdownPaddingTop":"10px","dropdownPaddingBottom":"15px","dropdownPaddingX":"10px","dropdownMenuOffset":"2px","dropdownDividerMarginTop":"10px","dropdownDividerMarginBottom":"10px","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","controllerIconColor":"var(--lia-bs-body-color)","controllerIconHoverColor":"var(--lia-bs-body-color)","controllerTextColor":"var(--lia-nav-controller-icon-color)","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","controllerHighlightColor":"hsla(30, 100%, 50%)","controllerHighlightTextColor":"var(--lia-yiq-light)","controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerColor":"var(--lia-nav-controller-icon-color)","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","hamburgerBgColor":"transparent","hamburgerBgHoverColor":"transparent","hamburgerBorder":"none","hamburgerBorderHover":"none","collapseMenuMarginLeft":"20px","collapseMenuDividerBg":"var(--lia-nav-link-color)","collapseMenuDividerOpacity":0.16,"__typename":"NavbarThemeSettings"},"pager":{"textColor":"var(--lia-bs-link-color)","textFontWeight":"var(--lia-font-weight-md)","textFontSize":"var(--lia-bs-font-size-sm)","__typename":"PagerThemeSettings"},"panel":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-bs-border-radius)","borderColor":"var(--lia-bs-border-color)","boxShadow":"none","__typename":"PanelThemeSettings"},"popover":{"arrowHeight":"8px","arrowWidth":"16px","maxWidth":"300px","minWidth":"100px","headerBg":"var(--lia-bs-white)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius)","boxShadow":"0 0.5rem 1rem hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.15)","__typename":"PopoverThemeSettings"},"prism":{"color":"#000000","bgColor":"#f5f2f0","fontFamily":"var(--font-family-monospace)","fontSize":"var(--lia-bs-font-size-base)","fontWeightBold":"var(--lia-bs-font-weight-bold)","fontStyleItalic":"italic","tabSize":2,"highlightColor":"#b3d4fc","commentColor":"#62707e","punctuationColor":"#6f6f6f","namespaceOpacity":"0.7","propColor":"#990055","selectorColor":"#517a00","operatorColor":"#906736","operatorBgColor":"hsla(0, 0%, 100%, 0.5)","keywordColor":"#0076a9","functionColor":"#d3284b","variableColor":"#c14700","__typename":"PrismThemeSettings"},"rte":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":" var(--lia-panel-box-shadow)","customColor1":"#bfedd2","customColor2":"#fbeeb8","customColor3":"#f8cac6","customColor4":"#eccafa","customColor5":"#c2e0f4","customColor6":"#2dc26b","customColor7":"#f1c40f","customColor8":"#e03e2d","customColor9":"#b96ad9","customColor10":"#3598db","customColor11":"#169179","customColor12":"#e67e23","customColor13":"#ba372a","customColor14":"#843fa1","customColor15":"#236fa1","customColor16":"#ecf0f1","customColor17":"#ced4d9","customColor18":"#95a5a6","customColor19":"#7e8c8d","customColor20":"#34495e","customColor21":"#000000","customColor22":"#ffffff","defaultMessageHeaderMarginTop":"40px","defaultMessageHeaderMarginBottom":"20px","defaultMessageItemMarginTop":"0","defaultMessageItemMarginBottom":"10px","diffAddedColor":"hsla(170, 53%, 51%, 0.4)","diffChangedColor":"hsla(43, 97%, 63%, 0.4)","diffNoneColor":"hsla(0, 0%, 80%, 0.4)","diffRemovedColor":"hsla(9, 74%, 47%, 0.4)","specialMessageHeaderMarginTop":"40px","specialMessageHeaderMarginBottom":"20px","specialMessageItemMarginTop":"0","specialMessageItemMarginBottom":"10px","__typename":"RteThemeSettings"},"tags":{"bgColor":"var(--lia-bs-gray-200)","bgHoverColor":"var(--lia-bs-gray-400)","borderRadius":"var(--lia-bs-border-radius-sm)","color":"var(--lia-bs-body-color)","hoverColor":"var(--lia-bs-body-color)","fontWeight":"var(--lia-font-weight-md)","fontSize":"var(--lia-font-size-xxs)","textTransform":"UPPERCASE","letterSpacing":"0.5px","__typename":"TagsThemeSettings"},"toasts":{"borderRadius":"var(--lia-bs-border-radius)","paddingX":"12px","__typename":"ToastsThemeSettings"},"typography":{"fontFamilyBase":"Segoe UI","fontStyleBase":"NORMAL","fontWeightBase":"400","fontWeightLight":"300","fontWeightNormal":"400","fontWeightMd":"500","fontWeightBold":"700","letterSpacingSm":"normal","letterSpacingXs":"normal","lineHeightBase":"1.5","fontSizeBase":"16px","fontSizeXxs":"11px","fontSizeXs":"12px","fontSizeSm":"14px","fontSizeLg":"20px","fontSizeXl":"24px","smallFontSize":"14px","customFonts":[{"source":"SERVER","name":"Segoe UI","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"},{"style":"NORMAL","weight":"300","__typename":"FontStyleData"},{"style":"NORMAL","weight":"600","__typename":"FontStyleData"},{"style":"NORMAL","weight":"700","__typename":"FontStyleData"},{"style":"ITALIC","weight":"400","__typename":"FontStyleData"}],"assetNames":["SegoeUI-normal-400.woff2","SegoeUI-normal-300.woff2","SegoeUI-normal-600.woff2","SegoeUI-normal-700.woff2","SegoeUI-italic-400.woff2"],"__typename":"CustomFont"},{"source":"SERVER","name":"MWF Fluent Icons","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"}],"assetNames":["MWFFluentIcons-normal-400.woff2"],"__typename":"CustomFont"}],"__typename":"TypographyThemeSettings"},"unstyledListItem":{"marginBottomSm":"5px","marginBottomMd":"10px","marginBottomLg":"15px","marginBottomXl":"20px","marginBottomXxl":"25px","__typename":"UnstyledListItemThemeSettings"},"yiq":{"light":"#ffffff","dark":"#000000","__typename":"YiqThemeSettings"},"colorLightness":{"primaryDark":0.36,"primaryLight":0.74,"primaryLighter":0.89,"primaryLightest":0.95,"infoDark":0.39,"infoLight":0.72,"infoLighter":0.85,"infoLightest":0.93,"successDark":0.24,"successLight":0.62,"successLighter":0.8,"successLightest":0.91,"warningDark":0.39,"warningLight":0.68,"warningLighter":0.84,"warningLightest":0.93,"dangerDark":0.41,"dangerLight":0.72,"dangerLighter":0.89,"dangerLightest":0.95,"__typename":"ColorLightnessThemeSettings"},"localOverride":false,"__typename":"Theme"},"localOverride":false},"CachedAsset:text:en_US-components/common/EmailVerification-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/common/EmailVerification-1745505309846","value":{"email.verification.title":"Email Verification Required","email.verification.message.update.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. To change your email, visit My Settings.","email.verification.message.resend.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. Resend email."},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-1745505309846","value":{"title":"Loading..."},"localOverride":false},"CachedAsset:quilt:o365.prod:pages/blogs/BlogMessagePage:board:AzureArchitectureBlog-1745502712781":{"__typename":"CachedAsset","id":"quilt:o365.prod:pages/blogs/BlogMessagePage:board:AzureArchitectureBlog-1745502712781","value":{"id":"BlogMessagePage","container":{"id":"Common","headerProps":{"backgroundImageProps":null,"backgroundColor":null,"addComponents":null,"removeComponents":["community.widget.bannerWidget"],"componentOrder":null,"__typename":"QuiltContainerSectionProps"},"headerComponentProps":{"community.widget.breadcrumbWidget":{"disableLastCrumbForDesktop":false}},"footerProps":null,"footerComponentProps":null,"items":[{"id":"blog-article","layout":"ONE_COLUMN","bgColor":null,"showTitle":null,"showDescription":null,"textPosition":null,"textColor":null,"sectionEditLevel":"LOCKED","bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"OneColumnQuiltSection","columnMap":{"main":[{"id":"blogs.widget.blogArticleWidget","className":"lia-blog-container","props":null,"__typename":"QuiltComponent"}],"__typename":"OneSectionColumns"}},{"id":"section-1729184836777","layout":"MAIN_SIDE","bgColor":"transparent","showTitle":false,"showDescription":false,"textPosition":"CENTER","textColor":"var(--lia-bs-body-color)","sectionEditLevel":null,"bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"MainSideQuiltSection","columnMap":{"main":[],"side":[],"__typename":"MainSideSectionColumns"}}],"__typename":"QuiltContainer"},"__typename":"Quilt","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-pages/blogs/BlogMessagePage-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-pages/blogs/BlogMessagePage-1745505309846","value":{"title":"{contextMessageSubject} | {communityTitle}","errorMissing":"This blog post cannot be found","name":"Blog Message Page","section.blog-article.title":"Blog Post","archivedMessageTitle":"This Content Has Been Archived","section.section-1729184836777.title":"","section.section-1729184836777.description":"","section.CncIde.title":"Blog Post","section.tifEmD.description":"","section.tifEmD.title":""},"localOverride":false},"CachedAsset:quiltWrapper:o365.prod:Common:1745505310273":{"__typename":"CachedAsset","id":"quiltWrapper:o365.prod:Common:1745505310273","value":{"id":"Common","header":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"community.widget.navbarWidget","props":{"showUserName":true,"showRegisterLink":true,"useIconLanguagePicker":true,"useLabelLanguagePicker":true,"className":"QuiltComponent_lia-component-edit-mode__0nCcm","links":{"sideLinks":[],"mainLinks":[{"children":[],"linkType":"INTERNAL","id":"gxcuf89792","params":{},"routeName":"CommunityPage"},{"children":[],"linkType":"EXTERNAL","id":"external-link","url":"/Directory","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft365","params":{"categoryId":"microsoft365"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows","params":{"categoryId":"Windows"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"Common-microsoft365-copilot-link","params":{"categoryId":"Microsoft365Copilot"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-teams","params":{"categoryId":"MicrosoftTeams"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-securityand-compliance","params":{"categoryId":"microsoft-security"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"azure","params":{"categoryId":"Azure"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"Common-content_management-link","params":{"categoryId":"Content_Management"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"exchange","params":{"categoryId":"Exchange"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows-server","params":{"categoryId":"Windows-Server"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"outlook","params":{"categoryId":"Outlook"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-endpoint-manager","params":{"categoryId":"microsoftintune"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-2","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities","url":"/","target":"BLANK"},{"children":[{"linkType":"INTERNAL","id":"a-i","params":{"categoryId":"AI"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"education-sector","params":{"categoryId":"EducationSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"partner-community","params":{"categoryId":"PartnerCommunity"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"i-t-ops-talk","params":{"categoryId":"ITOpsTalk"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"healthcare-and-life-sciences","params":{"categoryId":"HealthcareAndLifeSciences"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-mechanics","params":{"categoryId":"MicrosoftMechanics"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"public-sector","params":{"categoryId":"PublicSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-m-b","params":{"categoryId":"MicrosoftforNonprofits"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"io-t","params":{"categoryId":"IoT"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"startupsat-microsoft","params":{"categoryId":"StartupsatMicrosoft"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"driving-adoption","params":{"categoryId":"DrivingAdoption"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-1","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities-1","url":"/","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external","url":"/Blogs","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external-1","url":"/Events","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft-learn-1","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-learn-blog","params":{"boardId":"MicrosoftLearnBlog","categoryId":"MicrosoftLearn"},"routeName":"BlogBoardPage"},{"linkType":"EXTERNAL","id":"external-10","url":"https://learningroomdirectory.microsoft.com/","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-3","url":"https://docs.microsoft.com/learn/dynamics365/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-4","url":"https://docs.microsoft.com/learn/m365/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-5","url":"https://docs.microsoft.com/learn/topics/sci/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-6","url":"https://docs.microsoft.com/learn/powerplatform/?wt.mc_id=techcom_header-webpage-powerplatform","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-7","url":"https://docs.microsoft.com/learn/github/?wt.mc_id=techcom_header-webpage-github","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-8","url":"https://docs.microsoft.com/learn/teams/?wt.mc_id=techcom_header-webpage-teams","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-9","url":"https://docs.microsoft.com/learn/dotnet/?wt.mc_id=techcom_header-webpage-dotnet","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-2","url":"https://docs.microsoft.com/learn/azure/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"}],"linkType":"INTERNAL","id":"microsoft-learn","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"children":[],"linkType":"INTERNAL","id":"community-info-center","params":{"categoryId":"Community-Info-Center"},"routeName":"CategoryPage"}]},"style":{"boxShadow":"var(--lia-bs-box-shadow-sm)","controllerHighlightColor":"hsla(30, 100%, 50%)","linkFontWeight":"400","dropdownDividerMarginBottom":"10px","hamburgerBorderHover":"none","linkBoxShadowHover":"none","linkFontSize":"14px","backgroundOpacity":0.8,"controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerBgColor":"transparent","hamburgerColor":"var(--lia-nav-controller-icon-color)","linkTextBorderBottom":"none","brandLogoHeight":"30px","linkBgHoverColor":"transparent","linkLetterSpacing":"normal","collapseMenuDividerOpacity":0.16,"dropdownPaddingBottom":"15px","paddingBottom":"15px","dropdownMenuOffset":"2px","hamburgerBgHoverColor":"transparent","borderBottom":"1px solid var(--lia-bs-border-color)","hamburgerBorder":"none","dropdownPaddingX":"10px","brandMarginRightSm":"10px","linkBoxShadow":"none","collapseMenuDividerBg":"var(--lia-nav-link-color)","linkColor":"var(--lia-bs-body-color)","linkJustifyContent":"flex-start","dropdownPaddingTop":"10px","controllerHighlightTextColor":"var(--lia-yiq-dark)","controllerTextColor":"var(--lia-nav-controller-icon-color)","background":{"imageAssetName":"","color":"var(--lia-bs-white)","size":"COVER","repeat":"NO_REPEAT","position":"CENTER_CENTER","imageLastModified":""},"linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkHoverColor":"var(--lia-bs-body-color)","position":"FIXED","linkBorder":"none","linkTextBorderBottomHover":"2px solid var(--lia-bs-body-color)","brandMarginRight":"30px","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","linkBorderHover":"none","collapseMenuMarginLeft":"20px","linkFontStyle":"NORMAL","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","linkPaddingX":"10px","linkPaddingY":"5px","paddingTop":"15px","linkTextTransform":"NONE","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","linkBgColor":"transparent","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkDropdownPaddingY":"9px","controllerIconColor":"var(--lia-bs-body-color)","dropdownDividerMarginTop":"10px","linkGap":"10px","controllerIconHoverColor":"var(--lia-bs-body-color)"},"showSearchIcon":false,"languagePickerStyle":"iconAndLabel"},"__typename":"QuiltComponent"},{"id":"community.widget.breadcrumbWidget","props":{"backgroundColor":"transparent","linkHighlightColor":"var(--lia-bs-primary)","visualEffects":{"showBottomBorder":true},"linkTextColor":"var(--lia-bs-gray-700)"},"__typename":"QuiltComponent"},{"id":"custom.widget.community_banner","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"usePageWidth":false,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"},{"id":"custom.widget.HeroBanner","props":{"widgetVisibility":"signedInOrAnonymous","usePageWidth":false,"useTitle":true,"cMax_items":3,"useBackground":false,"title":"","lazyLoad":false,"widgetChooser":"custom.widget.HeroBanner"},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"footer":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"custom.widget.MicrosoftFooter","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"__typename":"QuiltWrapper","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/ActionFeedback-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/common/ActionFeedback-1745505309846","value":{"joinedGroupHub.title":"Welcome","joinedGroupHub.message":"You are now a member of this group and are subscribed to updates.","groupHubInviteNotFound.title":"Invitation Not Found","groupHubInviteNotFound.message":"Sorry, we could not find your invitation to the group. The owner may have canceled the invite.","groupHubNotFound.title":"Group Not Found","groupHubNotFound.message":"The grouphub you tried to join does not exist. It may have been deleted.","existingGroupHubMember.title":"Already Joined","existingGroupHubMember.message":"You are already a member of this group.","accountLocked.title":"Account Locked","accountLocked.message":"Your account has been locked due to multiple failed attempts. Try again in {lockoutTime} minutes.","editedGroupHub.title":"Changes Saved","editedGroupHub.message":"Your group has been updated.","leftGroupHub.title":"Goodbye","leftGroupHub.message":"You are no longer a member of this group and will not receive future updates.","deletedGroupHub.title":"Deleted","deletedGroupHub.message":"The group has been deleted.","groupHubCreated.title":"Group Created","groupHubCreated.message":"{groupHubName} is ready to use","accountClosed.title":"Account Closed","accountClosed.message":"The account has been closed and you will now be redirected to the homepage","resetTokenExpired.title":"Reset Password Link has Expired","resetTokenExpired.message":"Try resetting your password again","invalidUrl.title":"Invalid URL","invalidUrl.message":"The URL you're using is not recognized. Verify your URL and try again.","accountClosedForUser.title":"Account Closed","accountClosedForUser.message":"{userName}'s account is closed","inviteTokenInvalid.title":"Invitation Invalid","inviteTokenInvalid.message":"Your invitation to the community has been canceled or expired.","inviteTokenError.title":"Invitation Verification Failed","inviteTokenError.message":"The url you are utilizing is not recognized. Verify your URL and try again","pageNotFound.title":"Access Denied","pageNotFound.message":"You do not have access to this area of the community or it doesn't exist","eventAttending.title":"Responded as Attending","eventAttending.message":"You'll be notified when there's new activity and reminded as the event approaches","eventInterested.title":"Responded as Interested","eventInterested.message":"You'll be notified when there's new activity and reminded as the event approaches","eventNotFound.title":"Event Not Found","eventNotFound.message":"The event you tried to respond to does not exist.","redirectToRelatedPage.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.message":"The content you are trying to access is archived","redirectToRelatedPage.message":"The content you are trying to access is archived","relatedUrl.archivalLink.flyoutMessage":"The content you are trying to access is archived View Archived Content"},"localOverride":false},"CachedAsset:component:custom.widget.community_banner-en-1744410817391":{"__typename":"CachedAsset","id":"component:custom.widget.community_banner-en-1744410817391","value":{"component":{"id":"custom.widget.community_banner","template":{"id":"community_banner","markupLanguage":"HANDLEBARS","style":".community-banner {\n a.top-bar.btn {\n top: 0px;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0px;\n background: #0068b8;\n color: white;\n padding: 10px 0px;\n display: block;\n box-shadow: none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0px !important;\n font-size: 14px;\n }\n}\n","texts":null,"defaults":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.community_banner","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_community_banner_community-banner_1x9u2_1 {\n a.custom_widget_community_banner_top-bar_1x9u2_2.custom_widget_community_banner_btn_1x9u2_2 {\n top: 0;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0;\n background: #0068b8;\n color: white;\n padding: 0.625rem 0;\n display: block;\n box-shadow: none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0 !important;\n font-size: 0.875rem;\n }\n}\n","tokens":{"community-banner":"custom_widget_community_banner_community-banner_1x9u2_1","top-bar":"custom_widget_community_banner_top-bar_1x9u2_2","btn":"custom_widget_community_banner_btn_1x9u2_2"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.HeroBanner-en-1744410817391":{"__typename":"CachedAsset","id":"component:custom.widget.HeroBanner-en-1744410817391","value":{"component":{"id":"custom.widget.HeroBanner","template":{"id":"HeroBanner","markupLanguage":"REACT","style":null,"texts":{"searchPlaceholderText":"Search this community","followActionText":"Follow","unfollowActionText":"Following","searchOnHoverText":"Please enter your search term(s) and then press return key to complete a search.","blogs.sidebar.pagetitle":"Latest Blogs | Microsoft Tech Community","followThisNode":"Follow this node","unfollowThisNode":"Unfollow this node"},"defaults":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.HeroBanner","form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"__typename":"Component","localOverride":false},"globalCss":null,"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"}},"localOverride":false},"CachedAsset:component:custom.widget.MicrosoftFooter-en-1744410817391":{"__typename":"CachedAsset","id":"component:custom.widget.MicrosoftFooter-en-1744410817391","value":{"component":{"id":"custom.widget.MicrosoftFooter","template":{"id":"MicrosoftFooter","markupLanguage":"HANDLEBARS","style":".context-uhf {\n min-width: 280px;\n font-size: 15px;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.c-uhff-link {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.c-uhff {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.c-uhff-nav {\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n .c-heading-4 {\n color: #616161;\n word-break: break-word;\n font-size: 15px;\n line-height: 20px;\n padding: 36px 0 4px;\n font-weight: 600;\n }\n .c-uhff-nav-row {\n .c-uhff-nav-group {\n display: block;\n float: left;\n min-height: 1px;\n vertical-align: text-top;\n padding: 0 12px;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.c-list.f-bare {\n font-size: 11px;\n line-height: 16px;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 8px 0;\n margin: 0;\n }\n }\n }\n }\n}\n.c-uhff-base {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 30px 5% 16px;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.c-uhff-ccpa {\n font-size: 11px;\n line-height: 16px;\n float: left;\n margin: 3px 0;\n }\n a.c-uhff-ccpa:hover {\n text-decoration: underline;\n }\n ul.c-list {\n font-size: 11px;\n line-height: 16px;\n float: right;\n margin: 3px 0;\n color: #616161;\n li {\n padding: 0 24px 4px 0;\n display: inline-block;\n }\n }\n .c-list.f-bare {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 30px 24px 16px;\n }\n}\n\n.social-share {\n position: fixed;\n top: 60%;\n transform: translateY(-50%);\n left: 0;\n z-index: 1000;\n}\n\n.sharing-options {\n list-style: none;\n padding: 0;\n margin: 0;\n display: block;\n flex-direction: column;\n background-color: white;\n width: 43px;\n border-radius: 0px 7px 7px 0px;\n}\n.linkedin-icon {\n border-top-right-radius: 7px;\n}\n.linkedin-icon:hover {\n border-radius: 0;\n}\n.social-share-rss-image {\n border-bottom-right-radius: 7px;\n}\n.social-share-rss-image:hover {\n border-radius: 0;\n}\n\n.social-link-footer {\n position: relative;\n display: block;\n margin: -2px 0;\n transition: all 0.2s ease;\n}\n.social-link-footer:hover .linkedin-icon {\n border-radius: 0;\n}\n.social-link-footer:hover .social-share-rss-image {\n border-radius: 0;\n}\n\n.social-link-footer img {\n width: 40px;\n height: auto;\n transition: filter 0.3s ease;\n}\n\n.social-share-list {\n width: 40px;\n}\n.social-share-rss-image {\n width: 40px;\n}\n\n.share-icon {\n border: 2px solid transparent;\n display: inline-block;\n position: relative;\n}\n\n.share-icon:hover {\n opacity: 1;\n border: 2px solid white;\n box-sizing: border-box;\n}\n\n.share-icon:hover .label {\n opacity: 1;\n visibility: visible;\n border: 2px solid white;\n box-sizing: border-box;\n border-left: none;\n}\n\n.label {\n position: absolute;\n left: 100%;\n white-space: nowrap;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n color: white;\n border-radius: 0 10 0 10px;\n top: 50%;\n transform: translateY(-50%);\n height: 40px;\n border-radius: 0 6px 6px 0;\n display: flex;\n align-items: center;\n justify-content: center;\n padding: 20px 5px 20px 8px;\n margin-left: -1px;\n}\n.linkedin {\n background-color: #0474b4;\n}\n.facebook {\n background-color: #3c5c9c;\n}\n.twitter {\n background-color: white;\n color: black;\n}\n.reddit {\n background-color: #fc4404;\n}\n.mail {\n background-color: #848484;\n}\n.bluesky {\n background-color: white;\n color: black;\n}\n.rss {\n background-color: #ec7b1c;\n}\n#RSS {\n width: 40px;\n height: 40px;\n}\n\n@media (max-width: 991px) {\n .social-share {\n display: none;\n }\n}\n","texts":{"New tab":"What's New","New 1":"Surface Laptop Studio 2","New 2":"Surface Laptop Go 3","New 3":"Surface Pro 9","New 4":"Surface Laptop 5","New 5":"Surface Studio 2+","New 6":"Copilot in Windows","New 7":"Microsoft 365","New 8":"Windows 11 apps","Store tab":"Microsoft Store","Store 1":"Account Profile","Store 2":"Download Center","Store 3":"Microsoft Store Support","Store 4":"Returns","Store 5":"Order tracking","Store 6":"Certified Refurbished","Store 7":"Microsoft Store Promise","Store 8":"Flexible Payments","Education tab":"Education","Edu 1":"Microsoft in education","Edu 2":"Devices for education","Edu 3":"Microsoft Teams for Education","Edu 4":"Microsoft 365 Education","Edu 5":"How to buy for your school","Edu 6":"Educator Training and development","Edu 7":"Deals for students and parents","Edu 8":"Azure for students","Business tab":"Business","Bus 1":"Microsoft Cloud","Bus 2":"Microsoft Security","Bus 3":"Dynamics 365","Bus 4":"Microsoft 365","Bus 5":"Microsoft Power Platform","Bus 6":"Microsoft Teams","Bus 7":"Microsoft Industry","Bus 8":"Small Business","Developer tab":"Developer & IT","Dev 1":"Azure","Dev 2":"Developer Center","Dev 3":"Documentation","Dev 4":"Microsoft Learn","Dev 5":"Microsoft Tech Community","Dev 6":"Azure Marketplace","Dev 7":"AppSource","Dev 8":"Visual Studio","Company tab":"Company","Com 1":"Careers","Com 2":"About Microsoft","Com 3":"Company News","Com 4":"Privacy at Microsoft","Com 5":"Investors","Com 6":"Diversity and inclusion","Com 7":"Accessiblity","Com 8":"Sustainibility"},"defaults":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.MicrosoftFooter","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_MicrosoftFooter_context-uhf_105bp_1 {\n min-width: 17.5rem;\n font-size: 0.9375rem;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-link_105bp_12 {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff_105bp_12 {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.custom_widget_MicrosoftFooter_c-uhff-nav_105bp_35 {\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n .custom_widget_MicrosoftFooter_c-heading-4_105bp_49 {\n color: #616161;\n word-break: break-word;\n font-size: 0.9375rem;\n line-height: 1.25rem;\n padding: 2.25rem 0 0.25rem;\n font-weight: 600;\n }\n .custom_widget_MicrosoftFooter_c-uhff-nav-row_105bp_57 {\n .custom_widget_MicrosoftFooter_c-uhff-nav-group_105bp_58 {\n display: block;\n float: left;\n min-height: 0.0625rem;\n vertical-align: text-top;\n padding: 0 0.75rem;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.custom_widget_MicrosoftFooter_c-list_105bp_78.custom_widget_MicrosoftFooter_f-bare_105bp_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 0.5rem 0;\n margin: 0;\n }\n }\n }\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff-base_105bp_94 {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 1.875rem 5% 1rem;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: left;\n margin: 0.1875rem 0;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107:hover {\n text-decoration: underline;\n }\n ul.custom_widget_MicrosoftFooter_c-list_105bp_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: right;\n margin: 0.1875rem 0;\n color: #616161;\n li {\n padding: 0 1.5rem 0.25rem 0;\n display: inline-block;\n }\n }\n .custom_widget_MicrosoftFooter_c-list_105bp_78.custom_widget_MicrosoftFooter_f-bare_105bp_78 {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 1.875rem 1.5rem 1rem;\n }\n}\n.custom_widget_MicrosoftFooter_social-share_105bp_138 {\n position: fixed;\n top: 60%;\n transform: translateY(-50%);\n left: 0;\n z-index: 1000;\n}\n.custom_widget_MicrosoftFooter_sharing-options_105bp_146 {\n list-style: none;\n padding: 0;\n margin: 0;\n display: block;\n flex-direction: column;\n background-color: white;\n width: 2.6875rem;\n border-radius: 0 0.4375rem 0.4375rem 0;\n}\n.custom_widget_MicrosoftFooter_linkedin-icon_105bp_156 {\n border-top-right-radius: 7px;\n}\n.custom_widget_MicrosoftFooter_linkedin-icon_105bp_156:hover {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n border-bottom-right-radius: 7px;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162:hover {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169 {\n position: relative;\n display: block;\n margin: -0.125rem 0;\n transition: all 0.2s ease;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169:hover .custom_widget_MicrosoftFooter_linkedin-icon_105bp_156 {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169:hover .custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169 img {\n width: 2.5rem;\n height: auto;\n transition: filter 0.3s ease;\n}\n.custom_widget_MicrosoftFooter_social-share-list_105bp_188 {\n width: 2.5rem;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n width: 2.5rem;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195 {\n border: 2px solid transparent;\n display: inline-block;\n position: relative;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195:hover {\n opacity: 1;\n border: 2px solid white;\n box-sizing: border-box;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195:hover .custom_widget_MicrosoftFooter_label_105bp_207 {\n opacity: 1;\n visibility: visible;\n border: 2px solid white;\n box-sizing: border-box;\n border-left: none;\n}\n.custom_widget_MicrosoftFooter_label_105bp_207 {\n position: absolute;\n left: 100%;\n white-space: nowrap;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n color: white;\n border-radius: 0 10 0 0.625rem;\n top: 50%;\n transform: translateY(-50%);\n height: 2.5rem;\n border-radius: 0 0.375rem 0.375rem 0;\n display: flex;\n align-items: center;\n justify-content: center;\n padding: 1.25rem 0.3125rem 1.25rem 0.5rem;\n margin-left: -0.0625rem;\n}\n.custom_widget_MicrosoftFooter_linkedin_105bp_156 {\n background-color: #0474b4;\n}\n.custom_widget_MicrosoftFooter_facebook_105bp_237 {\n background-color: #3c5c9c;\n}\n.custom_widget_MicrosoftFooter_twitter_105bp_240 {\n background-color: white;\n color: black;\n}\n.custom_widget_MicrosoftFooter_reddit_105bp_244 {\n background-color: #fc4404;\n}\n.custom_widget_MicrosoftFooter_mail_105bp_247 {\n background-color: #848484;\n}\n.custom_widget_MicrosoftFooter_bluesky_105bp_250 {\n background-color: white;\n color: black;\n}\n.custom_widget_MicrosoftFooter_rss_105bp_254 {\n background-color: #ec7b1c;\n}\n#custom_widget_MicrosoftFooter_RSS_105bp_1 {\n width: 2.5rem;\n height: 2.5rem;\n}\n@media (max-width: 991px) {\n .custom_widget_MicrosoftFooter_social-share_105bp_138 {\n display: none;\n }\n}\n","tokens":{"context-uhf":"custom_widget_MicrosoftFooter_context-uhf_105bp_1","c-uhff-link":"custom_widget_MicrosoftFooter_c-uhff-link_105bp_12","c-uhff":"custom_widget_MicrosoftFooter_c-uhff_105bp_12","c-uhff-nav":"custom_widget_MicrosoftFooter_c-uhff-nav_105bp_35","c-heading-4":"custom_widget_MicrosoftFooter_c-heading-4_105bp_49","c-uhff-nav-row":"custom_widget_MicrosoftFooter_c-uhff-nav-row_105bp_57","c-uhff-nav-group":"custom_widget_MicrosoftFooter_c-uhff-nav-group_105bp_58","c-list":"custom_widget_MicrosoftFooter_c-list_105bp_78","f-bare":"custom_widget_MicrosoftFooter_f-bare_105bp_78","c-uhff-base":"custom_widget_MicrosoftFooter_c-uhff-base_105bp_94","c-uhff-ccpa":"custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107","social-share":"custom_widget_MicrosoftFooter_social-share_105bp_138","sharing-options":"custom_widget_MicrosoftFooter_sharing-options_105bp_146","linkedin-icon":"custom_widget_MicrosoftFooter_linkedin-icon_105bp_156","social-share-rss-image":"custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162","social-link-footer":"custom_widget_MicrosoftFooter_social-link-footer_105bp_169","social-share-list":"custom_widget_MicrosoftFooter_social-share-list_105bp_188","share-icon":"custom_widget_MicrosoftFooter_share-icon_105bp_195","label":"custom_widget_MicrosoftFooter_label_105bp_207","linkedin":"custom_widget_MicrosoftFooter_linkedin_105bp_156","facebook":"custom_widget_MicrosoftFooter_facebook_105bp_237","twitter":"custom_widget_MicrosoftFooter_twitter_105bp_240","reddit":"custom_widget_MicrosoftFooter_reddit_105bp_244","mail":"custom_widget_MicrosoftFooter_mail_105bp_247","bluesky":"custom_widget_MicrosoftFooter_bluesky_105bp_250","rss":"custom_widget_MicrosoftFooter_rss_105bp_254","RSS":"custom_widget_MicrosoftFooter_RSS_105bp_1"}},"form":null},"localOverride":false},"CachedAsset:text:en_US-components/community/Breadcrumb-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/community/Breadcrumb-1745505309846","value":{"navLabel":"Breadcrumbs","dropdown":"Additional parent page navigation"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBanner-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBanner-1745505309846","value":{"messageMarkedAsSpam":"This post has been marked as spam","messageMarkedAsSpam@board:TKB":"This article has been marked as spam","messageMarkedAsSpam@board:BLOG":"This post has been marked as spam","messageMarkedAsSpam@board:FORUM":"This discussion has been marked as spam","messageMarkedAsSpam@board:OCCASION":"This event has been marked as spam","messageMarkedAsSpam@board:IDEA":"This idea has been marked as spam","manageSpam":"Manage Spam","messageMarkedAsAbuse":"This post has been marked as abuse","messageMarkedAsAbuse@board:TKB":"This article has been marked as abuse","messageMarkedAsAbuse@board:BLOG":"This post has been marked as abuse","messageMarkedAsAbuse@board:FORUM":"This discussion has been marked as abuse","messageMarkedAsAbuse@board:OCCASION":"This event has been marked as abuse","messageMarkedAsAbuse@board:IDEA":"This idea has been marked as abuse","preModCommentAuthorText":"This comment will be published as soon as it is approved","preModCommentModeratorText":"This comment is awaiting moderation","messageMarkedAsOther":"This post has been rejected due to other reasons","messageMarkedAsOther@board:TKB":"This article has been rejected due to other reasons","messageMarkedAsOther@board:BLOG":"This post has been rejected due to other reasons","messageMarkedAsOther@board:FORUM":"This discussion has been rejected due to other reasons","messageMarkedAsOther@board:OCCASION":"This event has been rejected due to other reasons","messageMarkedAsOther@board:IDEA":"This idea has been rejected due to other reasons","messageArchived":"This post was archived on {date}","relatedUrl":"View Related Content","relatedContentText":"Showing related content","archivedContentLink":"View Archived Content"},"localOverride":false},"Category:category:Exchange":{"__typename":"Category","id":"category:Exchange","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Outlook":{"__typename":"Category","id":"category:Outlook","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Community-Info-Center":{"__typename":"Category","id":"category:Community-Info-Center","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:EducationSector":{"__typename":"Category","id":"category:EducationSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:DrivingAdoption":{"__typename":"Category","id":"category:DrivingAdoption","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows-Server":{"__typename":"Category","id":"category:Windows-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftTeams":{"__typename":"Category","id":"category:MicrosoftTeams","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PublicSector":{"__typename":"Category","id":"category:PublicSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft365":{"__typename":"Category","id":"category:microsoft365","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:IoT":{"__typename":"Category","id":"category:IoT","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:HealthcareAndLifeSciences":{"__typename":"Category","id":"category:HealthcareAndLifeSciences","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:ITOpsTalk":{"__typename":"Category","id":"category:ITOpsTalk","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftLearn":{"__typename":"Category","id":"category:MicrosoftLearn","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Blog:board:MicrosoftLearnBlog":{"__typename":"Blog","id":"board:MicrosoftLearnBlog","blogPolicies":{"__typename":"BlogPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}},"boardPolicies":{"__typename":"BoardPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:AI":{"__typename":"Category","id":"category:AI","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftMechanics":{"__typename":"Category","id":"category:MicrosoftMechanics","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftforNonprofits":{"__typename":"Category","id":"category:MicrosoftforNonprofits","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:StartupsatMicrosoft":{"__typename":"Category","id":"category:StartupsatMicrosoft","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PartnerCommunity":{"__typename":"Category","id":"category:PartnerCommunity","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Microsoft365Copilot":{"__typename":"Category","id":"category:Microsoft365Copilot","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows":{"__typename":"Category","id":"category:Windows","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Content_Management":{"__typename":"Category","id":"category:Content_Management","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-security":{"__typename":"Category","id":"category:microsoft-security","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoftintune":{"__typename":"Category","id":"category:microsoftintune","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"QueryVariables:TopicReplyList:message:4136387:24":{"__typename":"QueryVariables","id":"TopicReplyList:message:4136387:24","value":{"id":"message:4136387","first":10,"sorts":{"postTime":{"direction":"DESC"}},"repliesFirst":3,"repliesFirstDepthThree":1,"repliesSorts":{"postTime":{"direction":"DESC"}},"useAvatar":true,"useAuthorLogin":true,"useAuthorRank":true,"useBody":true,"useKudosCount":true,"useTimeToRead":false,"useMedia":false,"useReadOnlyIcon":false,"useRepliesCount":true,"useSearchSnippet":false,"useAcceptedSolutionButton":false,"useSolvedBadge":false,"useAttachments":false,"attachmentsFirst":5,"useTags":true,"useNodeAncestors":false,"useUserHoverCard":false,"useNodeHoverCard":false,"useModerationStatus":true,"usePreviewSubjectModal":false,"useMessageStatus":true}},"ROOT_MUTATION":{"__typename":"Mutation"},"CachedAsset:text:en_US-components/community/Navbar-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/community/Navbar-1745505309846","value":{"community":"Community Home","inbox":"Inbox","manageContent":"Manage Content","tos":"Terms of Service","forgotPassword":"Forgot Password","themeEditor":"Theme Editor","edit":"Edit Navigation Bar","skipContent":"Skip to content","gxcuf89792":"Tech Community","external-1":"Events","s-m-b":"Nonprofit Community","windows-server":"Windows Server","education-sector":"Education Sector","driving-adoption":"Driving Adoption","Common-content_management-link":"Content Management","microsoft-learn":"Microsoft Learn","s-q-l-server":"Content Management","partner-community":"Microsoft Partner Community","microsoft365":"Microsoft 365","external-9":".NET","external-8":"Teams","external-7":"Github","products-services":"Products","external-6":"Power Platform","communities-1":"Topics","external-5":"Microsoft Security","planner":"Outlook","external-4":"Microsoft 365","external-3":"Dynamics 365","azure":"Azure","healthcare-and-life-sciences":"Healthcare and Life Sciences","external-2":"Azure","microsoft-mechanics":"Microsoft Mechanics","microsoft-learn-1":"Community","external-10":"Learning Room Directory","microsoft-learn-blog":"Blog","windows":"Windows","i-t-ops-talk":"ITOps Talk","external-link-1":"View All","microsoft-securityand-compliance":"Microsoft Security","public-sector":"Public Sector","community-info-center":"Lounge","external-link-2":"View All","microsoft-teams":"Microsoft Teams","external":"Blogs","microsoft-endpoint-manager":"Microsoft Intune","startupsat-microsoft":"Startups at Microsoft","exchange":"Exchange","a-i":"AI and Machine Learning","io-t":"Internet of Things (IoT)","Common-microsoft365-copilot-link":"Microsoft 365 Copilot","outlook":"Microsoft 365 Copilot","external-link":"Community Hubs","communities":"Products"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarHamburgerDropdown-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarHamburgerDropdown-1745505309846","value":{"hamburgerLabel":"Side Menu"},"localOverride":false},"CachedAsset:text:en_US-components/community/BrandLogo-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/community/BrandLogo-1745505309846","value":{"logoAlt":"Khoros","themeLogoAlt":"Brand Logo"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarTextLinks-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarTextLinks-1745505309846","value":{"more":"More"},"localOverride":false},"CachedAsset:text:en_US-components/authentication/AuthenticationLink-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/authentication/AuthenticationLink-1745505309846","value":{"title.login":"Sign In","title.registration":"Register","title.forgotPassword":"Forgot Password","title.multiAuthLogin":"Sign In"},"localOverride":false},"CachedAsset:text:en_US-components/nodes/NodeLink-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/nodes/NodeLink-1745505309846","value":{"place":"Place {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageView/MessageViewStandard-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageView/MessageViewStandard-1745505309846","value":{"anonymous":"Anonymous","author":"{messageAuthorLogin}","authorBy":"{messageAuthorLogin}","board":"{messageBoardTitle}","replyToUser":" to {parentAuthor}","showMoreReplies":"Show More","replyText":"Reply","repliesText":"Replies","markedAsSolved":"Marked as Solved","movedMessagePlaceholder.BLOG":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.TKB":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.FORUM":"{count, plural, =0 {This reply has been} other {These replies have been} }","movedMessagePlaceholder.IDEA":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.OCCASION":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholderUrlText":"moved.","messageStatus":"Status: ","statusChanged":"Status changed: {previousStatus} to {currentStatus}","statusAdded":"Status added: {status}","statusRemoved":"Status removed: {status}","labelExpand":"expand replies","labelCollapse":"collapse replies","unhelpfulReason.reason1":"Content is outdated","unhelpfulReason.reason2":"Article is missing information","unhelpfulReason.reason3":"Content is for a different Product","unhelpfulReason.reason4":"Doesn't match what I was searching for"},"localOverride":false},"CachedAsset:text:en_US-components/messages/ThreadedReplyList-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/ThreadedReplyList-1745505309846","value":{"title":"{count, plural, one{# Reply} other{# Replies}}","title@board:BLOG":"{count, plural, one{# Comment} other{# Comments}}","title@board:TKB":"{count, plural, one{# Comment} other{# Comments}}","title@board:IDEA":"{count, plural, one{# Comment} other{# Comments}}","title@board:OCCASION":"{count, plural, one{# Comment} other{# Comments}}","noRepliesTitle":"No Replies","noRepliesTitle@board:BLOG":"No Comments","noRepliesTitle@board:TKB":"No Comments","noRepliesTitle@board:IDEA":"No Comments","noRepliesTitle@board:OCCASION":"No Comments","noRepliesDescription":"Be the first to reply","noRepliesDescription@board:BLOG":"Be the first to comment","noRepliesDescription@board:TKB":"Be the first to comment","noRepliesDescription@board:IDEA":"Be the first to comment","noRepliesDescription@board:OCCASION":"Be the first to comment","messageReadOnlyAlert:BLOG":"Comments have been turned off for this post","messageReadOnlyAlert:TKB":"Comments have been turned off for this article","messageReadOnlyAlert:IDEA":"Comments have been turned off for this idea","messageReadOnlyAlert:FORUM":"Replies have been turned off for this discussion","messageReadOnlyAlert:OCCASION":"Comments have been turned off for this event"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyCallToAction-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyCallToAction-1745505309846","value":{"leaveReply":"Leave a reply...","leaveReply@board:BLOG@message:root":"Leave a comment...","leaveReply@board:TKB@message:root":"Leave a comment...","leaveReply@board:IDEA@message:root":"Leave a comment...","leaveReply@board:OCCASION@message:root":"Leave a comment...","repliesTurnedOff.FORUM":"Replies are turned off for this topic","repliesTurnedOff.BLOG":"Comments are turned off for this topic","repliesTurnedOff.TKB":"Comments are turned off for this topic","repliesTurnedOff.IDEA":"Comments are turned off for this topic","repliesTurnedOff.OCCASION":"Comments are turned off for this topic","infoText":"Stop poking me!"},"localOverride":false},"Rank:rank:37":{"__typename":"Rank","id":"rank:37","position":18,"name":"Copper Contributor","color":"333333","icon":null,"rankStyle":"TEXT"},"User:user:119445":{"__typename":"User","id":"user:119445","uid":119445,"login":"thirubaikm","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2018-02-15T16:18:57.419-08:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-10.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:119445"},"ModerationData:moderation_data:4390239":{"__typename":"ModerationData","id":"moderation_data:4390239","status":"UNMODERATED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4390239":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:119445"},"id":"message:4390239","revisionNum":1,"uid":4390239,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AzureArchitectureBlog"},"parent":{"__ref":"BlogTopicMessage:message:4136387"},"conversation":{"__ref":"Conversation:conversation:4136387"},"subject":"Re: NL to SQL Architecture Alternatives","moderationData":{"__ref":"ModerationData:moderation_data:4390239"},"body":"
Hi Mark,
We are building an NLP to SQL Product for an Enterprise Application. Your article was quite clear and had a good explanation.
Great Article : https://techcommunity.microsoft.com/blog/azurearchitectureblog/nl-to-sql-architecture-alternatives/4136387
I would like your help building the automated evaluation system to measure the hallucinate rate. Please let me know if you require additional details.
Thank you for the support
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"208","kudosSumWeight":0,"repliesCount":0,"postTime":"2025-03-06T10:00:19.330-08:00","lastPublishTime":"2025-03-06T10:00:19.330-08:00","metrics":{"__typename":"MessageMetrics","views":119},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureArchitectureBlog/message:4136387/message:4390239","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:2591846":{"__typename":"User","id":"user:2591846","uid":2591846,"login":"carlosperez-malla","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-07-24T01:48:54.019-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-1.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2591846"},"ModerationData:moderation_data:4199919":{"__typename":"ModerationData","id":"moderation_data:4199919","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4199919":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2591846"},"id":"message:4199919","revisionNum":1,"uid":4199919,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AzureArchitectureBlog"},"parent":{"__ref":"BlogTopicMessage:message:4136387"},"conversation":{"__ref":"Conversation:conversation:4136387"},"subject":"Re: NL to SQL Architecture Alternatives","moderationData":{"__ref":"ModerationData:moderation_data:4199919"},"body":"
Thanks a lot for putting the time into writing this guide, I found it very clear and useful for my ongoing architectural LLM's designs.
I just wanted to point out that the Benefits / Limitations section of the second architecture is actually referring to the first architecture. It would be great if you could edit it to refer to the second paradigm.
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"208","kudosSumWeight":1,"repliesCount":0,"postTime":"2024-07-24T01:54:11.680-07:00","lastPublishTime":"2024-07-24T01:54:11.680-07:00","metrics":{"__typename":"MessageMetrics","views":3967},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureArchitectureBlog/message:4136387/message:4199919","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:2561937":{"__typename":"User","id":"user:2561937","uid":2561937,"login":"YaoJing","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-07-07T05:48:55.481-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-10.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2561937"},"ModerationData:moderation_data:4186207":{"__typename":"ModerationData","id":"moderation_data:4186207","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4186207":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2561937"},"id":"message:4186207","revisionNum":3,"uid":4186207,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AzureArchitectureBlog"},"parent":{"__ref":"BlogTopicMessage:message:4136387"},"conversation":{"__ref":"Conversation:conversation:4136387"},"subject":"Re: NL to SQL Architecture Alternatives","moderationData":{"__ref":"ModerationData:moderation_data:4186207"},"body":"
Extra Context: We are currently implementing our solution in Semantic Kernel.
1. Regarding RAG Approaches:
How accurate can Retrieval-Augmented Generation (RAG) get? Many existing works suggest that the accuracy might not be optimal. Do you have any insights on improving the accuracy of RAG?
I am curious if implement pre-processing or post-processing to the RAG context will yield better results, maybe by adding more metadata like column description. What is your take on this?
2. LLM Agent schema selector:
Some approaches mention using schema information in step 2. However, passing all the schema information into an LLM to select the top tables could result in token limitations.
I am trying to replicate the work described in https://arxiv.org/abs/2312.11242 for the selector. However, even a single table can have a few hundred columns, each with its own descriptions, making it easy to hit token limitations.
Looking forward to your insights!
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"228","kudosSumWeight":0,"repliesCount":0,"postTime":"2024-07-08T21:08:31.946-07:00","lastPublishTime":"2024-07-08T22:15:24.013-07:00","metrics":{"__typename":"MessageMetrics","views":4028},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureArchitectureBlog/message:4136387/message:4186207","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"ModerationData:moderation_data:4185741":{"__typename":"ModerationData","id":"moderation_data:4185741","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4185741":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2464653"},"id":"message:4185741","revisionNum":1,"uid":4185741,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AzureArchitectureBlog"},"parent":{"__ref":"BlogTopicMessage:message:4136387"},"conversation":{"__ref":"Conversation:conversation:4136387"},"subject":"Re: NL to SQL Architecture Alternatives","moderationData":{"__ref":"ModerationData:moderation_data:4185741"},"body":"
Hello YaoJing - two possible ways you could handle this situation: 1. Embed all table schemas, as well as the table name and table description (if available) into a vector DB. Include one entry for each table. Then at run time, query the vector DB based on the user's question and include the top n records as context.
\n
2. When the user asks a question, query a cheap, fast model, such as GPT 3.5 T or Phi 3 and include all table names and description. Ask the LLM to select the top n tables which are most relevant to the user's question. Then include these tables in the subsequent request to generate the SQL query.
\n
\n
Let me know if this works for you.
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"213","kudosSumWeight":1,"repliesCount":0,"postTime":"2024-07-08T08:27:45.962-07:00","lastPublishTime":"2024-07-08T08:27:45.962-07:00","metrics":{"__typename":"MessageMetrics","views":4315},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureArchitectureBlog/message:4136387/message:4185741","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"ModerationData:moderation_data:4184789":{"__typename":"ModerationData","id":"moderation_data:4184789","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4184789":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2561937"},"id":"message:4184789","revisionNum":1,"uid":4184789,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AzureArchitectureBlog"},"parent":{"__ref":"BlogTopicMessage:message:4136387"},"conversation":{"__ref":"Conversation:conversation:4136387"},"subject":"Re: NL to SQL Architecture Alternatives","moderationData":{"__ref":"ModerationData:moderation_data:4184789"},"body":"
Great article! A question here, in a normal production environment. The SQL schema is huge, passing the whole Database Schema would eat up most of the token. Is there a way to fix this?
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"193","kudosSumWeight":0,"repliesCount":0,"postTime":"2024-07-07T05:51:32.919-07:00","lastPublishTime":"2024-07-07T05:51:32.919-07:00","metrics":{"__typename":"MessageMetrics","views":4344},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureArchitectureBlog/message:4136387/message:4184789","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"User:user:1681544":{"__typename":"User","id":"user:1681544","uid":1681544,"login":"HeZhang","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2023-01-09T20:20:39.458-08:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS0xNjgxNTQ0LTQzMTQ0NGk0MDgxRUJGNzE1NUUxRUZE"},"rank":{"__ref":"Rank:rank:4"},"entityType":"USER","eventPath":"community:gxcuf89792/user:1681544"},"ModerationData:moderation_data:4140672":{"__typename":"ModerationData","id":"moderation_data:4140672","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4140672":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:1681544"},"id":"message:4140672","revisionNum":1,"uid":4140672,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:AzureArchitectureBlog"},"parent":{"__ref":"BlogTopicMessage:message:4136387"},"conversation":{"__ref":"Conversation:conversation:4136387"},"subject":"Re: NL to SQL Architecture Alternatives","moderationData":{"__ref":"ModerationData:moderation_data:4140672"},"body":"
This is a great guide from architecture point of view, also from evaluation perspective. Thanks a lot!
","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"104","kudosSumWeight":1,"repliesCount":0,"postTime":"2024-05-14T18:48:45.005-07:00","lastPublishTime":"2024-05-14T18:48:45.005-07:00","metrics":{"__typename":"MessageMetrics","views":6400},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:Azure/category:products-services/category:communities/community:gxcuf89792board:AzureArchitectureBlog/message:4136387/message:4140672","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarDropdownToggle-1745505309846","value":{"ariaLabelClosed":"Press the down arrow to open the menu"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/QueryHandler-1745505309846","value":{"title":"Query Handler"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCoverImage-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCoverImage-1745505309846","value":{"coverImageTitle":"Cover Image"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeTitle-1745505309846","value":{"nodeTitle":"{nodeTitle, select, community {Community} other {{nodeTitle}}} "},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTimeToRead-1745505309846","value":{"minReadText":"{min} MIN READ"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageSubject-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageSubject-1745505309846","value":{"noSubject":"(no subject)"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserLink-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserLink-1745505309846","value":{"authorName":"View Profile: {author}","anonymous":"Anonymous"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserRank-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserRank-1745505309846","value":{"rankName":"{rankName}","userRank":"Author rank {rankName}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTime-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTime-1745505309846","value":{"postTime":"Published: {time}","lastPublishTime":"Last Update: {time}","conversation.lastPostingActivityTime":"Last posting activity time: {time}","conversation.lastPostTime":"Last post time: {time}","moderationData.rejectTime":"Rejected time: {time}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBody-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBody-1745505309846","value":{"showMessageBody":"Show More","mentionsErrorTitle":"{mentionsType, select, board {Board} user {User} message {Message} other {}} No Longer Available","mentionsErrorMessage":"The {mentionsType} you are trying to view has been removed from the community.","videoProcessing":"Video is being processed. Please try again in a few minutes.","bannerTitle":"Video provider requires cookies to play the video. Accept to continue or {url} it directly on the provider's site.","buttonTitle":"Accept","urlText":"watch"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCustomFields-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCustomFields-1745505309846","value":{"CustomField.default.label":"Value of {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageRevision-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageRevision-1745505309846","value":{"lastUpdatedDatePublished":"{publishCount, plural, one{Published} other{Updated}} {date}","lastUpdatedDateDraft":"Created {date}","version":"Version {major}.{minor}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyButton-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyButton-1745505309846","value":{"repliesCount":"{count}","title":"Reply","title@board:BLOG@message:root":"Comment","title@board:TKB@message:root":"Comment","title@board:IDEA@message:root":"Comment","title@board:OCCASION@message:root":"Comment"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageAuthorBio-1745505309846","value":{"sendMessage":"Send Message","actionMessage":"Follow this blog board to get notified when there's new activity","coAuthor":"CO-PUBLISHER","contributor":"CONTRIBUTOR","userProfile":"View Profile","iconlink":"Go to {name} {type}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserAvatar-1745505309846","value":{"altText":"{login}'s avatar","altTextGeneric":"User's avatar"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/ranks/UserRankLabel-1745505309846","value":{"altTitle":"Icon for {rankName} rank"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserRegistrationDate-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserRegistrationDate-1745505309846","value":{"noPrefix":"{date}","withPrefix":"Joined {date}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeAvatar-1745505309846","value":{"altTitle":"Node avatar for {nodeTitle}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeDescription-1745505309846","value":{"description":"{description}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1745505309846":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeIcon-1745505309846","value":{"contentType":"Content Type {style, select, FORUM {Forum} BLOG {Blog} TKB {Knowledge Base} IDEA {Ideas} OCCASION {Events} other {}} icon"},"localOverride":false}}}},"page":"/blogs/BlogMessagePage/BlogMessagePage","query":{"boardId":"azurearchitectureblog","messageSubject":"nl-to-sql-architecture-alternatives","messageId":"4136387"},"buildId":"HEhyUrv5OXNBIbfCLaOrw","runtimeConfig":{"buildInformationVisible":false,"logLevelApp":"info","logLevelMetrics":"info","openTelemetryClientEnabled":false,"openTelemetryConfigName":"o365","openTelemetryServiceVersion":"25.1.0","openTelemetryUniverse":"prod","openTelemetryCollector":"http://localhost:4318","openTelemetryRouteChangeAllowedTime":"5000","apolloDevToolsEnabled":false,"inboxMuteWipFeatureEnabled":false},"isFallback":false,"isExperimentalCompile":false,"dynamicIds":["./components/community/Navbar/NavbarWidget.tsx","./components/community/Breadcrumb/BreadcrumbWidget.tsx","./components/customComponent/CustomComponent/CustomComponent.tsx","./components/blogs/BlogArticleWidget/BlogArticleWidget.tsx","./components/external/components/ExternalComponent.tsx","./components/messages/MessageView/MessageViewStandard/MessageViewStandard.tsx","./components/messages/ThreadedReplyList/ThreadedReplyList.tsx","../shared/client/components/common/List/UnstyledList/UnstyledList.tsx","./components/messages/MessageView/MessageView.tsx"],"appGip":true,"scriptLoader":[{"id":"analytics","src":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/pagescripts/1730819800000/analytics.js?page.id=BlogMessagePage&entity.id=board%3Aazurearchitectureblog&entity.id=message%3A4136387","strategy":"afterInteractive"}]}