Blog Post

AI - Azure AI services Blog
8 MIN READ

Building a Contextual Retrieval System for Improving RAG Accuracy

mrajguru's avatar
mrajguru
Icon for Microsoft rankMicrosoft
Oct 17, 2024

To enhance AI models for specific tasks, they require domain-specific knowledge. For instance, customer support chatbots need business-related information, while legal bots rely on historical case data. Developers commonly use Retrieval-Augmented Generation (RAG) to fetch relevant knowledge from a database and improve AI responses. However, traditional RAG approaches often miss context during retrieval, leading to failures. In this post, we introduce "Contextual Retrieval," a method using Contextual Embeddings to improve retrieval accuracy, cutting failures with reranking.

 

For larger knowledge bases, Retrieval-Augmented Generation (RAG) offers a scalable solution. Modern RAG systems combine two powerful retrieval methods:

  1. Semantic Search using Embeddings
  • Chunks the knowledge base into manageable segments (typically a few hundred tokens each)
  • Converts these chunks into vector embeddings that capture semantic meaning
  • Stores embeddings in a vector database for similarity searching
  1. Lexical Search using BM25
  • Builds on TF-IDF (Term Frequency-Inverse Document Frequency) principles
  • Accounts for document length and term frequency saturation
  • Excels at finding exact matches and specific terminology

 

The optimal RAG implementation combines both approaches:

  1. Split the knowledge base into chunks
  2. Generate both TF-IDF encodings and semantic embeddings
  3. Run parallel searches using BM25 and embedding similarity
  4. Merge and deduplicate results using rank fusion
  5. Include the most relevant chunks in the prompt
  6. Generate the response using the enhanced context

 

The challenge with traditional RAG lies in how documents are split into smaller chunks for efficient retrieval, sometimes losing important context. For instance, consider an academic database where you're asked, "What was Dr. Smith's primary research focus in 2021?" If a retrieved chunk states, "The research emphasized AI," it might lack clarity without specifying Dr. Smith or the exact year, making it hard to pinpoint the answer. This issue can reduce the accuracy and utility of retrieval results in such knowledge-heavy domains.

 

Contextual Retrieval solves this problem by prepending chunk-specific explanatory context to each chunk before embedding (“Contextual Embeddings”). We will generate contextual text for each chunk. 

 

 

A typical RAG pipeline typically have the below components.  As you can see we have a user input which is authenticated and passed through a content safety system (learn more about it here ).  Next step is a query rewriter based on the historical conversation , you can also attach a query expansion which improves the generated answer. Next we have a retriever and re-ranker. In a RAG pipeline, retrievers and rankers play crucial complementary roles in finding and prioritizing relevant context. The retriever acts as the initial filter, efficiently searching through large document collections to identify potentially relevant chunks based on semantic similarity with the query. Common retrieval approaches include dense retrievers (like embedding-based search) or sparse retrievers (like BM25). The ranker then acts as a more sophisticated second stage, taking the retriever's candidate passages and performing detailed relevance scoring. Rankers can leverage powerful language models to analyze the deep semantic relationship between the query and each passage, considering factors like factual alignment, answer coverage, and contextual relevance. This two-stage approach balances efficiency and accuracy - the retriever quickly narrows down the search space while the ranker applies more compute-intensive analysis on a smaller set of promising candidates to identify the most pertinent context for the generation phase.

 

 

 

In this example we will use Langchain as our framework to build this.

 

 

 

 

 

import os
from typing import List, Tuple
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain_openai import AzureOpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import AzureChatOpenAI
from langchain.prompts import ChatPromptTemplate
from rank_bm25 import BM25Okapi
import cohere
import logging
import time
from llama_parse import LlamaParse
from azure.ai.documentintelligence.models import DocumentAnalysisFeature
from langchain_community.document_loaders.doc_intelligence import AzureAIDocumentIntelligenceLoader

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
load_dotenv('azure.env', override=True)

 

 

 

 

 

Now lets create a custom Retriever with implementation of contextual embedding. Here is the code. 

 

 

  • Uses Azure AI Document Intelligence for PDF parsing
  • Breaks documents into manageable chunks while maintaining context
  • Implements sophisticated text splitting with overlap to ensure no information is lost at chunk boundaries

 

 

 

 

 

 

class ContextualRetrieval:
    def __init__(self):
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=800,
            chunk_overlap=100,
        )
        self.embeddings = AzureOpenAIEmbeddings(
                            api_key=os.getenv("AZURE_OPENAI_API_KEY"),
                            azure_deployment="text-embedding-ada-002",
                            openai_api_version="2024-03-01-preview",
                            azure_endpoint =os.environ["AZURE_OPENAI_ENDPOINT"]
                        )
        self.llm = AzureChatOpenAI(
            api_key=os.environ["AZURE_OPENAI_API_KEY"],
            azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
            azure_deployment="gpt-4o",
            temperature=0,
            max_tokens=None,
            timeout=None,
            max_retries=2,
        )
        self.cohere_client = cohere.Client(os.getenv("COHERE_API_KEY"))

    def load_pdf_and_parse(self, pdf_path: str) -> str:
        loader = AzureAIDocumentIntelligenceLoader(file_path=pdf_path, 
                                           api_key = os.getenv("AZURE_DOCUMENT_INTELLIGENCE_KEY"), 
                                           api_endpoint = os.getenv("AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT"),
                                           api_model="prebuilt-layout",
                                           api_version="2024-02-29-preview",
                                           mode='markdown',
                                           analysis_features = [DocumentAnalysisFeature.OCR_HIGH_RESOLUTION])

        try:
            documents = loader.load()
            if not documents:
                raise ValueError("No content extracted from the PDF.")
            return " ".join([doc.page_content for doc in documents])
        except Exception as e:
            logging.error(f"Error while parsing the file '{pdf_path}': {str(e)}")
            raise

    def process_document(self, document: str) -> Tuple[List[Document], List[Document]]:
        if not document.strip():
            raise ValueError("The document is empty after parsing.")
        chunks = self.text_splitter.create_documents([document])
        contextualized_chunks = self._generate_contextualized_chunks(document, chunks)
        return chunks, contextualized_chunks

    def _generate_contextualized_chunks(self, document: str, chunks: List[Document]) -> List[Document]:
        contextualized_chunks = []
        for chunk in chunks:
            context = self._generate_context(document, chunk.page_content)
            contextualized_content = f"{context}\n\n{chunk.page_content}"
            contextualized_chunks.append(Document(page_content=contextualized_content, metadata=chunk.metadata))
        return contextualized_chunks

    def _generate_context(self, document: str, chunk: str) -> str:
        prompt = ChatPromptTemplate.from_template("""
        You are an AI assistant specializing in document analysis. Your task is to provide brief, relevant context for a chunk of text from the given document.
        Here is the document:
        <document>
        {document}
        </document>

        Here is the chunk we want to situate within the whole document:
        <chunk>
        {chunk}
        </chunk>

        Provide a concise context (2-3 sentences) for this chunk, considering the following guidelines:
        1. Identify the main topic or concept discussed in the chunk.
        2. Mention any relevant information or comparisons from the broader document context.
        3. If applicable, note how this information relates to the overall theme or purpose of the document.
        4. Include any key figures, dates, or percentages that provide important context.
        5. Do not use phrases like "This chunk discusses" or "This section provides". Instead, directly state the context.

        Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else.

        Context:
        """)
        messages = prompt.format_messages(document=document, chunk=chunk)
        response = self.llm.invoke(messages)
        return response.content

    def create_bm25_index(self, chunks: List[Document]) -> BM25Okapi:
        tokenized_chunks = [chunk.page_content.split() for chunk in chunks]
        return BM25Okapi(tokenized_chunks)

    def generate_answer(self, query: str, relevant_chunks: List[str]) -> str:
        prompt = ChatPromptTemplate.from_template("""
        Based on the following information, please provide a concise and accurate answer to the question.
        If the information is not sufficient to answer the question, say so.

        Question: {query}

        Relevant information:
        {chunks}

        Answer:
        """)
        messages = prompt.format_messages(query=query, chunks="\n\n".join(relevant_chunks))
        response = self.llm.invoke(messages)
        return response.content

    def rerank_results(self, query: str, documents: List[Document], top_n: int = 3) -> List[Document]:
        logging.info(f"Reranking {len(documents)} documents for query: {query}")
        doc_contents = [doc.page_content for doc in documents]
        
        max_retries = 3
        for attempt in range(max_retries):
            try:
                reranked = self.cohere_client.rerank(
                    model="rerank-english-v2.0",
                    query=query,
                    documents=doc_contents,
                    top_n=top_n
                )
                break
            except cohere.errors.TooManyRequestsError:
                if attempt < max_retries - 1:
                    logging.warning(f"Rate limit hit. Waiting for 60 seconds before retry {attempt + 1}/{max_retries}")
                    time.sleep(60)  # Wait for 60 seconds before retrying
                else:
                    logging.error("Rate limit hit. Max retries reached. Returning original documents.")
                    return documents[:top_n]
        
        logging.info(f"Reranking complete. Top {top_n} results:")
        reranked_docs = []
        for idx, result in enumerate(reranked.results):
            original_doc = documents[result.index]
            reranked_docs.append(original_doc)
            logging.info(f"  {idx+1}. Score: {result.relevance_score:.4f}, Index: {result.index}")
        
        return reranked_docs

    def expand_query(self, original_query: str) -> str:
        prompt = ChatPromptTemplate.from_template("""
        You are an AI assistant specializing in document analysis. Your task is to expand the given query to include related terms and concepts that might be relevant for a more comprehensive search of the document.

        Original query: {query}

        Please provide an expanded version of this query, including relevant terms, concepts, or related ideas that might help in summarizing the full document. The expanded query should be a single string, not a list.

        Expanded query:
        """)
        messages = prompt.format_messages(query=original_query)
        response = self.llm.invoke(messages)
        return response.content

 

 

 

 

 

Now lets load a sample PDF with Contextual embedding and create 2 index both for normal chunks and context aware chunks.

 

Lets define the process query function

 

cr = ContextualRetrieval()
pdf_path = "1.pdf"
document = cr.load_pdf_with_llama_parse(pdf_path)

# Process the document
chunks, contextualized_chunks = cr.process_document(document)

# Create BM25 index
contextualized_bm25_index = cr.create_bm25_index(contextualized_chunks)
normal_bm25_index = cr.create_bm25_index(chunks)

 

 

Now lets run the query against the both the index to compare the result.

 

def process_query(query: str, processor: AutoProcessor, model: ColPali) -> np.ndarray:
    mock_image = Image.new('RGB', (224, 224), color='white')

    inputs = processor(text=query, images=mock_image, return_tensors="pt")
    inputs = {k: v.to(model.device) for k, v in inputs.items()}

    with torch.no_grad():
        embeddings = model(**inputs)

    return torch.mean(embeddings, dim=1).float().cpu().numpy().tolist()[0]

 

 

 

original_query = "When does the term of the Agreement commence and how long does it last?"
print(f"\nOriginal Query: {original_query}")
process_query(cr, original_query, normal_bm25_index, chunks)

 

 

 

Context Aware Index

 

 

 

original_query = "When does the term of the Agreement commence and how long does it last?"
print(f"\nOriginal Query: {original_query}")
process_query(cr, original_query, contextualized_bm25_index, contextualized_chunks)

 

 

 

You will likely better answer from the later one because of the contextual retriever. Now lets evaluate this against a benchmark. We will use Azure AI SDK for RAG evaluation. First lets load the dataset.

 

You can create your ground truth based on the following jsonlines.

 

 

 

{"chat_history":[],"question":"What is short-term memory in the context of the model?","ground_truth":"Short-term memory involves utilizing in-context learning to learn."}

 

 

 

 

 

import pandas as pd
df = pd.read_json(output_file, lines=True, orient="records")
df.head()

 

 

 

Now once we load the dataset we can run this against both our retrieval strategy a standard vs contextually embedded one.

 

 

 

normal_answers = []
contexual_answers = []
for index, row in df.iterrows():
    normal_answers.append(process_query(cr, row["question"], normal_bm25_index, chunks))
    contexual_answers.append(process_query(cr, row["question"], contextualized_bm25_index, contextualized_chunks))

 

 

 

Lets evaluate against the ground truth , here in this case i have used similarity score for evaluation. You can use any other builtin or custom metrics. Learn more about it here.

 

 

 

from azure.ai.evaluation import SimilarityEvaluator

# Initialzing Relevance Evaluator
similarity_eval = SimilarityEvaluator(model_config)

df["answer"] = normal_answers
df['score'] = df.apply(lambda x : similarity_eval(
    response=x["answer"],
    ground_truth = x["ground_truth"],
    query=x["question"],
), axis = 1)
df["answer_contextual"] = contexual_answers
df['score_contextual'] = df.apply(lambda x : similarity_eval(
    response=x["answer_contextual"],
    ground_truth = x["ground_truth"],
    query=x["question"],
), axis = 1)

 

 

 

 

As you can see contextual embedding increases the retrieval hence the same is reflected in the similarity score.The contextual retrieval system outlined in this blog post showcases a sophisticated approach to document analysis and question-answering. By integrating various NLP techniques—such as contextualization with GPT-4, efficient indexing with BM25, reranking with Cohere's models, and query expansion—the system not only retrieves relevant information but also understands and synthesizes it to provide accurate answers. This modular architecture ensures flexibility, allowing for individual components to be enhanced or replaced as better technologies emerge. As the field of natural language processing continues to advance, systems like this will become increasingly vital in making large volumes of text more accessible, searchable, and actionable across diverse domains.

References: 

 

https://learn.microsoft.com/en-us/azure/ai-services/content-safety/overview

https://learn.microsoft.com/en-us/azure/ai-studio/how-to/develop/evaluate-sdk

https://www.anthropic.com/news/contextual-retrieval

 

Thanks

Manoranjan Rajguru

https://www.linkedin.com/in/manoranjan-rajguru/

Updated Oct 27, 2024
Version 3.0
"}},"componentScriptGroups({\"componentId\":\"custom.widget.MicrosoftFooter\"})":{"__typename":"ComponentScriptGroups","scriptGroups":{"__typename":"ComponentScriptGroupsDefinition","afterInteractive":{"__typename":"PageScriptGroupDefinition","group":"AFTER_INTERACTIVE","scriptIds":[]},"lazyOnLoad":{"__typename":"PageScriptGroupDefinition","group":"LAZY_ON_LOAD","scriptIds":[]}},"componentScripts":[]},"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"components/community/NavbarDropdownToggle\"]})":[{"__ref":"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1745505307000"}],"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/users/UserAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1745505307000"}],"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/ranks/UserRankLabel\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1745505307000"}],"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"components/tags/TagView/TagViewChip\"]})":[{"__ref":"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1745505307000"}],"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"components/users/UserRegistrationDate\"]})":[{"__ref":"CachedAsset:text:en_US-components/users/UserRegistrationDate-1745505307000"}],"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeAvatar\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1745505307000"}],"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeDescription\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1745505307000"}],"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"components/messages/MessageListMenu\"]})":[{"__ref":"CachedAsset:text:en_US-components/messages/MessageListMenu-1745505307000"}],"message({\"id\":\"message:4285697\"})":{"__ref":"BlogReplyMessage:message:4285697"},"message({\"id\":\"message:4273669\"})":{"__ref":"BlogReplyMessage:message:4273669"},"cachedText({\"lastModified\":\"1745505307000\",\"locale\":\"en-US\",\"namespaces\":[\"shared/client/components/nodes/NodeIcon\"]})":[{"__ref":"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1745505307000"}]},"Theme:customTheme1":{"__typename":"Theme","id":"customTheme1"},"User:user:-1":{"__typename":"User","id":"user:-1","uid":-1,"login":"Deleted","email":"","avatar":null,"rank":null,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":"ANONYMOUS","registrationTime":null,"confirmEmailStatus":false,"registrationAccessLevel":"VIEW","ssoRegistrationFields":[]},"ssoId":null,"profileSettings":{"__typename":"ProfileSettings","dateDisplayStyle":{"__typename":"InheritableStringSettingWithPossibleValues","key":"layout.friendly_dates_enabled","value":"false","localValue":"true","possibleValues":["true","false"]},"dateDisplayFormat":{"__typename":"InheritableStringSetting","key":"layout.format_pattern_date","value":"MMM dd yyyy","localValue":"MM-dd-yyyy"},"language":{"__typename":"InheritableStringSettingWithPossibleValues","key":"profile.language","value":"en-US","localValue":null,"possibleValues":["en-US","es-ES"]},"repliesSortOrder":{"__typename":"InheritableStringSettingWithPossibleValues","key":"config.user_replies_sort_order","value":"DEFAULT","localValue":"DEFAULT","possibleValues":["DEFAULT","LIKES","PUBLISH_TIME","REVERSE_PUBLISH_TIME"]}},"deleted":false},"CachedAsset:pages-1746563268207":{"__typename":"CachedAsset","id":"pages-1746563268207","value":[{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"BlogViewAllPostsPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId/all-posts/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"CasePortalPage","type":"CASE_PORTAL","urlPath":"/caseportal","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"CreateGroupHubPage","type":"GROUP_HUB","urlPath":"/groups/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"CaseViewPage","type":"CASE_DETAILS","urlPath":"/case/:caseId/:caseNumber","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"InboxPage","type":"COMMUNITY","urlPath":"/inbox","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"HelpFAQPage","type":"COMMUNITY","urlPath":"/help","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"IdeaMessagePage","type":"IDEA_POST","urlPath":"/idea/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"IdeaViewAllIdeasPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/all-ideas/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"LoginPage","type":"USER","urlPath":"/signin","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"BlogPostPage","type":"BLOG","urlPath":"/category/:categoryId/blogs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"UserBlogPermissions.Page","type":"COMMUNITY","urlPath":"/c/user-blog-permissions/page","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ThemeEditorPage","type":"COMMUNITY","urlPath":"/designer/themes","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"TkbViewAllArticlesPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId/all-articles/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllEvents","type":"CUSTOM","urlPath":"/Events","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"OccasionEditPage","type":"EVENT","urlPath":"/event/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"OAuthAuthorizationAllowPage","type":"USER","urlPath":"/auth/authorize/allow","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"PageEditorPage","type":"COMMUNITY","urlPath":"/designer/pages","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"PostPage","type":"COMMUNITY","urlPath":"/category/:categoryId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ForumBoardPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"TkbBoardPage","type":"TKB","urlPath":"/category/:categoryId/kb/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"EventPostPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"UserBadgesPage","type":"COMMUNITY","urlPath":"/users/:login/:userId/badges","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"GroupHubMembershipAction","type":"GROUP_HUB","urlPath":"/membership/join/:nodeId/:membershipType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"MaintenancePage","type":"COMMUNITY","urlPath":"/maintenance","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"IdeaReplyPage","type":"IDEA_REPLY","urlPath":"/idea/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"UserSettingsPage","type":"USER","urlPath":"/mysettings/:userSettingsTab","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"GroupHubsPage","type":"GROUP_HUB","urlPath":"/groups","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ForumPostPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"OccasionRsvpActionPage","type":"OCCASION","urlPath":"/event/:boardId/:messageSubject/:messageId/rsvp/:responseType","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"VerifyUserEmailPage","type":"USER","urlPath":"/verifyemail/:userId/:verifyEmailToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"AllOccasionsPage","type":"OCCASION","urlPath":"/category/:categoryId/events/:boardId/all-events/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"EventBoardPage","type":"EVENT","urlPath":"/category/:categoryId/events/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"TkbReplyPage","type":"TKB_REPLY","urlPath":"/kb/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"IdeaBoardPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"CommunityGuideLinesPage","type":"COMMUNITY","urlPath":"/communityguidelines","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"CaseCreatePage","type":"SALESFORCE_CASE_CREATION","urlPath":"/caseportal/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"TkbEditPage","type":"TKB","urlPath":"/kb/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ForgotPasswordPage","type":"USER","urlPath":"/forgotpassword","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"IdeaEditPage","type":"IDEA","urlPath":"/idea/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"TagPage","type":"COMMUNITY","urlPath":"/tag/:tagName","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"BlogBoardPage","type":"BLOG","urlPath":"/category/:categoryId/blog/:boardId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"OccasionMessagePage","type":"OCCASION_TOPIC","urlPath":"/event/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ManageContentPage","type":"COMMUNITY","urlPath":"/managecontent","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ClosedMembershipNodeNonMembersPage","type":"GROUP_HUB","urlPath":"/closedgroup/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"CommunityPage","type":"COMMUNITY","urlPath":"/","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ForumMessagePage","type":"FORUM_TOPIC","urlPath":"/discussions/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"IdeaPostPage","type":"IDEA","urlPath":"/category/:categoryId/ideas/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"CommunityHub.Page","type":"CUSTOM","urlPath":"/Directory","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"BlogMessagePage","type":"BLOG_ARTICLE","urlPath":"/blog/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"RegistrationPage","type":"USER","urlPath":"/register","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"EditGroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ForumEditPage","type":"FORUM","urlPath":"/discussions/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ResetPasswordPage","type":"USER","urlPath":"/resetpassword/:userId/:resetPasswordToken","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1730819800000,"localOverride":null,"page":{"id":"AllBlogs.Page","type":"CUSTOM","urlPath":"/blogs","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"TkbMessagePage","type":"TKB_ARTICLE","urlPath":"/kb/:boardId/:messageSubject/:messageId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"BlogEditPage","type":"BLOG","urlPath":"/blog/:boardId/:messageSubject/:messageId/edit","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ManageUsersPage","type":"USER","urlPath":"/users/manage/:tab?/:manageUsersTab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ForumReplyPage","type":"FORUM_REPLY","urlPath":"/discussions/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"PrivacyPolicyPage","type":"COMMUNITY","urlPath":"/privacypolicy","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"NotificationPage","type":"COMMUNITY","urlPath":"/notifications","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"UserPage","type":"USER","urlPath":"/users/:login/:userId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"HealthCheckPage","type":"COMMUNITY","urlPath":"/health","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"OccasionReplyPage","type":"OCCASION_REPLY","urlPath":"/event/:boardId/:messageSubject/:messageId/comments/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ManageMembersPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/manage/:tab?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"SearchResultsPage","type":"COMMUNITY","urlPath":"/search","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"BlogReplyPage","type":"BLOG_REPLY","urlPath":"/blog/:boardId/:messageSubject/:messageId/replies/:replyId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"GroupHubPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"TermsOfServicePage","type":"COMMUNITY","urlPath":"/termsofservice","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"CategoryPage","type":"CATEGORY","urlPath":"/category/:categoryId","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"ForumViewAllTopicsPage","type":"FORUM","urlPath":"/category/:categoryId/discussions/:boardId/all-topics/(/:after|/:before)?","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"TkbPostPage","type":"TKB","urlPath":"/category/:categoryId/kbs/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"},{"lastUpdatedTime":1746563268207,"localOverride":null,"page":{"id":"GroupHubPostPage","type":"GROUP_HUB","urlPath":"/group/:groupHubId/:boardId/create","__typename":"PageDescriptor"},"__typename":"PageResource"}],"localOverride":false},"CachedAsset:text:en_US-components/context/AppContext/AppContextProvider-0":{"__typename":"CachedAsset","id":"text:en_US-components/context/AppContext/AppContextProvider-0","value":{"noCommunity":"Cannot find community","noUser":"Cannot find current user","noNode":"Cannot find node with id {nodeId}","noMessage":"Cannot find message with id {messageId}","userBanned":"We're sorry, but you have been banned from using this site.","userBannedReason":"You have been banned for the following reason: {reason}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-0":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-0","value":{"title":"Loading..."},"localOverride":false},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc","height":512,"width":512,"mimeType":"image/png"},"Rank:rank:4":{"__typename":"Rank","id":"rank:4","position":6,"name":"Microsoft","color":"333333","icon":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/cmstNC05WEo0blc\"}"},"rankStyle":"OUTLINE"},"User:user:2080373":{"__typename":"User","id":"user:2080373","uid":2080373,"login":"mrajguru","deleted":false,"avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS0yMDgwMzczLTU2MzI2Nmk2MDUwNkNDRUUxMDhGQjYx"},"rank":{"__ref":"Rank:rank:4"},"email":"","messagesCount":28,"biography":null,"topicsCount":17,"kudosReceivedCount":63,"kudosGivenCount":6,"kudosWeight":1,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2023-10-12T23:52:15.266-07:00","confirmEmailStatus":null},"followersCount":null,"solutionsCount":0},"Category:category:AI":{"__typename":"Category","id":"category:AI","entityType":"CATEGORY","displayId":"AI","nodeType":"category","depth":3,"title":"Artificial Intelligence and Machine Learning","shortTitle":"Artificial Intelligence and Machine Learning","parent":{"__ref":"Category:category:solutions"},"categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:top":{"__typename":"Category","id":"category:top","entityType":"CATEGORY","displayId":"top","nodeType":"category","depth":0,"title":"Top","shortTitle":"Top"},"Category:category:communities":{"__typename":"Category","id":"category:communities","entityType":"CATEGORY","displayId":"communities","nodeType":"category","depth":1,"parent":{"__ref":"Category:category:top"},"title":"Communities","shortTitle":"Communities"},"Category:category:solutions":{"__typename":"Category","id":"category:solutions","entityType":"CATEGORY","displayId":"solutions","nodeType":"category","depth":2,"parent":{"__ref":"Category:category:communities"},"title":"Topics","shortTitle":"Topics"},"Blog:board:Azure-AI-Services-blog":{"__typename":"Blog","id":"board:Azure-AI-Services-blog","entityType":"BLOG","displayId":"Azure-AI-Services-blog","nodeType":"board","depth":4,"conversationStyle":"BLOG","repliesProperties":{"__typename":"RepliesProperties","sortOrder":"REVERSE_PUBLISH_TIME","repliesFormat":"threaded"},"tagProperties":{"__typename":"TagNodeProperties","tagsEnabled":{"__typename":"PolicyResult","failureReason":null}},"requireTags":true,"tagType":"PRESET_ONLY","description":"","title":"AI - Azure AI services Blog","shortTitle":"AI - Azure AI services Blog","parent":{"__ref":"Category:category:AI"},"ancestors":{"__typename":"CoreNodeConnection","edges":[{"__typename":"CoreNodeEdge","node":{"__ref":"Community:community:gxcuf89792"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:communities"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:solutions"}},{"__typename":"CoreNodeEdge","node":{"__ref":"Category:category:AI"}}]},"userContext":{"__typename":"NodeUserContext","canAddAttachments":false,"canUpdateNode":false,"canPostMessages":false,"isSubscribed":false},"theme":{"__ref":"Theme:customTheme1"},"boardPolicies":{"__typename":"BoardPolicies","canViewSpamDashBoard":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.access_spam_quarantine.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.access_spam_quarantine.allowed.accessDenied","args":[]}},"canArchiveMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.content_archivals.enable_content_archival_settings.accessDenied","key":"error.lithium.policies.content_archivals.enable_content_archival_settings.accessDenied","args":[]}},"canPublishArticleOnCreate":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_create_workflow_action.accessDenied","args":[]}}},"eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/"},"BlogTopicMessage:message:4271924":{"__typename":"BlogTopicMessage","uid":4271924,"subject":"Building a Contextual Retrieval System for Improving RAG Accuracy","id":"message:4271924","revisionNum":5,"repliesCount":2,"author":{"__ref":"User:user:2080373"},"depth":0,"hasGivenKudo":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"conversation":{"__ref":"Conversation:conversation:4271924"},"messagePolicies":{"__typename":"MessagePolicies","canPublishArticleOnEdit":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","key":"error.lithium.policies.forums.policy_can_publish_on_edit_workflow_action.accessDenied","args":[]}},"canModerateSpamMessage":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","key":"error.lithium.policies.feature.moderation_spam.action.moderate_entity.allowed.accessDenied","args":[]}}},"contentWorkflow":{"__typename":"ContentWorkflow","state":"PUBLISH","scheduledPublishTime":null,"scheduledTimezone":null,"userContext":{"__typename":"MessageWorkflowContext","canSubmitForReview":null,"canEdit":false,"canRecall":null,"canSubmitForPublication":null,"canReturnToAuthor":null,"canPublish":null,"canReturnToReview":null,"canSchedule":false},"shortScheduledTimezone":null},"readOnly":false,"editFrozen":false,"moderationData":{"__ref":"ModerationData:moderation_data:4271924"},"teaser":"","body":"

To enhance AI models for specific tasks, they require domain-specific knowledge. For instance, customer support chatbots need business-related information, while legal bots rely on historical case data. Developers commonly use Retrieval-Augmented Generation (RAG) to fetch relevant knowledge from a database and improve AI responses. However, traditional RAG approaches often miss context during retrieval, leading to failures. In this post, we introduce \"Contextual Retrieval,\" a method using Contextual Embeddings to improve retrieval accuracy, cutting failures with reranking.

\n

 

\n

For larger knowledge bases, Retrieval-Augmented Generation (RAG) offers a scalable solution. Modern RAG systems combine two powerful retrieval methods:

\n
    \n
  1. Semantic Search using Embeddings
  2. \n
\n\n
    \n
  1. Lexical Search using BM25
  2. \n
\n\n

 

\n

The optimal RAG implementation combines both approaches:

\n
    \n
  1. Split the knowledge base into chunks
  2. \n
  3. Generate both TF-IDF encodings and semantic embeddings
  4. \n
  5. Run parallel searches using BM25 and embedding similarity
  6. \n
  7. Merge and deduplicate results using rank fusion
  8. \n
  9. Include the most relevant chunks in the prompt
  10. \n
  11. Generate the response using the enhanced context
  12. \n
\n

 

\n

The challenge with traditional RAG lies in how documents are split into smaller chunks for efficient retrieval, sometimes losing important context. For instance, consider an academic database where you're asked, \"What was Dr. Smith's primary research focus in 2021?\" If a retrieved chunk states, \"The research emphasized AI,\" it might lack clarity without specifying Dr. Smith or the exact year, making it hard to pinpoint the answer. This issue can reduce the accuracy and utility of retrieval results in such knowledge-heavy domains.

\n

 

\n

Contextual Retrieval solves this problem by prepending chunk-specific explanatory context to each chunk before embedding (“Contextual Embeddings”). We will generate contextual text for each chunk. 

\n

 

\n

 

\n

A typical RAG pipeline typically have the below components.  As you can see we have a user input which is authenticated and passed through a content safety system (learn more about it here ).  Next step is a query rewriter based on the historical conversation , you can also attach a query expansion which improves the generated answer. Next we have a retriever and re-ranker. In a RAG pipeline, retrievers and rankers play crucial complementary roles in finding and prioritizing relevant context. The retriever acts as the initial filter, efficiently searching through large document collections to identify potentially relevant chunks based on semantic similarity with the query. Common retrieval approaches include dense retrievers (like embedding-based search) or sparse retrievers (like BM25). The ranker then acts as a more sophisticated second stage, taking the retriever's candidate passages and performing detailed relevance scoring. Rankers can leverage powerful language models to analyze the deep semantic relationship between the query and each passage, considering factors like factual alignment, answer coverage, and contextual relevance. This two-stage approach balances efficiency and accuracy - the retriever quickly narrows down the search space while the ranker applies more compute-intensive analysis on a smaller set of promising candidates to identify the most pertinent context for the generation phase.

\n

 

\n

 

\n

\n

 

\n

In this example we will use Langchain as our framework to build this.

\n

 

\n

 

\n

 

\n

 

\n

 

\n
import os\nfrom typing import List, Tuple\nfrom dotenv import load_dotenv\nfrom langchain.text_splitter import RecursiveCharacterTextSplitter\nfrom langchain.schema import Document\nfrom langchain_openai import AzureOpenAIEmbeddings\nfrom langchain_community.vectorstores import FAISS\nfrom langchain_openai import AzureChatOpenAI\nfrom langchain.prompts import ChatPromptTemplate\nfrom rank_bm25 import BM25Okapi\nimport cohere\nimport logging\nimport time\nfrom llama_parse import LlamaParse\nfrom azure.ai.documentintelligence.models import DocumentAnalysisFeature\nfrom langchain_community.document_loaders.doc_intelligence import AzureAIDocumentIntelligenceLoader\n\n# Set up logging\nlogging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\nload_dotenv('azure.env', override=True)
\n

 

\n

 

\n

 

\n

 

\n

 

\n

Now lets create a custom Retriever with implementation of contextual embedding. Here is the code. 

\n

 

\n

 

\n\n

 

\n

 

\n

 

\n

 

\n

 

\n

 

\n
class ContextualRetrieval:\n    def __init__(self):\n        self.text_splitter = RecursiveCharacterTextSplitter(\n            chunk_size=800,\n            chunk_overlap=100,\n        )\n        self.embeddings = AzureOpenAIEmbeddings(\n                            api_key=os.getenv(\"AZURE_OPENAI_API_KEY\"),\n                            azure_deployment=\"text-embedding-ada-002\",\n                            openai_api_version=\"2024-03-01-preview\",\n                            azure_endpoint =os.environ[\"AZURE_OPENAI_ENDPOINT\"]\n                        )\n        self.llm = AzureChatOpenAI(\n            api_key=os.environ[\"AZURE_OPENAI_API_KEY\"],\n            azure_endpoint=os.environ[\"AZURE_OPENAI_ENDPOINT\"],\n            azure_deployment=\"gpt-4o\",\n            temperature=0,\n            max_tokens=None,\n            timeout=None,\n            max_retries=2,\n        )\n        self.cohere_client = cohere.Client(os.getenv(\"COHERE_API_KEY\"))\n\n    def load_pdf_and_parse(self, pdf_path: str) -> str:\n        loader = AzureAIDocumentIntelligenceLoader(file_path=pdf_path, \n                                           api_key = os.getenv(\"AZURE_DOCUMENT_INTELLIGENCE_KEY\"), \n                                           api_endpoint = os.getenv(\"AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT\"),\n                                           api_model=\"prebuilt-layout\",\n                                           api_version=\"2024-02-29-preview\",\n                                           mode='markdown',\n                                           analysis_features = [DocumentAnalysisFeature.OCR_HIGH_RESOLUTION])\n\n        try:\n            documents = loader.load()\n            if not documents:\n                raise ValueError(\"No content extracted from the PDF.\")\n            return \" \".join([doc.page_content for doc in documents])\n        except Exception as e:\n            logging.error(f\"Error while parsing the file '{pdf_path}': {str(e)}\")\n            raise\n\n    def process_document(self, document: str) -> Tuple[List[Document], List[Document]]:\n        if not document.strip():\n            raise ValueError(\"The document is empty after parsing.\")\n        chunks = self.text_splitter.create_documents([document])\n        contextualized_chunks = self._generate_contextualized_chunks(document, chunks)\n        return chunks, contextualized_chunks\n\n    def _generate_contextualized_chunks(self, document: str, chunks: List[Document]) -> List[Document]:\n        contextualized_chunks = []\n        for chunk in chunks:\n            context = self._generate_context(document, chunk.page_content)\n            contextualized_content = f\"{context}\\n\\n{chunk.page_content}\"\n            contextualized_chunks.append(Document(page_content=contextualized_content, metadata=chunk.metadata))\n        return contextualized_chunks\n\n    def _generate_context(self, document: str, chunk: str) -> str:\n        prompt = ChatPromptTemplate.from_template(\"\"\"\n        You are an AI assistant specializing in document analysis. Your task is to provide brief, relevant context for a chunk of text from the given document.\n        Here is the document:\n        <document>\n        {document}\n        </document>\n\n        Here is the chunk we want to situate within the whole document:\n        <chunk>\n        {chunk}\n        </chunk>\n\n        Provide a concise context (2-3 sentences) for this chunk, considering the following guidelines:\n        1. Identify the main topic or concept discussed in the chunk.\n        2. Mention any relevant information or comparisons from the broader document context.\n        3. If applicable, note how this information relates to the overall theme or purpose of the document.\n        4. Include any key figures, dates, or percentages that provide important context.\n        5. Do not use phrases like \"This chunk discusses\" or \"This section provides\". Instead, directly state the context.\n\n        Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else.\n\n        Context:\n        \"\"\")\n        messages = prompt.format_messages(document=document, chunk=chunk)\n        response = self.llm.invoke(messages)\n        return response.content\n\n    def create_bm25_index(self, chunks: List[Document]) -> BM25Okapi:\n        tokenized_chunks = [chunk.page_content.split() for chunk in chunks]\n        return BM25Okapi(tokenized_chunks)\n\n    def generate_answer(self, query: str, relevant_chunks: List[str]) -> str:\n        prompt = ChatPromptTemplate.from_template(\"\"\"\n        Based on the following information, please provide a concise and accurate answer to the question.\n        If the information is not sufficient to answer the question, say so.\n\n        Question: {query}\n\n        Relevant information:\n        {chunks}\n\n        Answer:\n        \"\"\")\n        messages = prompt.format_messages(query=query, chunks=\"\\n\\n\".join(relevant_chunks))\n        response = self.llm.invoke(messages)\n        return response.content\n\n    def rerank_results(self, query: str, documents: List[Document], top_n: int = 3) -> List[Document]:\n        logging.info(f\"Reranking {len(documents)} documents for query: {query}\")\n        doc_contents = [doc.page_content for doc in documents]\n        \n        max_retries = 3\n        for attempt in range(max_retries):\n            try:\n                reranked = self.cohere_client.rerank(\n                    model=\"rerank-english-v2.0\",\n                    query=query,\n                    documents=doc_contents,\n                    top_n=top_n\n                )\n                break\n            except cohere.errors.TooManyRequestsError:\n                if attempt < max_retries - 1:\n                    logging.warning(f\"Rate limit hit. Waiting for 60 seconds before retry {attempt + 1}/{max_retries}\")\n                    time.sleep(60)  # Wait for 60 seconds before retrying\n                else:\n                    logging.error(\"Rate limit hit. Max retries reached. Returning original documents.\")\n                    return documents[:top_n]\n        \n        logging.info(f\"Reranking complete. Top {top_n} results:\")\n        reranked_docs = []\n        for idx, result in enumerate(reranked.results):\n            original_doc = documents[result.index]\n            reranked_docs.append(original_doc)\n            logging.info(f\"  {idx+1}. Score: {result.relevance_score:.4f}, Index: {result.index}\")\n        \n        return reranked_docs\n\n    def expand_query(self, original_query: str) -> str:\n        prompt = ChatPromptTemplate.from_template(\"\"\"\n        You are an AI assistant specializing in document analysis. Your task is to expand the given query to include related terms and concepts that might be relevant for a more comprehensive search of the document.\n\n        Original query: {query}\n\n        Please provide an expanded version of this query, including relevant terms, concepts, or related ideas that might help in summarizing the full document. The expanded query should be a single string, not a list.\n\n        Expanded query:\n        \"\"\")\n        messages = prompt.format_messages(query=original_query)\n        response = self.llm.invoke(messages)\n        return response.content
\n

 

\n

 

\n

 

\n

 

\n

 

\n

Now lets load a sample PDF with Contextual embedding and create 2 index both for normal chunks and context aware chunks.

\n

 

\n

Lets define the process query function

\n

 

\n
cr = ContextualRetrieval()\npdf_path = \"1.pdf\"\ndocument = cr.load_pdf_with_llama_parse(pdf_path)\n\n# Process the document\nchunks, contextualized_chunks = cr.process_document(document)\n\n# Create BM25 index\ncontextualized_bm25_index = cr.create_bm25_index(contextualized_chunks)\nnormal_bm25_index = cr.create_bm25_index(chunks)
\n

 

\n

 

\n

Now lets run the query against the both the index to compare the result.

\n

 

\n
def process_query(query: str, processor: AutoProcessor, model: ColPali) -> np.ndarray:\n    mock_image = Image.new('RGB', (224, 224), color='white')\n\n    inputs = processor(text=query, images=mock_image, return_tensors=\"pt\")\n    inputs = {k: v.to(model.device) for k, v in inputs.items()}\n\n    with torch.no_grad():\n        embeddings = model(**inputs)\n\n    return torch.mean(embeddings, dim=1).float().cpu().numpy().tolist()[0]
\n

 

\n

 

\n

 

\n
original_query = \"When does the term of the Agreement commence and how long does it last?\"\nprint(f\"\\nOriginal Query: {original_query}\")\nprocess_query(cr, original_query, normal_bm25_index, chunks)
\n

 

\n

 

\n

 

\n

Context Aware Index

\n

 

\n

 

\n

 

\n
original_query = \"When does the term of the Agreement commence and how long does it last?\"\nprint(f\"\\nOriginal Query: {original_query}\")\nprocess_query(cr, original_query, contextualized_bm25_index, contextualized_chunks)
\n

 

\n

 

\n

 

\n

You will likely better answer from the later one because of the contextual retriever. Now lets evaluate this against a benchmark. We will use Azure AI SDK for RAG evaluation. First lets load the dataset.

\n

 

\n

You can create your ground truth based on the following jsonlines.

\n

 

\n

 

\n

 

\n
{\"chat_history\":[],\"question\":\"What is short-term memory in the context of the model?\",\"ground_truth\":\"Short-term memory involves utilizing in-context learning to learn.\"}\n
\n

 

\n

 

\n

 

\n

 

\n

 

\n
import pandas as pd\ndf = pd.read_json(output_file, lines=True, orient=\"records\")\ndf.head()
\n

 

\n

 

\n

 

\n

Now once we load the dataset we can run this against both our retrieval strategy a standard vs contextually embedded one.

\n

 

\n

 

\n

 

\n
normal_answers = []\ncontexual_answers = []\nfor index, row in df.iterrows():\n    normal_answers.append(process_query(cr, row[\"question\"], normal_bm25_index, chunks))\n    contexual_answers.append(process_query(cr, row[\"question\"], contextualized_bm25_index, contextualized_chunks))
\n

 

\n

 

\n

 

\n

Lets evaluate against the ground truth , here in this case i have used similarity score for evaluation. You can use any other builtin or custom metrics. Learn more about it here.

\n

 

\n

 

\n

 

\n
from azure.ai.evaluation import SimilarityEvaluator\n\n# Initialzing Relevance Evaluator\nsimilarity_eval = SimilarityEvaluator(model_config)\n\ndf[\"answer\"] = normal_answers\ndf['score'] = df.apply(lambda x : similarity_eval(\n    response=x[\"answer\"],\n    ground_truth = x[\"ground_truth\"],\n    query=x[\"question\"],\n), axis = 1)\ndf[\"answer_contextual\"] = contexual_answers\ndf['score_contextual'] = df.apply(lambda x : similarity_eval(\n    response=x[\"answer_contextual\"],\n    ground_truth = x[\"ground_truth\"],\n    query=x[\"question\"],\n), axis = 1)
\n

 

\n

 

\n

 

\n

\n

 

\n

As you can see contextual embedding increases the retrieval hence the same is reflected in the similarity score.The contextual retrieval system outlined in this blog post showcases a sophisticated approach to document analysis and question-answering. By integrating various NLP techniques—such as contextualization with GPT-4, efficient indexing with BM25, reranking with Cohere's models, and query expansion—the system not only retrieves relevant information but also understands and synthesizes it to provide accurate answers. This modular architecture ensures flexibility, allowing for individual components to be enhanced or replaced as better technologies emerge. As the field of natural language processing continues to advance, systems like this will become increasingly vital in making large volumes of text more accessible, searchable, and actionable across diverse domains.

\n

References: 

\n

 

\n

https://learn.microsoft.com/en-us/azure/ai-services/content-safety/overview

\n

https://learn.microsoft.com/en-us/azure/ai-studio/how-to/develop/evaluate-sdk

\n

https://www.anthropic.com/news/contextual-retrieval

\n

 

\n

Thanks

\n

Manoranjan Rajguru

\n

https://www.linkedin.com/in/manoranjan-rajguru/

","body@stringLength":"21636","rawBody":"

To enhance AI models for specific tasks, they require domain-specific knowledge. For instance, customer support chatbots need business-related information, while legal bots rely on historical case data. Developers commonly use Retrieval-Augmented Generation (RAG) to fetch relevant knowledge from a database and improve AI responses. However, traditional RAG approaches often miss context during retrieval, leading to failures. In this post, we introduce \"Contextual Retrieval,\" a method using Contextual Embeddings to improve retrieval accuracy, cutting failures with reranking.

\n

 

\n

For larger knowledge bases, Retrieval-Augmented Generation (RAG) offers a scalable solution. Modern RAG systems combine two powerful retrieval methods:

\n
    \n
  1. Semantic Search using Embeddings
  2. \n
\n\n
    \n
  1. Lexical Search using BM25
  2. \n
\n\n

 

\n

The optimal RAG implementation combines both approaches:

\n
    \n
  1. Split the knowledge base into chunks
  2. \n
  3. Generate both TF-IDF encodings and semantic embeddings
  4. \n
  5. Run parallel searches using BM25 and embedding similarity
  6. \n
  7. Merge and deduplicate results using rank fusion
  8. \n
  9. Include the most relevant chunks in the prompt
  10. \n
  11. Generate the response using the enhanced context
  12. \n
\n

 

\n

The challenge with traditional RAG lies in how documents are split into smaller chunks for efficient retrieval, sometimes losing important context. For instance, consider an academic database where you're asked, \"What was Dr. Smith's primary research focus in 2021?\" If a retrieved chunk states, \"The research emphasized AI,\" it might lack clarity without specifying Dr. Smith or the exact year, making it hard to pinpoint the answer. This issue can reduce the accuracy and utility of retrieval results in such knowledge-heavy domains.

\n

 

\n

Contextual Retrieval solves this problem by prepending chunk-specific explanatory context to each chunk before embedding (“Contextual Embeddings”). We will generate contextual text for each chunk. 

\n

 

\n

 

\n

A typical RAG pipeline typically have the below components.  As you can see we have a user input which is authenticated and passed through a content safety system (learn more about it here ).  Next step is a query rewriter based on the historical conversation , you can also attach a query expansion which improves the generated answer. Next we have a retriever and re-ranker. In a RAG pipeline, retrievers and rankers play crucial complementary roles in finding and prioritizing relevant context. The retriever acts as the initial filter, efficiently searching through large document collections to identify potentially relevant chunks based on semantic similarity with the query. Common retrieval approaches include dense retrievers (like embedding-based search) or sparse retrievers (like BM25). The ranker then acts as a more sophisticated second stage, taking the retriever's candidate passages and performing detailed relevance scoring. Rankers can leverage powerful language models to analyze the deep semantic relationship between the query and each passage, considering factors like factual alignment, answer coverage, and contextual relevance. This two-stage approach balances efficiency and accuracy - the retriever quickly narrows down the search space while the ranker applies more compute-intensive analysis on a smaller set of promising candidates to identify the most pertinent context for the generation phase.

\n

 

\n

 

\n

\n

 

\n

In this example we will use Langchain as our framework to build this.

\n

 

\n

 

\n

 

\n

 

\n

 

\nimport os\nfrom typing import List, Tuple\nfrom dotenv import load_dotenv\nfrom langchain.text_splitter import RecursiveCharacterTextSplitter\nfrom langchain.schema import Document\nfrom langchain_openai import AzureOpenAIEmbeddings\nfrom langchain_community.vectorstores import FAISS\nfrom langchain_openai import AzureChatOpenAI\nfrom langchain.prompts import ChatPromptTemplate\nfrom rank_bm25 import BM25Okapi\nimport cohere\nimport logging\nimport time\nfrom llama_parse import LlamaParse\nfrom azure.ai.documentintelligence.models import DocumentAnalysisFeature\nfrom langchain_community.document_loaders.doc_intelligence import AzureAIDocumentIntelligenceLoader\n\n# Set up logging\nlogging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\nload_dotenv('azure.env', override=True)\n

 

\n

 

\n

 

\n

 

\n

 

\n

Now lets create a custom Retriever with implementation of contextual embedding. Here is the code. 

\n

 

\n

 

\n\n

 

\n

 

\n

 

\n

 

\n

 

\n

 

\nclass ContextualRetrieval:\n def __init__(self):\n self.text_splitter = RecursiveCharacterTextSplitter(\n chunk_size=800,\n chunk_overlap=100,\n )\n self.embeddings = AzureOpenAIEmbeddings(\n api_key=os.getenv(\"AZURE_OPENAI_API_KEY\"),\n azure_deployment=\"text-embedding-ada-002\",\n openai_api_version=\"2024-03-01-preview\",\n azure_endpoint =os.environ[\"AZURE_OPENAI_ENDPOINT\"]\n )\n self.llm = AzureChatOpenAI(\n api_key=os.environ[\"AZURE_OPENAI_API_KEY\"],\n azure_endpoint=os.environ[\"AZURE_OPENAI_ENDPOINT\"],\n azure_deployment=\"gpt-4o\",\n temperature=0,\n max_tokens=None,\n timeout=None,\n max_retries=2,\n )\n self.cohere_client = cohere.Client(os.getenv(\"COHERE_API_KEY\"))\n\n def load_pdf_and_parse(self, pdf_path: str) -> str:\n loader = AzureAIDocumentIntelligenceLoader(file_path=pdf_path, \n api_key = os.getenv(\"AZURE_DOCUMENT_INTELLIGENCE_KEY\"), \n api_endpoint = os.getenv(\"AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT\"),\n api_model=\"prebuilt-layout\",\n api_version=\"2024-02-29-preview\",\n mode='markdown',\n analysis_features = [DocumentAnalysisFeature.OCR_HIGH_RESOLUTION])\n\n try:\n documents = loader.load()\n if not documents:\n raise ValueError(\"No content extracted from the PDF.\")\n return \" \".join([doc.page_content for doc in documents])\n except Exception as e:\n logging.error(f\"Error while parsing the file '{pdf_path}': {str(e)}\")\n raise\n\n def process_document(self, document: str) -> Tuple[List[Document], List[Document]]:\n if not document.strip():\n raise ValueError(\"The document is empty after parsing.\")\n chunks = self.text_splitter.create_documents([document])\n contextualized_chunks = self._generate_contextualized_chunks(document, chunks)\n return chunks, contextualized_chunks\n\n def _generate_contextualized_chunks(self, document: str, chunks: List[Document]) -> List[Document]:\n contextualized_chunks = []\n for chunk in chunks:\n context = self._generate_context(document, chunk.page_content)\n contextualized_content = f\"{context}\\n\\n{chunk.page_content}\"\n contextualized_chunks.append(Document(page_content=contextualized_content, metadata=chunk.metadata))\n return contextualized_chunks\n\n def _generate_context(self, document: str, chunk: str) -> str:\n prompt = ChatPromptTemplate.from_template(\"\"\"\n You are an AI assistant specializing in document analysis. Your task is to provide brief, relevant context for a chunk of text from the given document.\n Here is the document:\n <document>\n {document}\n </document>\n\n Here is the chunk we want to situate within the whole document:\n <chunk>\n {chunk}\n </chunk>\n\n Provide a concise context (2-3 sentences) for this chunk, considering the following guidelines:\n 1. Identify the main topic or concept discussed in the chunk.\n 2. Mention any relevant information or comparisons from the broader document context.\n 3. If applicable, note how this information relates to the overall theme or purpose of the document.\n 4. Include any key figures, dates, or percentages that provide important context.\n 5. Do not use phrases like \"This chunk discusses\" or \"This section provides\". Instead, directly state the context.\n\n Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else.\n\n Context:\n \"\"\")\n messages = prompt.format_messages(document=document, chunk=chunk)\n response = self.llm.invoke(messages)\n return response.content\n\n def create_bm25_index(self, chunks: List[Document]) -> BM25Okapi:\n tokenized_chunks = [chunk.page_content.split() for chunk in chunks]\n return BM25Okapi(tokenized_chunks)\n\n def generate_answer(self, query: str, relevant_chunks: List[str]) -> str:\n prompt = ChatPromptTemplate.from_template(\"\"\"\n Based on the following information, please provide a concise and accurate answer to the question.\n If the information is not sufficient to answer the question, say so.\n\n Question: {query}\n\n Relevant information:\n {chunks}\n\n Answer:\n \"\"\")\n messages = prompt.format_messages(query=query, chunks=\"\\n\\n\".join(relevant_chunks))\n response = self.llm.invoke(messages)\n return response.content\n\n def rerank_results(self, query: str, documents: List[Document], top_n: int = 3) -> List[Document]:\n logging.info(f\"Reranking {len(documents)} documents for query: {query}\")\n doc_contents = [doc.page_content for doc in documents]\n \n max_retries = 3\n for attempt in range(max_retries):\n try:\n reranked = self.cohere_client.rerank(\n model=\"rerank-english-v2.0\",\n query=query,\n documents=doc_contents,\n top_n=top_n\n )\n break\n except cohere.errors.TooManyRequestsError:\n if attempt < max_retries - 1:\n logging.warning(f\"Rate limit hit. Waiting for 60 seconds before retry {attempt + 1}/{max_retries}\")\n time.sleep(60) # Wait for 60 seconds before retrying\n else:\n logging.error(\"Rate limit hit. Max retries reached. Returning original documents.\")\n return documents[:top_n]\n \n logging.info(f\"Reranking complete. Top {top_n} results:\")\n reranked_docs = []\n for idx, result in enumerate(reranked.results):\n original_doc = documents[result.index]\n reranked_docs.append(original_doc)\n logging.info(f\" {idx+1}. Score: {result.relevance_score:.4f}, Index: {result.index}\")\n \n return reranked_docs\n\n def expand_query(self, original_query: str) -> str:\n prompt = ChatPromptTemplate.from_template(\"\"\"\n You are an AI assistant specializing in document analysis. Your task is to expand the given query to include related terms and concepts that might be relevant for a more comprehensive search of the document.\n\n Original query: {query}\n\n Please provide an expanded version of this query, including relevant terms, concepts, or related ideas that might help in summarizing the full document. The expanded query should be a single string, not a list.\n\n Expanded query:\n \"\"\")\n messages = prompt.format_messages(query=original_query)\n response = self.llm.invoke(messages)\n return response.content\n

 

\n

 

\n

 

\n

 

\n

 

\n

Now lets load a sample PDF with Contextual embedding and create 2 index both for normal chunks and context aware chunks.

\n

 

\n

Lets define the process query function

\n

 

\ncr = ContextualRetrieval()\npdf_path = \"1.pdf\"\ndocument = cr.load_pdf_with_llama_parse(pdf_path)\n\n# Process the document\nchunks, contextualized_chunks = cr.process_document(document)\n\n# Create BM25 index\ncontextualized_bm25_index = cr.create_bm25_index(contextualized_chunks)\nnormal_bm25_index = cr.create_bm25_index(chunks)\n

 

\n

 

\n

Now lets run the query against the both the index to compare the result.

\n

 

\ndef process_query(query: str, processor: AutoProcessor, model: ColPali) -> np.ndarray:\n mock_image = Image.new('RGB', (224, 224), color='white')\n\n inputs = processor(text=query, images=mock_image, return_tensors=\"pt\")\n inputs = {k: v.to(model.device) for k, v in inputs.items()}\n\n with torch.no_grad():\n embeddings = model(**inputs)\n\n return torch.mean(embeddings, dim=1).float().cpu().numpy().tolist()[0]\n

 

\n

 

\n

 

\noriginal_query = \"When does the term of the Agreement commence and how long does it last?\"\nprint(f\"\\nOriginal Query: {original_query}\")\nprocess_query(cr, original_query, normal_bm25_index, chunks)\n

 

\n

 

\n

 

\n

Context Aware Index

\n

 

\n

 

\n

 

\noriginal_query = \"When does the term of the Agreement commence and how long does it last?\"\nprint(f\"\\nOriginal Query: {original_query}\")\nprocess_query(cr, original_query, contextualized_bm25_index, contextualized_chunks)\n

 

\n

 

\n

 

\n

You will likely better answer from the later one because of the contextual retriever. Now lets evaluate this against a benchmark. We will use Azure AI SDK for RAG evaluation. First lets load the dataset.

\n

 

\n

You can create your ground truth based on the following jsonlines.

\n

 

\n

 

\n

 

\n{\"chat_history\":[],\"question\":\"What is short-term memory in the context of the model?\",\"ground_truth\":\"Short-term memory involves utilizing in-context learning to learn.\"}\n\n

 

\n

 

\n

 

\n

 

\n

 

\nimport pandas as pd\ndf = pd.read_json(output_file, lines=True, orient=\"records\")\ndf.head()\n

 

\n

 

\n

 

\n

Now once we load the dataset we can run this against both our retrieval strategy a standard vs contextually embedded one.

\n

 

\n

 

\n

 

\nnormal_answers = []\ncontexual_answers = []\nfor index, row in df.iterrows():\n normal_answers.append(process_query(cr, row[\"question\"], normal_bm25_index, chunks))\n contexual_answers.append(process_query(cr, row[\"question\"], contextualized_bm25_index, contextualized_chunks))\n

 

\n

 

\n

 

\n

Lets evaluate against the ground truth , here in this case i have used similarity score for evaluation. You can use any other builtin or custom metrics. Learn more about it here.

\n

 

\n

 

\n

 

\nfrom azure.ai.evaluation import SimilarityEvaluator\n\n# Initialzing Relevance Evaluator\nsimilarity_eval = SimilarityEvaluator(model_config)\n\ndf[\"answer\"] = normal_answers\ndf['score'] = df.apply(lambda x : similarity_eval(\n response=x[\"answer\"],\n ground_truth = x[\"ground_truth\"],\n query=x[\"question\"],\n), axis = 1)\ndf[\"answer_contextual\"] = contexual_answers\ndf['score_contextual'] = df.apply(lambda x : similarity_eval(\n response=x[\"answer_contextual\"],\n ground_truth = x[\"ground_truth\"],\n query=x[\"question\"],\n), axis = 1)\n

 

\n

 

\n

 

\n

\n

 

\n

As you can see contextual embedding increases the retrieval hence the same is reflected in the similarity score.The contextual retrieval system outlined in this blog post showcases a sophisticated approach to document analysis and question-answering. By integrating various NLP techniques—such as contextualization with GPT-4, efficient indexing with BM25, reranking with Cohere's models, and query expansion—the system not only retrieves relevant information but also understands and synthesizes it to provide accurate answers. This modular architecture ensures flexibility, allowing for individual components to be enhanced or replaced as better technologies emerge. As the field of natural language processing continues to advance, systems like this will become increasingly vital in making large volumes of text more accessible, searchable, and actionable across diverse domains.

\n

References: 

\n

 

\n

https://learn.microsoft.com/en-us/azure/ai-services/content-safety/overview

\n

https://learn.microsoft.com/en-us/azure/ai-studio/how-to/develop/evaluate-sdk

\n

https://www.anthropic.com/news/contextual-retrieval

\n

 

\n

Thanks

\n

Manoranjan Rajguru

\n

https://www.linkedin.com/in/manoranjan-rajguru/

","kudosSumWeight":3,"postTime":"2024-10-16T22:30:59.495-07:00","images":{"__typename":"AssociatedImageConnection","edges":[{"__typename":"AssociatedImageEdge","cursor":"MjUuM3wyLjF8b3wyNXxfTlZffDE","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjcxOTI0LTYyOTU4OGkxMTQzNTZBQURBMTg0M0VG?revision=5\"}"}},{"__typename":"AssociatedImageEdge","cursor":"MjUuM3wyLjF8b3wyNXxfTlZffDI","node":{"__ref":"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjcxOTI0LTYyOTg2OGk2OTRBN0M3OTdFQTI3ODM3?revision=5\"}"}}],"totalCount":2,"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"attachments":{"__typename":"AttachmentConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"tags":{"__typename":"TagConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[{"__typename":"TagEdge","cursor":"MjUuM3wyLjF8b3wxMHxfTlZffDE","node":{"__typename":"Tag","id":"tag:azure ai studio","text":"azure ai studio","time":"2023-11-11T00:57:52.231-08:00","lastActivityTime":null,"messagesCount":null,"followersCount":null}}]},"timeToRead":8,"rawTeaser":"","introduction":"","coverImage":null,"coverImageProperties":{"__typename":"CoverImageProperties","style":"STANDARD","titlePosition":"BOTTOM","altText":""},"currentRevision":{"__ref":"Revision:revision:4271924_5"},"latestVersion":{"__typename":"FriendlyVersion","major":"3","minor":"0"},"metrics":{"__typename":"MessageMetrics","views":9833},"visibilityScope":"PUBLIC","canonicalUrl":null,"seoTitle":null,"seoDescription":null,"placeholder":false,"originalMessageForPlaceholder":null,"contributors":{"__typename":"UserConnection","edges":[]},"nonCoAuthorContributors":{"__typename":"UserConnection","edges":[]},"coAuthors":{"__typename":"UserConnection","edges":[]},"blogMessagePolicies":{"__typename":"BlogMessagePolicies","canDoAuthoringActionsOnBlog":{"__typename":"PolicyResult","failureReason":{"__typename":"FailureReason","message":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","key":"error.lithium.policies.blog.action_can_do_authoring_action.accessDenied","args":[]}}},"archivalData":null,"replies":{"__typename":"MessageConnection","edges":[{"__typename":"MessageEdge","cursor":"MjUuM3wyLjF8aXwxMHwxMzI6MHxpbnQsNDI4NTY5Nyw0Mjg1Njk3","node":{"__ref":"BlogReplyMessage:message:4285697"}},{"__typename":"MessageEdge","cursor":"MjUuM3wyLjF8aXwxMHwxMzI6MHxpbnQsNDI4NTY5Nyw0MjczNjY5","node":{"__ref":"BlogReplyMessage:message:4273669"}}],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}},"customFields":[],"revisions({\"constraints\":{\"isPublished\":{\"eq\":true}},\"first\":1})":{"__typename":"RevisionConnection","totalCount":5}},"Conversation:conversation:4271924":{"__typename":"Conversation","id":"conversation:4271924","solved":false,"topic":{"__ref":"BlogTopicMessage:message:4271924"},"lastPostingActivityTime":"2024-11-03T16:51:25.938-08:00","lastPostTime":"2024-11-03T16:51:25.938-08:00","unreadReplyCount":2,"isSubscribed":false},"ModerationData:moderation_data:4271924":{"__typename":"ModerationData","id":"moderation_data:4271924","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjcxOTI0LTYyOTU4OGkxMTQzNTZBQURBMTg0M0VG?revision=5\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjcxOTI0LTYyOTU4OGkxMTQzNTZBQURBMTg0M0VG?revision=5","title":"mrajguru_0-1729080789691.gif","associationType":"BODY","width":1572,"height":1095,"altText":null},"AssociatedImage:{\"url\":\"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjcxOTI0LTYyOTg2OGk2OTRBN0M3OTdFQTI3ODM3?revision=5\"}":{"__typename":"AssociatedImage","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/bS00MjcxOTI0LTYyOTg2OGk2OTRBN0M3OTdFQTI3ODM3?revision=5","title":"mrajguru_0-1729142608108.png","associationType":"BODY","width":954,"height":590,"altText":null},"Revision:revision:4271924_5":{"__typename":"Revision","id":"revision:4271924_5","lastEditTime":"2024-10-27T09:30:19.979-07:00"},"CachedAsset:theme:customTheme1-1746563267668":{"__typename":"CachedAsset","id":"theme:customTheme1-1746563267668","value":{"id":"customTheme1","animation":{"fast":"150ms","normal":"250ms","slow":"500ms","slowest":"750ms","function":"cubic-bezier(0.07, 0.91, 0.51, 1)","__typename":"AnimationThemeSettings"},"avatar":{"borderRadius":"50%","collections":["default"],"__typename":"AvatarThemeSettings"},"basics":{"browserIcon":{"imageAssetName":"favicon-1730836283320.png","imageLastModified":"1730836286415","__typename":"ThemeAsset"},"customerLogo":{"imageAssetName":"favicon-1730836271365.png","imageLastModified":"1730836274203","__typename":"ThemeAsset"},"maximumWidthOfPageContent":"1300px","oneColumnNarrowWidth":"800px","gridGutterWidthMd":"30px","gridGutterWidthXs":"10px","pageWidthStyle":"WIDTH_OF_BROWSER","__typename":"BasicsThemeSettings"},"buttons":{"borderRadiusSm":"3px","borderRadius":"3px","borderRadiusLg":"5px","paddingY":"5px","paddingYLg":"7px","paddingYHero":"var(--lia-bs-btn-padding-y-lg)","paddingX":"12px","paddingXLg":"16px","paddingXHero":"60px","fontStyle":"NORMAL","fontWeight":"700","textTransform":"NONE","disabledOpacity":0.5,"primaryTextColor":"var(--lia-bs-white)","primaryTextHoverColor":"var(--lia-bs-white)","primaryTextActiveColor":"var(--lia-bs-white)","primaryBgColor":"var(--lia-bs-primary)","primaryBgHoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.85))","primaryBgActiveColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) * 0.7))","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","primaryBorderActive":"1px solid transparent","primaryBorderFocus":"1px solid var(--lia-bs-white)","primaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","secondaryTextColor":"var(--lia-bs-gray-900)","secondaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","secondaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","secondaryBgColor":"var(--lia-bs-gray-200)","secondaryBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","secondaryBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","secondaryBorder":"1px solid transparent","secondaryBorderHover":"1px solid transparent","secondaryBorderActive":"1px solid transparent","secondaryBorderFocus":"1px solid transparent","secondaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","tertiaryTextColor":"var(--lia-bs-gray-900)","tertiaryTextHoverColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.95))","tertiaryTextActiveColor":"hsl(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), calc(var(--lia-bs-gray-900-l) * 0.9))","tertiaryBgColor":"transparent","tertiaryBgHoverColor":"transparent","tertiaryBgActiveColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.04)","tertiaryBorder":"1px solid transparent","tertiaryBorderHover":"1px solid hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","tertiaryBorderActive":"1px solid transparent","tertiaryBorderFocus":"1px solid transparent","tertiaryBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","destructiveTextColor":"var(--lia-bs-danger)","destructiveTextHoverColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.95))","destructiveTextActiveColor":"hsl(var(--lia-bs-danger-h), var(--lia-bs-danger-s), calc(var(--lia-bs-danger-l) * 0.9))","destructiveBgColor":"var(--lia-bs-gray-200)","destructiveBgHoverColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.96))","destructiveBgActiveColor":"hsl(var(--lia-bs-gray-200-h), var(--lia-bs-gray-200-s), calc(var(--lia-bs-gray-200-l) * 0.92))","destructiveBorder":"1px solid transparent","destructiveBorderHover":"1px solid transparent","destructiveBorderActive":"1px solid transparent","destructiveBorderFocus":"1px solid transparent","destructiveBoxShadowFocus":"0 0 0 1px var(--lia-bs-primary), 0 0 0 4px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","__typename":"ButtonsThemeSettings"},"border":{"color":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","mainContent":"NONE","sideContent":"LIGHT","radiusSm":"3px","radius":"5px","radiusLg":"9px","radius50":"100vw","__typename":"BorderThemeSettings"},"boxShadow":{"xs":"0 0 0 1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.08), 0 3px 0 -1px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.16)","sm":"0 2px 4px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.12)","md":"0 5px 15px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","lg":"0 10px 30px hsla(var(--lia-bs-gray-900-h), var(--lia-bs-gray-900-s), var(--lia-bs-gray-900-l), 0.3)","__typename":"BoxShadowThemeSettings"},"cards":{"bgColor":"var(--lia-panel-bg-color)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":"var(--lia-box-shadow-xs)","__typename":"CardsThemeSettings"},"chip":{"maxWidth":"300px","height":"30px","__typename":"ChipThemeSettings"},"coreTypes":{"defaultMessageLinkColor":"var(--lia-bs-link-color)","defaultMessageLinkDecoration":"none","defaultMessageLinkFontStyle":"NORMAL","defaultMessageLinkFontWeight":"400","defaultMessageFontStyle":"NORMAL","defaultMessageFontWeight":"400","defaultMessageFontFamily":"var(--lia-bs-font-family-base)","forumColor":"#4099E2","forumFontFamily":"var(--lia-bs-font-family-base)","forumFontWeight":"var(--lia-default-message-font-weight)","forumLineHeight":"var(--lia-bs-line-height-base)","forumFontStyle":"var(--lia-default-message-font-style)","forumMessageLinkColor":"var(--lia-default-message-link-color)","forumMessageLinkDecoration":"var(--lia-default-message-link-decoration)","forumMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","forumMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","forumSolvedColor":"#148563","blogColor":"#1CBAA0","blogFontFamily":"var(--lia-bs-font-family-base)","blogFontWeight":"var(--lia-default-message-font-weight)","blogLineHeight":"1.75","blogFontStyle":"var(--lia-default-message-font-style)","blogMessageLinkColor":"var(--lia-default-message-link-color)","blogMessageLinkDecoration":"var(--lia-default-message-link-decoration)","blogMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","blogMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","tkbColor":"#4C6B90","tkbFontFamily":"var(--lia-bs-font-family-base)","tkbFontWeight":"var(--lia-default-message-font-weight)","tkbLineHeight":"1.75","tkbFontStyle":"var(--lia-default-message-font-style)","tkbMessageLinkColor":"var(--lia-default-message-link-color)","tkbMessageLinkDecoration":"var(--lia-default-message-link-decoration)","tkbMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","tkbMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaColor":"#4099E2","qandaFontFamily":"var(--lia-bs-font-family-base)","qandaFontWeight":"var(--lia-default-message-font-weight)","qandaLineHeight":"var(--lia-bs-line-height-base)","qandaFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkColor":"var(--lia-default-message-link-color)","qandaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","qandaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","qandaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","qandaSolvedColor":"#3FA023","ideaColor":"#FF8000","ideaFontFamily":"var(--lia-bs-font-family-base)","ideaFontWeight":"var(--lia-default-message-font-weight)","ideaLineHeight":"var(--lia-bs-line-height-base)","ideaFontStyle":"var(--lia-default-message-font-style)","ideaMessageLinkColor":"var(--lia-default-message-link-color)","ideaMessageLinkDecoration":"var(--lia-default-message-link-decoration)","ideaMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","ideaMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","contestColor":"#FCC845","contestFontFamily":"var(--lia-bs-font-family-base)","contestFontWeight":"var(--lia-default-message-font-weight)","contestLineHeight":"var(--lia-bs-line-height-base)","contestFontStyle":"var(--lia-default-message-link-font-style)","contestMessageLinkColor":"var(--lia-default-message-link-color)","contestMessageLinkDecoration":"var(--lia-default-message-link-decoration)","contestMessageLinkFontStyle":"ITALIC","contestMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","occasionColor":"#D13A1F","occasionFontFamily":"var(--lia-bs-font-family-base)","occasionFontWeight":"var(--lia-default-message-font-weight)","occasionLineHeight":"var(--lia-bs-line-height-base)","occasionFontStyle":"var(--lia-default-message-font-style)","occasionMessageLinkColor":"var(--lia-default-message-link-color)","occasionMessageLinkDecoration":"var(--lia-default-message-link-decoration)","occasionMessageLinkFontStyle":"var(--lia-default-message-link-font-style)","occasionMessageLinkFontWeight":"var(--lia-default-message-link-font-weight)","grouphubColor":"#333333","categoryColor":"#949494","communityColor":"#FFFFFF","productColor":"#949494","__typename":"CoreTypesThemeSettings"},"colors":{"black":"#000000","white":"#FFFFFF","gray100":"#F7F7F7","gray200":"#F7F7F7","gray300":"#E8E8E8","gray400":"#D9D9D9","gray500":"#CCCCCC","gray600":"#717171","gray700":"#707070","gray800":"#545454","gray900":"#333333","dark":"#545454","light":"#F7F7F7","primary":"#0069D4","secondary":"#333333","bodyText":"#1E1E1E","bodyBg":"#FFFFFF","info":"#409AE2","success":"#41C5AE","warning":"#FCC844","danger":"#BC341B","alertSystem":"#FF6600","textMuted":"#707070","highlight":"#FFFCAD","outline":"var(--lia-bs-primary)","custom":["#D3F5A4","#243A5E"],"__typename":"ColorsThemeSettings"},"divider":{"size":"3px","marginLeft":"4px","marginRight":"4px","borderRadius":"50%","bgColor":"var(--lia-bs-gray-600)","bgColorActive":"var(--lia-bs-gray-600)","__typename":"DividerThemeSettings"},"dropdown":{"fontSize":"var(--lia-bs-font-size-sm)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius-sm)","dividerBg":"var(--lia-bs-gray-300)","itemPaddingY":"5px","itemPaddingX":"20px","headerColor":"var(--lia-bs-gray-700)","__typename":"DropdownThemeSettings"},"email":{"link":{"color":"#0069D4","hoverColor":"#0061c2","decoration":"none","hoverDecoration":"underline","__typename":"EmailLinkSettings"},"border":{"color":"#e4e4e4","__typename":"EmailBorderSettings"},"buttons":{"borderRadiusLg":"5px","paddingXLg":"16px","paddingYLg":"7px","fontWeight":"700","primaryTextColor":"#ffffff","primaryTextHoverColor":"#ffffff","primaryBgColor":"#0069D4","primaryBgHoverColor":"#005cb8","primaryBorder":"1px solid transparent","primaryBorderHover":"1px solid transparent","__typename":"EmailButtonsSettings"},"panel":{"borderRadius":"5px","borderColor":"#e4e4e4","__typename":"EmailPanelSettings"},"__typename":"EmailThemeSettings"},"emoji":{"skinToneDefault":"#ffcd43","skinToneLight":"#fae3c5","skinToneMediumLight":"#e2cfa5","skinToneMedium":"#daa478","skinToneMediumDark":"#a78058","skinToneDark":"#5e4d43","__typename":"EmojiThemeSettings"},"heading":{"color":"var(--lia-bs-body-color)","fontFamily":"Segoe UI","fontStyle":"NORMAL","fontWeight":"400","h1FontSize":"34px","h2FontSize":"32px","h3FontSize":"28px","h4FontSize":"24px","h5FontSize":"20px","h6FontSize":"16px","lineHeight":"1.3","subHeaderFontSize":"11px","subHeaderFontWeight":"500","h1LetterSpacing":"normal","h2LetterSpacing":"normal","h3LetterSpacing":"normal","h4LetterSpacing":"normal","h5LetterSpacing":"normal","h6LetterSpacing":"normal","subHeaderLetterSpacing":"2px","h1FontWeight":"var(--lia-bs-headings-font-weight)","h2FontWeight":"var(--lia-bs-headings-font-weight)","h3FontWeight":"var(--lia-bs-headings-font-weight)","h4FontWeight":"var(--lia-bs-headings-font-weight)","h5FontWeight":"var(--lia-bs-headings-font-weight)","h6FontWeight":"var(--lia-bs-headings-font-weight)","__typename":"HeadingThemeSettings"},"icons":{"size10":"10px","size12":"12px","size14":"14px","size16":"16px","size20":"20px","size24":"24px","size30":"30px","size40":"40px","size50":"50px","size60":"60px","size80":"80px","size120":"120px","size160":"160px","__typename":"IconsThemeSettings"},"imagePreview":{"bgColor":"var(--lia-bs-gray-900)","titleColor":"var(--lia-bs-white)","controlColor":"var(--lia-bs-white)","controlBgColor":"var(--lia-bs-gray-800)","__typename":"ImagePreviewThemeSettings"},"input":{"borderColor":"var(--lia-bs-gray-600)","disabledColor":"var(--lia-bs-gray-600)","focusBorderColor":"var(--lia-bs-primary)","labelMarginBottom":"10px","btnFontSize":"var(--lia-bs-font-size-sm)","focusBoxShadow":"0 0 0 3px hsla(var(--lia-bs-primary-h), var(--lia-bs-primary-s), var(--lia-bs-primary-l), 0.2)","checkLabelMarginBottom":"2px","checkboxBorderRadius":"3px","borderRadiusSm":"var(--lia-bs-border-radius-sm)","borderRadius":"var(--lia-bs-border-radius)","borderRadiusLg":"var(--lia-bs-border-radius-lg)","formTextMarginTop":"4px","textAreaBorderRadius":"var(--lia-bs-border-radius)","activeFillColor":"var(--lia-bs-primary)","__typename":"InputThemeSettings"},"loading":{"dotDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.2)","dotLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.5)","barDarkColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.06)","barLightColor":"hsla(var(--lia-bs-white-h), var(--lia-bs-white-s), var(--lia-bs-white-l), 0.4)","__typename":"LoadingThemeSettings"},"link":{"color":"var(--lia-bs-primary)","hoverColor":"hsl(var(--lia-bs-primary-h), var(--lia-bs-primary-s), calc(var(--lia-bs-primary-l) - 10%))","decoration":"none","hoverDecoration":"underline","__typename":"LinkThemeSettings"},"listGroup":{"itemPaddingY":"15px","itemPaddingX":"15px","borderColor":"var(--lia-bs-gray-300)","__typename":"ListGroupThemeSettings"},"modal":{"contentTextColor":"var(--lia-bs-body-color)","contentBg":"var(--lia-bs-white)","backgroundBg":"var(--lia-bs-black)","smSize":"440px","mdSize":"760px","lgSize":"1080px","backdropOpacity":0.3,"contentBoxShadowXs":"var(--lia-bs-box-shadow-sm)","contentBoxShadow":"var(--lia-bs-box-shadow)","headerFontWeight":"700","__typename":"ModalThemeSettings"},"navbar":{"position":"FIXED","background":{"attachment":null,"clip":null,"color":"var(--lia-bs-white)","imageAssetName":"","imageLastModified":"0","origin":null,"position":"CENTER_CENTER","repeat":"NO_REPEAT","size":"COVER","__typename":"BackgroundProps"},"backgroundOpacity":0.8,"paddingTop":"15px","paddingBottom":"15px","borderBottom":"1px solid var(--lia-bs-border-color)","boxShadow":"var(--lia-bs-box-shadow-sm)","brandMarginRight":"30px","brandMarginRightSm":"10px","brandLogoHeight":"30px","linkGap":"10px","linkJustifyContent":"flex-start","linkPaddingY":"5px","linkPaddingX":"10px","linkDropdownPaddingY":"9px","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkColor":"var(--lia-bs-body-color)","linkHoverColor":"var(--lia-bs-primary)","linkFontSize":"var(--lia-bs-font-size-sm)","linkFontStyle":"NORMAL","linkFontWeight":"400","linkTextTransform":"NONE","linkLetterSpacing":"normal","linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkBgColor":"transparent","linkBgHoverColor":"transparent","linkBorder":"none","linkBorderHover":"none","linkBoxShadow":"none","linkBoxShadowHover":"none","linkTextBorderBottom":"none","linkTextBorderBottomHover":"none","dropdownPaddingTop":"10px","dropdownPaddingBottom":"15px","dropdownPaddingX":"10px","dropdownMenuOffset":"2px","dropdownDividerMarginTop":"10px","dropdownDividerMarginBottom":"10px","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","controllerIconColor":"var(--lia-bs-body-color)","controllerIconHoverColor":"var(--lia-bs-body-color)","controllerTextColor":"var(--lia-nav-controller-icon-color)","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","controllerHighlightColor":"hsla(30, 100%, 50%)","controllerHighlightTextColor":"var(--lia-yiq-light)","controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerColor":"var(--lia-nav-controller-icon-color)","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","hamburgerBgColor":"transparent","hamburgerBgHoverColor":"transparent","hamburgerBorder":"none","hamburgerBorderHover":"none","collapseMenuMarginLeft":"20px","collapseMenuDividerBg":"var(--lia-nav-link-color)","collapseMenuDividerOpacity":0.16,"__typename":"NavbarThemeSettings"},"pager":{"textColor":"var(--lia-bs-link-color)","textFontWeight":"var(--lia-font-weight-md)","textFontSize":"var(--lia-bs-font-size-sm)","__typename":"PagerThemeSettings"},"panel":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-bs-border-radius)","borderColor":"var(--lia-bs-border-color)","boxShadow":"none","__typename":"PanelThemeSettings"},"popover":{"arrowHeight":"8px","arrowWidth":"16px","maxWidth":"300px","minWidth":"100px","headerBg":"var(--lia-bs-white)","borderColor":"var(--lia-bs-border-color)","borderRadius":"var(--lia-bs-border-radius)","boxShadow":"0 0.5rem 1rem hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.15)","__typename":"PopoverThemeSettings"},"prism":{"color":"#000000","bgColor":"#f5f2f0","fontFamily":"var(--font-family-monospace)","fontSize":"var(--lia-bs-font-size-base)","fontWeightBold":"var(--lia-bs-font-weight-bold)","fontStyleItalic":"italic","tabSize":2,"highlightColor":"#b3d4fc","commentColor":"#62707e","punctuationColor":"#6f6f6f","namespaceOpacity":"0.7","propColor":"#990055","selectorColor":"#517a00","operatorColor":"#906736","operatorBgColor":"hsla(0, 0%, 100%, 0.5)","keywordColor":"#0076a9","functionColor":"#d3284b","variableColor":"#c14700","__typename":"PrismThemeSettings"},"rte":{"bgColor":"var(--lia-bs-white)","borderRadius":"var(--lia-panel-border-radius)","boxShadow":" var(--lia-panel-box-shadow)","customColor1":"#bfedd2","customColor2":"#fbeeb8","customColor3":"#f8cac6","customColor4":"#eccafa","customColor5":"#c2e0f4","customColor6":"#2dc26b","customColor7":"#f1c40f","customColor8":"#e03e2d","customColor9":"#b96ad9","customColor10":"#3598db","customColor11":"#169179","customColor12":"#e67e23","customColor13":"#ba372a","customColor14":"#843fa1","customColor15":"#236fa1","customColor16":"#ecf0f1","customColor17":"#ced4d9","customColor18":"#95a5a6","customColor19":"#7e8c8d","customColor20":"#34495e","customColor21":"#000000","customColor22":"#ffffff","defaultMessageHeaderMarginTop":"40px","defaultMessageHeaderMarginBottom":"20px","defaultMessageItemMarginTop":"0","defaultMessageItemMarginBottom":"10px","diffAddedColor":"hsla(170, 53%, 51%, 0.4)","diffChangedColor":"hsla(43, 97%, 63%, 0.4)","diffNoneColor":"hsla(0, 0%, 80%, 0.4)","diffRemovedColor":"hsla(9, 74%, 47%, 0.4)","specialMessageHeaderMarginTop":"40px","specialMessageHeaderMarginBottom":"20px","specialMessageItemMarginTop":"0","specialMessageItemMarginBottom":"10px","__typename":"RteThemeSettings"},"tags":{"bgColor":"var(--lia-bs-gray-200)","bgHoverColor":"var(--lia-bs-gray-400)","borderRadius":"var(--lia-bs-border-radius-sm)","color":"var(--lia-bs-body-color)","hoverColor":"var(--lia-bs-body-color)","fontWeight":"var(--lia-font-weight-md)","fontSize":"var(--lia-font-size-xxs)","textTransform":"UPPERCASE","letterSpacing":"0.5px","__typename":"TagsThemeSettings"},"toasts":{"borderRadius":"var(--lia-bs-border-radius)","paddingX":"12px","__typename":"ToastsThemeSettings"},"typography":{"fontFamilyBase":"Segoe UI","fontStyleBase":"NORMAL","fontWeightBase":"400","fontWeightLight":"300","fontWeightNormal":"400","fontWeightMd":"500","fontWeightBold":"700","letterSpacingSm":"normal","letterSpacingXs":"normal","lineHeightBase":"1.5","fontSizeBase":"16px","fontSizeXxs":"11px","fontSizeXs":"12px","fontSizeSm":"14px","fontSizeLg":"20px","fontSizeXl":"24px","smallFontSize":"14px","customFonts":[{"source":"SERVER","name":"Segoe UI","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"},{"style":"NORMAL","weight":"300","__typename":"FontStyleData"},{"style":"NORMAL","weight":"600","__typename":"FontStyleData"},{"style":"NORMAL","weight":"700","__typename":"FontStyleData"},{"style":"ITALIC","weight":"400","__typename":"FontStyleData"}],"assetNames":["SegoeUI-normal-400.woff2","SegoeUI-normal-300.woff2","SegoeUI-normal-600.woff2","SegoeUI-normal-700.woff2","SegoeUI-italic-400.woff2"],"__typename":"CustomFont"},{"source":"SERVER","name":"MWF Fluent Icons","styles":[{"style":"NORMAL","weight":"400","__typename":"FontStyleData"}],"assetNames":["MWFFluentIcons-normal-400.woff2"],"__typename":"CustomFont"}],"__typename":"TypographyThemeSettings"},"unstyledListItem":{"marginBottomSm":"5px","marginBottomMd":"10px","marginBottomLg":"15px","marginBottomXl":"20px","marginBottomXxl":"25px","__typename":"UnstyledListItemThemeSettings"},"yiq":{"light":"#ffffff","dark":"#000000","__typename":"YiqThemeSettings"},"colorLightness":{"primaryDark":0.36,"primaryLight":0.74,"primaryLighter":0.89,"primaryLightest":0.95,"infoDark":0.39,"infoLight":0.72,"infoLighter":0.85,"infoLightest":0.93,"successDark":0.24,"successLight":0.62,"successLighter":0.8,"successLightest":0.91,"warningDark":0.39,"warningLight":0.68,"warningLighter":0.84,"warningLightest":0.93,"dangerDark":0.41,"dangerLight":0.72,"dangerLighter":0.89,"dangerLightest":0.95,"__typename":"ColorLightnessThemeSettings"},"localOverride":false,"__typename":"Theme"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/Loading/LoadingDot-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/Loading/LoadingDot-1745505307000","value":{"title":"Loading..."},"localOverride":false},"CachedAsset:quilt:o365.prod:pages/blogs/BlogMessagePage:board:Azure-AI-Services-blog-1746563265939":{"__typename":"CachedAsset","id":"quilt:o365.prod:pages/blogs/BlogMessagePage:board:Azure-AI-Services-blog-1746563265939","value":{"id":"BlogMessagePage","container":{"id":"Common","headerProps":{"backgroundImageProps":null,"backgroundColor":null,"addComponents":null,"removeComponents":["community.widget.bannerWidget"],"componentOrder":null,"__typename":"QuiltContainerSectionProps"},"headerComponentProps":{"community.widget.breadcrumbWidget":{"disableLastCrumbForDesktop":false}},"footerProps":null,"footerComponentProps":null,"items":[{"id":"blog-article","layout":"ONE_COLUMN","bgColor":null,"showTitle":null,"showDescription":null,"textPosition":null,"textColor":null,"sectionEditLevel":"LOCKED","bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"OneColumnQuiltSection","columnMap":{"main":[{"id":"blogs.widget.blogArticleWidget","className":"lia-blog-container","props":null,"__typename":"QuiltComponent"}],"__typename":"OneSectionColumns"}},{"id":"section-1729184836777","layout":"MAIN_SIDE","bgColor":"transparent","showTitle":false,"showDescription":false,"textPosition":"CENTER","textColor":"var(--lia-bs-body-color)","sectionEditLevel":null,"bgImage":null,"disableSpacing":null,"edgeToEdgeDisplay":null,"fullHeight":null,"showBorder":null,"__typename":"MainSideQuiltSection","columnMap":{"main":[],"side":[],"__typename":"MainSideSectionColumns"}}],"__typename":"QuiltContainer"},"__typename":"Quilt","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/EmailVerification-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/common/EmailVerification-1745505307000","value":{"email.verification.title":"Email Verification Required","email.verification.message.update.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. To change your email, visit My Settings.","email.verification.message.resend.email":"To participate in the community, you must first verify your email address. The verification email was sent to {email}. Resend email."},"localOverride":false},"CachedAsset:text:en_US-pages/blogs/BlogMessagePage-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-pages/blogs/BlogMessagePage-1745505307000","value":{"title":"{contextMessageSubject} | {communityTitle}","errorMissing":"This blog post cannot be found","name":"Blog Message Page","section.blog-article.title":"Blog Post","archivedMessageTitle":"This Content Has Been Archived","section.section-1729184836777.title":"","section.section-1729184836777.description":"","section.CncIde.title":"Blog Post","section.tifEmD.description":"","section.tifEmD.title":""},"localOverride":false},"CachedAsset:quiltWrapper:o365.prod:Common:1746563201440":{"__typename":"CachedAsset","id":"quiltWrapper:o365.prod:Common:1746563201440","value":{"id":"Common","header":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"community.widget.navbarWidget","props":{"showUserName":true,"showRegisterLink":true,"useIconLanguagePicker":true,"useLabelLanguagePicker":true,"className":"QuiltComponent_lia-component-edit-mode__0nCcm","links":{"sideLinks":[],"mainLinks":[{"children":[],"linkType":"INTERNAL","id":"gxcuf89792","params":{},"routeName":"CommunityPage"},{"children":[],"linkType":"EXTERNAL","id":"external-link","url":"/Directory","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft365","params":{"categoryId":"microsoft365"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows","params":{"categoryId":"Windows"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"Common-microsoft365-copilot-link","params":{"categoryId":"Microsoft365Copilot"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-teams","params":{"categoryId":"MicrosoftTeams"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-securityand-compliance","params":{"categoryId":"microsoft-security"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"azure","params":{"categoryId":"Azure"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"Common-content_management-link","params":{"categoryId":"Content_Management"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"exchange","params":{"categoryId":"Exchange"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"windows-server","params":{"categoryId":"Windows-Server"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"outlook","params":{"categoryId":"Outlook"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-endpoint-manager","params":{"categoryId":"microsoftintune"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-2","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities","url":"/","target":"BLANK"},{"children":[{"linkType":"INTERNAL","id":"a-i","params":{"categoryId":"AI"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"education-sector","params":{"categoryId":"EducationSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"partner-community","params":{"categoryId":"PartnerCommunity"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"i-t-ops-talk","params":{"categoryId":"ITOpsTalk"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"healthcare-and-life-sciences","params":{"categoryId":"HealthcareAndLifeSciences"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-mechanics","params":{"categoryId":"MicrosoftMechanics"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"public-sector","params":{"categoryId":"PublicSector"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"s-m-b","params":{"categoryId":"MicrosoftforNonprofits"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"io-t","params":{"categoryId":"IoT"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"startupsat-microsoft","params":{"categoryId":"StartupsatMicrosoft"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"driving-adoption","params":{"categoryId":"DrivingAdoption"},"routeName":"CategoryPage"},{"linkType":"EXTERNAL","id":"external-link-1","url":"/Directory","target":"SELF"}],"linkType":"EXTERNAL","id":"communities-1","url":"/","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external","url":"/Blogs","target":"SELF"},{"children":[],"linkType":"EXTERNAL","id":"external-1","url":"/Events","target":"SELF"},{"children":[{"linkType":"INTERNAL","id":"microsoft-learn-1","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"linkType":"INTERNAL","id":"microsoft-learn-blog","params":{"boardId":"MicrosoftLearnBlog","categoryId":"MicrosoftLearn"},"routeName":"BlogBoardPage"},{"linkType":"EXTERNAL","id":"external-10","url":"https://learningroomdirectory.microsoft.com/","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-3","url":"https://docs.microsoft.com/learn/dynamics365/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-4","url":"https://docs.microsoft.com/learn/m365/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-5","url":"https://docs.microsoft.com/learn/topics/sci/?wt.mc_id=techcom_header-webpage-m365","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-6","url":"https://docs.microsoft.com/learn/powerplatform/?wt.mc_id=techcom_header-webpage-powerplatform","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-7","url":"https://docs.microsoft.com/learn/github/?wt.mc_id=techcom_header-webpage-github","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-8","url":"https://docs.microsoft.com/learn/teams/?wt.mc_id=techcom_header-webpage-teams","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-9","url":"https://docs.microsoft.com/learn/dotnet/?wt.mc_id=techcom_header-webpage-dotnet","target":"BLANK"},{"linkType":"EXTERNAL","id":"external-2","url":"https://docs.microsoft.com/learn/azure/?WT.mc_id=techcom_header-webpage-m365","target":"BLANK"}],"linkType":"INTERNAL","id":"microsoft-learn","params":{"categoryId":"MicrosoftLearn"},"routeName":"CategoryPage"},{"children":[],"linkType":"INTERNAL","id":"community-info-center","params":{"categoryId":"Community-Info-Center"},"routeName":"CategoryPage"}]},"style":{"boxShadow":"var(--lia-bs-box-shadow-sm)","controllerHighlightColor":"hsla(30, 100%, 50%)","linkFontWeight":"400","dropdownDividerMarginBottom":"10px","hamburgerBorderHover":"none","linkBoxShadowHover":"none","linkFontSize":"14px","backgroundOpacity":0.8,"controllerBorderRadius":"var(--lia-border-radius-50)","hamburgerBgColor":"transparent","hamburgerColor":"var(--lia-nav-controller-icon-color)","linkTextBorderBottom":"none","brandLogoHeight":"30px","linkBgHoverColor":"transparent","linkLetterSpacing":"normal","collapseMenuDividerOpacity":0.16,"dropdownPaddingBottom":"15px","paddingBottom":"15px","dropdownMenuOffset":"2px","hamburgerBgHoverColor":"transparent","borderBottom":"1px solid var(--lia-bs-border-color)","hamburgerBorder":"none","dropdownPaddingX":"10px","brandMarginRightSm":"10px","linkBoxShadow":"none","collapseMenuDividerBg":"var(--lia-nav-link-color)","linkColor":"var(--lia-bs-body-color)","linkJustifyContent":"flex-start","dropdownPaddingTop":"10px","controllerHighlightTextColor":"var(--lia-yiq-dark)","controllerTextColor":"var(--lia-nav-controller-icon-color)","background":{"imageAssetName":"","color":"var(--lia-bs-white)","size":"COVER","repeat":"NO_REPEAT","position":"CENTER_CENTER","imageLastModified":""},"linkBorderRadius":"var(--lia-bs-border-radius-sm)","linkHoverColor":"var(--lia-bs-body-color)","position":"FIXED","linkBorder":"none","linkTextBorderBottomHover":"2px solid var(--lia-bs-body-color)","brandMarginRight":"30px","hamburgerHoverColor":"var(--lia-nav-controller-icon-color)","linkBorderHover":"none","collapseMenuMarginLeft":"20px","linkFontStyle":"NORMAL","controllerTextHoverColor":"var(--lia-nav-controller-icon-hover-color)","linkPaddingX":"10px","linkPaddingY":"5px","paddingTop":"15px","linkTextTransform":"NONE","dropdownBorderColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.08)","controllerBgHoverColor":"hsla(var(--lia-bs-black-h), var(--lia-bs-black-s), var(--lia-bs-black-l), 0.1)","linkBgColor":"transparent","linkDropdownPaddingX":"var(--lia-nav-link-px)","linkDropdownPaddingY":"9px","controllerIconColor":"var(--lia-bs-body-color)","dropdownDividerMarginTop":"10px","linkGap":"10px","controllerIconHoverColor":"var(--lia-bs-body-color)"},"showSearchIcon":false,"languagePickerStyle":"iconAndLabel"},"__typename":"QuiltComponent"},{"id":"community.widget.breadcrumbWidget","props":{"backgroundColor":"transparent","linkHighlightColor":"var(--lia-bs-primary)","visualEffects":{"showBottomBorder":true},"linkTextColor":"var(--lia-bs-gray-700)"},"__typename":"QuiltComponent"},{"id":"custom.widget.community_banner","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"usePageWidth":false,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"},{"id":"custom.widget.HeroBanner","props":{"widgetVisibility":"signedInOrAnonymous","usePageWidth":false,"useTitle":true,"cMax_items":3,"useBackground":false,"title":"","lazyLoad":false,"widgetChooser":"custom.widget.HeroBanner"},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"footer":{"backgroundImageProps":{"assetName":null,"backgroundSize":"COVER","backgroundRepeat":"NO_REPEAT","backgroundPosition":"CENTER_CENTER","lastModified":null,"__typename":"BackgroundImageProps"},"backgroundColor":"transparent","items":[{"id":"custom.widget.MicrosoftFooter","props":{"widgetVisibility":"signedInOrAnonymous","useTitle":true,"useBackground":false,"title":"","lazyLoad":false},"__typename":"QuiltComponent"}],"__typename":"QuiltWrapperSection"},"__typename":"QuiltWrapper","localOverride":false},"localOverride":false},"CachedAsset:text:en_US-components/common/ActionFeedback-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/common/ActionFeedback-1745505307000","value":{"joinedGroupHub.title":"Welcome","joinedGroupHub.message":"You are now a member of this group and are subscribed to updates.","groupHubInviteNotFound.title":"Invitation Not Found","groupHubInviteNotFound.message":"Sorry, we could not find your invitation to the group. The owner may have canceled the invite.","groupHubNotFound.title":"Group Not Found","groupHubNotFound.message":"The grouphub you tried to join does not exist. It may have been deleted.","existingGroupHubMember.title":"Already Joined","existingGroupHubMember.message":"You are already a member of this group.","accountLocked.title":"Account Locked","accountLocked.message":"Your account has been locked due to multiple failed attempts. Try again in {lockoutTime} minutes.","editedGroupHub.title":"Changes Saved","editedGroupHub.message":"Your group has been updated.","leftGroupHub.title":"Goodbye","leftGroupHub.message":"You are no longer a member of this group and will not receive future updates.","deletedGroupHub.title":"Deleted","deletedGroupHub.message":"The group has been deleted.","groupHubCreated.title":"Group Created","groupHubCreated.message":"{groupHubName} is ready to use","accountClosed.title":"Account Closed","accountClosed.message":"The account has been closed and you will now be redirected to the homepage","resetTokenExpired.title":"Reset Password Link has Expired","resetTokenExpired.message":"Try resetting your password again","invalidUrl.title":"Invalid URL","invalidUrl.message":"The URL you're using is not recognized. Verify your URL and try again.","accountClosedForUser.title":"Account Closed","accountClosedForUser.message":"{userName}'s account is closed","inviteTokenInvalid.title":"Invitation Invalid","inviteTokenInvalid.message":"Your invitation to the community has been canceled or expired.","inviteTokenError.title":"Invitation Verification Failed","inviteTokenError.message":"The url you are utilizing is not recognized. Verify your URL and try again","pageNotFound.title":"Access Denied","pageNotFound.message":"You do not have access to this area of the community or it doesn't exist","eventAttending.title":"Responded as Attending","eventAttending.message":"You'll be notified when there's new activity and reminded as the event approaches","eventInterested.title":"Responded as Interested","eventInterested.message":"You'll be notified when there's new activity and reminded as the event approaches","eventNotFound.title":"Event Not Found","eventNotFound.message":"The event you tried to respond to does not exist.","redirectToRelatedPage.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.title":"Showing Related Content","redirectToRelatedPageForBaseUsers.message":"The content you are trying to access is archived","redirectToRelatedPage.message":"The content you are trying to access is archived","relatedUrl.archivalLink.flyoutMessage":"The content you are trying to access is archived View Archived Content"},"localOverride":false},"QueryVariables:TopicReplyList:message:4271924:5":{"__typename":"QueryVariables","id":"TopicReplyList:message:4271924:5","value":{"id":"message:4271924","first":10,"sorts":{"postTime":{"direction":"DESC"}},"repliesFirst":3,"repliesFirstDepthThree":1,"repliesSorts":{"postTime":{"direction":"DESC"}},"useAvatar":true,"useAuthorLogin":true,"useAuthorRank":true,"useBody":true,"useKudosCount":true,"useTimeToRead":false,"useMedia":false,"useReadOnlyIcon":false,"useRepliesCount":true,"useSearchSnippet":false,"useAcceptedSolutionButton":false,"useSolvedBadge":false,"useAttachments":false,"attachmentsFirst":5,"useTags":true,"useNodeAncestors":false,"useUserHoverCard":false,"useNodeHoverCard":false,"useModerationStatus":true,"usePreviewSubjectModal":false,"useMessageStatus":true}},"ROOT_MUTATION":{"__typename":"Mutation"},"CachedAsset:component:custom.widget.community_banner-en-us-1746563302318":{"__typename":"CachedAsset","id":"component:custom.widget.community_banner-en-us-1746563302318","value":{"component":{"id":"custom.widget.community_banner","template":{"id":"community_banner","markupLanguage":"HANDLEBARS","style":".community-banner {\n a.top-bar.btn {\n top: 0px;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0px;\n background: #0068b8;\n color: white;\n padding: 10px 0px;\n display: block;\n box-shadow: none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0px !important;\n font-size: 14px;\n }\n}\n","texts":{},"defaults":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.community_banner","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"community announcement text","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_community_banner_community-banner_1x9u2_1 {\n a.custom_widget_community_banner_top-bar_1x9u2_2.custom_widget_community_banner_btn_1x9u2_2 {\n top: 0;\n width: 100%;\n z-index: 999;\n text-align: center;\n left: 0;\n background: #0068b8;\n color: white;\n padding: 0.625rem 0;\n display: block;\n box-shadow: none !important;\n border: none !important;\n border-radius: none !important;\n margin: 0 !important;\n font-size: 0.875rem;\n }\n}\n","tokens":{"community-banner":"custom_widget_community_banner_community-banner_1x9u2_1","top-bar":"custom_widget_community_banner_top-bar_1x9u2_2","btn":"custom_widget_community_banner_btn_1x9u2_2"}},"form":null},"localOverride":false},"CachedAsset:component:custom.widget.HeroBanner-en-us-1746563302318":{"__typename":"CachedAsset","id":"component:custom.widget.HeroBanner-en-us-1746563302318","value":{"component":{"id":"custom.widget.HeroBanner","template":{"id":"HeroBanner","markupLanguage":"REACT","style":null,"texts":{"searchPlaceholderText":"Search this community","followActionText":"Follow","unfollowActionText":"Following","searchOnHoverText":"Please enter your search term(s) and then press return key to complete a search.","blogs.sidebar.pagetitle":"Latest Blogs | Microsoft Tech Community","followThisNode":"Follow this node","unfollowThisNode":"Unfollow this node"},"defaults":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.HeroBanner","form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":null,"fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[{"id":"max_items","dataType":"NUMBER","list":false,"defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"control":"INPUT","__typename":"PropDefinition"}],"__typename":"ComponentProperties"},"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"},"__typename":"Component","localOverride":false},"globalCss":null,"form":{"fields":[{"id":"widgetChooser","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"title","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useTitle","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"useBackground","validation":null,"noValidation":null,"dataType":"BOOLEAN","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"widgetVisibility","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"moreOptions","validation":null,"noValidation":null,"dataType":"STRING","list":null,"control":null,"defaultValue":null,"label":null,"description":null,"possibleValues":null,"__typename":"FormField"},{"id":"cMax_items","validation":null,"noValidation":null,"dataType":"NUMBER","list":false,"control":"INPUT","defaultValue":"3","label":"Max Items","description":"The maximum number of items to display in the carousel","possibleValues":null,"__typename":"FormField"}],"layout":{"rows":[{"id":"widgetChooserGroup","type":"fieldset","as":null,"items":[{"id":"widgetChooser","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"titleGroup","type":"fieldset","as":null,"items":[{"id":"title","className":null,"__typename":"FormFieldRef"},{"id":"useTitle","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"useBackground","type":"fieldset","as":null,"items":[{"id":"useBackground","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"widgetVisibility","type":"fieldset","as":null,"items":[{"id":"widgetVisibility","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"moreOptionsGroup","type":"fieldset","as":null,"items":[{"id":"moreOptions","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"},{"id":"componentPropsGroup","type":"fieldset","as":null,"items":[{"id":"cMax_items","className":null,"__typename":"FormFieldRef"}],"props":null,"legend":null,"description":null,"className":null,"viewVariant":null,"toggleState":null,"__typename":"FormFieldset"}],"actionButtons":null,"className":"custom_widget_HeroBanner_form","formGroupFieldSeparator":"divider","__typename":"FormLayout"},"__typename":"Form"}},"localOverride":false},"CachedAsset:component:custom.widget.MicrosoftFooter-en-us-1746563302318":{"__typename":"CachedAsset","id":"component:custom.widget.MicrosoftFooter-en-us-1746563302318","value":{"component":{"id":"custom.widget.MicrosoftFooter","template":{"id":"MicrosoftFooter","markupLanguage":"HANDLEBARS","style":".context-uhf {\n min-width: 280px;\n font-size: 15px;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.c-uhff-link {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.c-uhff {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.c-uhff-nav {\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n .c-heading-4 {\n color: #616161;\n word-break: break-word;\n font-size: 15px;\n line-height: 20px;\n padding: 36px 0 4px;\n font-weight: 600;\n }\n .c-uhff-nav-row {\n .c-uhff-nav-group {\n display: block;\n float: left;\n min-height: 1px;\n vertical-align: text-top;\n padding: 0 12px;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 12px;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.c-list.f-bare {\n font-size: 11px;\n line-height: 16px;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 8px 0;\n margin: 0;\n }\n }\n }\n }\n}\n.c-uhff-base {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(1600px + 10%);\n padding: 30px 5% 16px;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.c-uhff-ccpa {\n font-size: 11px;\n line-height: 16px;\n float: left;\n margin: 3px 0;\n }\n a.c-uhff-ccpa:hover {\n text-decoration: underline;\n }\n ul.c-list {\n font-size: 11px;\n line-height: 16px;\n float: right;\n margin: 3px 0;\n color: #616161;\n li {\n padding: 0 24px 4px 0;\n display: inline-block;\n }\n }\n .c-list.f-bare {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 30px 24px 16px;\n }\n}\n\n.social-share {\n position: fixed;\n top: 60%;\n transform: translateY(-50%);\n left: 0;\n z-index: 1000;\n}\n\n.sharing-options {\n list-style: none;\n padding: 0;\n margin: 0;\n display: block;\n flex-direction: column;\n background-color: white;\n width: 43px;\n border-radius: 0px 7px 7px 0px;\n}\n.linkedin-icon {\n border-top-right-radius: 7px;\n}\n.linkedin-icon:hover {\n border-radius: 0;\n}\n.social-share-rss-image {\n border-bottom-right-radius: 7px;\n}\n.social-share-rss-image:hover {\n border-radius: 0;\n}\n\n.social-link-footer {\n position: relative;\n display: block;\n margin: -2px 0;\n transition: all 0.2s ease;\n}\n.social-link-footer:hover .linkedin-icon {\n border-radius: 0;\n}\n.social-link-footer:hover .social-share-rss-image {\n border-radius: 0;\n}\n\n.social-link-footer img {\n width: 40px;\n height: auto;\n transition: filter 0.3s ease;\n}\n\n.social-share-list {\n width: 40px;\n}\n.social-share-rss-image {\n width: 40px;\n}\n\n.share-icon {\n border: 2px solid transparent;\n display: inline-block;\n position: relative;\n}\n\n.share-icon:hover {\n opacity: 1;\n border: 2px solid white;\n box-sizing: border-box;\n}\n\n.share-icon:hover .label {\n opacity: 1;\n visibility: visible;\n border: 2px solid white;\n box-sizing: border-box;\n border-left: none;\n}\n\n.label {\n position: absolute;\n left: 100%;\n white-space: nowrap;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n color: white;\n border-radius: 0 10 0 10px;\n top: 50%;\n transform: translateY(-50%);\n height: 40px;\n border-radius: 0 6px 6px 0;\n display: flex;\n align-items: center;\n justify-content: center;\n padding: 20px 5px 20px 8px;\n margin-left: -1px;\n}\n.linkedin {\n background-color: #0474b4;\n}\n.facebook {\n background-color: #3c5c9c;\n}\n.twitter {\n background-color: white;\n color: black;\n}\n.reddit {\n background-color: #fc4404;\n}\n.mail {\n background-color: #848484;\n}\n.bluesky {\n background-color: white;\n color: black;\n}\n.rss {\n background-color: #ec7b1c;\n}\n#RSS {\n width: 40px;\n height: 40px;\n}\n\n@media (max-width: 991px) {\n .social-share {\n display: none;\n }\n}\n","texts":{"New tab":"What's New","New 1":"Surface Laptop Studio 2","New 2":"Surface Laptop Go 3","New 3":"Surface Pro 9","New 4":"Surface Laptop 5","New 5":"Surface Studio 2+","New 6":"Copilot in Windows","New 7":"Microsoft 365","New 8":"Windows 11 apps","Store tab":"Microsoft Store","Store 1":"Account Profile","Store 2":"Download Center","Store 3":"Microsoft Store Support","Store 4":"Returns","Store 5":"Order tracking","Store 6":"Certified Refurbished","Store 7":"Microsoft Store Promise","Store 8":"Flexible Payments","Education tab":"Education","Edu 1":"Microsoft in education","Edu 2":"Devices for education","Edu 3":"Microsoft Teams for Education","Edu 4":"Microsoft 365 Education","Edu 5":"How to buy for your school","Edu 6":"Educator Training and development","Edu 7":"Deals for students and parents","Edu 8":"Azure for students","Business tab":"Business","Bus 1":"Microsoft Cloud","Bus 2":"Microsoft Security","Bus 3":"Dynamics 365","Bus 4":"Microsoft 365","Bus 5":"Microsoft Power Platform","Bus 6":"Microsoft Teams","Bus 7":"Microsoft Industry","Bus 8":"Small Business","Developer tab":"Developer & IT","Dev 1":"Azure","Dev 2":"Developer Center","Dev 3":"Documentation","Dev 4":"Microsoft Learn","Dev 5":"Microsoft Tech Community","Dev 6":"Azure Marketplace","Dev 7":"AppSource","Dev 8":"Visual Studio","Company tab":"Company","Com 1":"Careers","Com 2":"About Microsoft","Com 3":"Company News","Com 4":"Privacy at Microsoft","Com 5":"Investors","Com 6":"Diversity and inclusion","Com 7":"Accessiblity","Com 8":"Sustainibility"},"defaults":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"components":[{"id":"custom.widget.MicrosoftFooter","form":null,"config":null,"props":[],"__typename":"Component"}],"grouping":"CUSTOM","__typename":"ComponentTemplate"},"properties":{"config":{"applicablePages":[],"description":"The Microsoft Footer","fetchedContent":null,"__typename":"ComponentConfiguration"},"props":[],"__typename":"ComponentProperties"},"form":null,"__typename":"Component","localOverride":false},"globalCss":{"css":".custom_widget_MicrosoftFooter_context-uhf_105bp_1 {\n min-width: 17.5rem;\n font-size: 0.9375rem;\n box-sizing: border-box;\n -ms-text-size-adjust: 100%;\n -webkit-text-size-adjust: 100%;\n & *,\n & *:before,\n & *:after {\n box-sizing: inherit;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-link_105bp_12 {\n color: #616161;\n word-break: break-word;\n text-decoration: none;\n }\n &a:link,\n &a:focus,\n &a:hover,\n &a:active,\n &a:visited {\n text-decoration: none;\n color: inherit;\n }\n & div {\n font-family: 'Segoe UI', SegoeUI, 'Helvetica Neue', Helvetica, Arial, sans-serif;\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff_105bp_12 {\n background: #f2f2f2;\n margin: -1.5625;\n width: auto;\n height: auto;\n}\n.custom_widget_MicrosoftFooter_c-uhff-nav_105bp_35 {\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 0 5%;\n box-sizing: inherit;\n &:before,\n &:after {\n content: ' ';\n display: table;\n clear: left;\n }\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n .custom_widget_MicrosoftFooter_c-heading-4_105bp_49 {\n color: #616161;\n word-break: break-word;\n font-size: 0.9375rem;\n line-height: 1.25rem;\n padding: 2.25rem 0 0.25rem;\n font-weight: 600;\n }\n .custom_widget_MicrosoftFooter_c-uhff-nav-row_105bp_57 {\n .custom_widget_MicrosoftFooter_c-uhff-nav-group_105bp_58 {\n display: block;\n float: left;\n min-height: 0.0625rem;\n vertical-align: text-top;\n padding: 0 0.75rem;\n width: 100%;\n zoom: 1;\n &:first-child {\n padding-left: 0;\n @media only screen and (max-width: 1083px) {\n padding-left: 0.75rem;\n }\n }\n @media only screen and (min-width: 540px) and (max-width: 1082px) {\n width: 33.33333%;\n }\n @media only screen and (min-width: 1083px) {\n width: 16.6666666667%;\n }\n ul.custom_widget_MicrosoftFooter_c-list_105bp_78.custom_widget_MicrosoftFooter_f-bare_105bp_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n margin-top: 0;\n margin-bottom: 0;\n padding-left: 0;\n list-style-type: none;\n li {\n word-break: break-word;\n padding: 0.5rem 0;\n margin: 0;\n }\n }\n }\n }\n}\n.custom_widget_MicrosoftFooter_c-uhff-base_105bp_94 {\n background: #f2f2f2;\n margin: 0 auto;\n max-width: calc(100rem + 10%);\n padding: 1.875rem 5% 1rem;\n &:before,\n &:after {\n content: ' ';\n display: table;\n }\n &:after {\n clear: both;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: left;\n margin: 0.1875rem 0;\n }\n a.custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107:hover {\n text-decoration: underline;\n }\n ul.custom_widget_MicrosoftFooter_c-list_105bp_78 {\n font-size: 0.6875rem;\n line-height: 1rem;\n float: right;\n margin: 0.1875rem 0;\n color: #616161;\n li {\n padding: 0 1.5rem 0.25rem 0;\n display: inline-block;\n }\n }\n .custom_widget_MicrosoftFooter_c-list_105bp_78.custom_widget_MicrosoftFooter_f-bare_105bp_78 {\n padding-left: 0;\n list-style-type: none;\n }\n @media only screen and (max-width: 1083px) {\n display: flex;\n flex-wrap: wrap;\n padding: 1.875rem 1.5rem 1rem;\n }\n}\n.custom_widget_MicrosoftFooter_social-share_105bp_138 {\n position: fixed;\n top: 60%;\n transform: translateY(-50%);\n left: 0;\n z-index: 1000;\n}\n.custom_widget_MicrosoftFooter_sharing-options_105bp_146 {\n list-style: none;\n padding: 0;\n margin: 0;\n display: block;\n flex-direction: column;\n background-color: white;\n width: 2.6875rem;\n border-radius: 0 0.4375rem 0.4375rem 0;\n}\n.custom_widget_MicrosoftFooter_linkedin-icon_105bp_156 {\n border-top-right-radius: 7px;\n}\n.custom_widget_MicrosoftFooter_linkedin-icon_105bp_156:hover {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n border-bottom-right-radius: 7px;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162:hover {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169 {\n position: relative;\n display: block;\n margin: -0.125rem 0;\n transition: all 0.2s ease;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169:hover .custom_widget_MicrosoftFooter_linkedin-icon_105bp_156 {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169:hover .custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n border-radius: 0;\n}\n.custom_widget_MicrosoftFooter_social-link-footer_105bp_169 img {\n width: 2.5rem;\n height: auto;\n transition: filter 0.3s ease;\n}\n.custom_widget_MicrosoftFooter_social-share-list_105bp_188 {\n width: 2.5rem;\n}\n.custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162 {\n width: 2.5rem;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195 {\n border: 2px solid transparent;\n display: inline-block;\n position: relative;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195:hover {\n opacity: 1;\n border: 2px solid white;\n box-sizing: border-box;\n}\n.custom_widget_MicrosoftFooter_share-icon_105bp_195:hover .custom_widget_MicrosoftFooter_label_105bp_207 {\n opacity: 1;\n visibility: visible;\n border: 2px solid white;\n box-sizing: border-box;\n border-left: none;\n}\n.custom_widget_MicrosoftFooter_label_105bp_207 {\n position: absolute;\n left: 100%;\n white-space: nowrap;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n color: white;\n border-radius: 0 10 0 0.625rem;\n top: 50%;\n transform: translateY(-50%);\n height: 2.5rem;\n border-radius: 0 0.375rem 0.375rem 0;\n display: flex;\n align-items: center;\n justify-content: center;\n padding: 1.25rem 0.3125rem 1.25rem 0.5rem;\n margin-left: -0.0625rem;\n}\n.custom_widget_MicrosoftFooter_linkedin_105bp_156 {\n background-color: #0474b4;\n}\n.custom_widget_MicrosoftFooter_facebook_105bp_237 {\n background-color: #3c5c9c;\n}\n.custom_widget_MicrosoftFooter_twitter_105bp_240 {\n background-color: white;\n color: black;\n}\n.custom_widget_MicrosoftFooter_reddit_105bp_244 {\n background-color: #fc4404;\n}\n.custom_widget_MicrosoftFooter_mail_105bp_247 {\n background-color: #848484;\n}\n.custom_widget_MicrosoftFooter_bluesky_105bp_250 {\n background-color: white;\n color: black;\n}\n.custom_widget_MicrosoftFooter_rss_105bp_254 {\n background-color: #ec7b1c;\n}\n#custom_widget_MicrosoftFooter_RSS_105bp_1 {\n width: 2.5rem;\n height: 2.5rem;\n}\n@media (max-width: 991px) {\n .custom_widget_MicrosoftFooter_social-share_105bp_138 {\n display: none;\n }\n}\n","tokens":{"context-uhf":"custom_widget_MicrosoftFooter_context-uhf_105bp_1","c-uhff-link":"custom_widget_MicrosoftFooter_c-uhff-link_105bp_12","c-uhff":"custom_widget_MicrosoftFooter_c-uhff_105bp_12","c-uhff-nav":"custom_widget_MicrosoftFooter_c-uhff-nav_105bp_35","c-heading-4":"custom_widget_MicrosoftFooter_c-heading-4_105bp_49","c-uhff-nav-row":"custom_widget_MicrosoftFooter_c-uhff-nav-row_105bp_57","c-uhff-nav-group":"custom_widget_MicrosoftFooter_c-uhff-nav-group_105bp_58","c-list":"custom_widget_MicrosoftFooter_c-list_105bp_78","f-bare":"custom_widget_MicrosoftFooter_f-bare_105bp_78","c-uhff-base":"custom_widget_MicrosoftFooter_c-uhff-base_105bp_94","c-uhff-ccpa":"custom_widget_MicrosoftFooter_c-uhff-ccpa_105bp_107","social-share":"custom_widget_MicrosoftFooter_social-share_105bp_138","sharing-options":"custom_widget_MicrosoftFooter_sharing-options_105bp_146","linkedin-icon":"custom_widget_MicrosoftFooter_linkedin-icon_105bp_156","social-share-rss-image":"custom_widget_MicrosoftFooter_social-share-rss-image_105bp_162","social-link-footer":"custom_widget_MicrosoftFooter_social-link-footer_105bp_169","social-share-list":"custom_widget_MicrosoftFooter_social-share-list_105bp_188","share-icon":"custom_widget_MicrosoftFooter_share-icon_105bp_195","label":"custom_widget_MicrosoftFooter_label_105bp_207","linkedin":"custom_widget_MicrosoftFooter_linkedin_105bp_156","facebook":"custom_widget_MicrosoftFooter_facebook_105bp_237","twitter":"custom_widget_MicrosoftFooter_twitter_105bp_240","reddit":"custom_widget_MicrosoftFooter_reddit_105bp_244","mail":"custom_widget_MicrosoftFooter_mail_105bp_247","bluesky":"custom_widget_MicrosoftFooter_bluesky_105bp_250","rss":"custom_widget_MicrosoftFooter_rss_105bp_254","RSS":"custom_widget_MicrosoftFooter_RSS_105bp_1"}},"form":null},"localOverride":false},"CachedAsset:text:en_US-components/community/Breadcrumb-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/community/Breadcrumb-1745505307000","value":{"navLabel":"Breadcrumbs","dropdown":"Additional parent page navigation"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBanner-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBanner-1745505307000","value":{"messageMarkedAsSpam":"This post has been marked as spam","messageMarkedAsSpam@board:TKB":"This article has been marked as spam","messageMarkedAsSpam@board:BLOG":"This post has been marked as spam","messageMarkedAsSpam@board:FORUM":"This discussion has been marked as spam","messageMarkedAsSpam@board:OCCASION":"This event has been marked as spam","messageMarkedAsSpam@board:IDEA":"This idea has been marked as spam","manageSpam":"Manage Spam","messageMarkedAsAbuse":"This post has been marked as abuse","messageMarkedAsAbuse@board:TKB":"This article has been marked as abuse","messageMarkedAsAbuse@board:BLOG":"This post has been marked as abuse","messageMarkedAsAbuse@board:FORUM":"This discussion has been marked as abuse","messageMarkedAsAbuse@board:OCCASION":"This event has been marked as abuse","messageMarkedAsAbuse@board:IDEA":"This idea has been marked as abuse","preModCommentAuthorText":"This comment will be published as soon as it is approved","preModCommentModeratorText":"This comment is awaiting moderation","messageMarkedAsOther":"This post has been rejected due to other reasons","messageMarkedAsOther@board:TKB":"This article has been rejected due to other reasons","messageMarkedAsOther@board:BLOG":"This post has been rejected due to other reasons","messageMarkedAsOther@board:FORUM":"This discussion has been rejected due to other reasons","messageMarkedAsOther@board:OCCASION":"This event has been rejected due to other reasons","messageMarkedAsOther@board:IDEA":"This idea has been rejected due to other reasons","messageArchived":"This post was archived on {date}","relatedUrl":"View Related Content","relatedContentText":"Showing related content","archivedContentLink":"View Archived Content"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageView/MessageViewStandard-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageView/MessageViewStandard-1745505307000","value":{"anonymous":"Anonymous","author":"{messageAuthorLogin}","authorBy":"{messageAuthorLogin}","board":"{messageBoardTitle}","replyToUser":" to {parentAuthor}","showMoreReplies":"Show More","replyText":"Reply","repliesText":"Replies","markedAsSolved":"Marked as Solution","movedMessagePlaceholder.BLOG":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.TKB":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.FORUM":"{count, plural, =0 {This reply has been} other {These replies have been} }","movedMessagePlaceholder.IDEA":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholder.OCCASION":"{count, plural, =0 {This comment has been} other {These comments have been} }","movedMessagePlaceholderUrlText":"moved.","messageStatus":"Status: ","statusChanged":"Status changed: {previousStatus} to {currentStatus}","statusAdded":"Status added: {status}","statusRemoved":"Status removed: {status}","labelExpand":"expand replies","labelCollapse":"collapse replies","unhelpfulReason.reason1":"Content is outdated","unhelpfulReason.reason2":"Article is missing information","unhelpfulReason.reason3":"Content is for a different Product","unhelpfulReason.reason4":"Doesn't match what I was searching for"},"localOverride":false},"CachedAsset:text:en_US-components/messages/ThreadedReplyList-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/ThreadedReplyList-1745505307000","value":{"title":"{count, plural, one{# Reply} other{# Replies}}","title@board:BLOG":"{count, plural, one{# Comment} other{# Comments}}","title@board:TKB":"{count, plural, one{# Comment} other{# Comments}}","title@board:IDEA":"{count, plural, one{# Comment} other{# Comments}}","title@board:OCCASION":"{count, plural, one{# Comment} other{# Comments}}","noRepliesTitle":"No Replies","noRepliesTitle@board:BLOG":"No Comments","noRepliesTitle@board:TKB":"No Comments","noRepliesTitle@board:IDEA":"No Comments","noRepliesTitle@board:OCCASION":"No Comments","noRepliesDescription":"Be the first to reply","noRepliesDescription@board:BLOG":"Be the first to comment","noRepliesDescription@board:TKB":"Be the first to comment","noRepliesDescription@board:IDEA":"Be the first to comment","noRepliesDescription@board:OCCASION":"Be the first to comment","messageReadOnlyAlert:BLOG":"Comments have been turned off for this post","messageReadOnlyAlert:TKB":"Comments have been turned off for this article","messageReadOnlyAlert:IDEA":"Comments have been turned off for this idea","messageReadOnlyAlert:FORUM":"Replies have been turned off for this discussion","messageReadOnlyAlert:OCCASION":"Comments have been turned off for this event"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyCallToAction-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyCallToAction-1745505307000","value":{"leaveReply":"Leave a reply...","leaveReply@board:BLOG@message:root":"Leave a comment...","leaveReply@board:TKB@message:root":"Leave a comment...","leaveReply@board:IDEA@message:root":"Leave a comment...","leaveReply@board:OCCASION@message:root":"Leave a comment...","repliesTurnedOff.FORUM":"Replies are turned off for this topic","repliesTurnedOff.BLOG":"Comments are turned off for this topic","repliesTurnedOff.TKB":"Comments are turned off for this topic","repliesTurnedOff.IDEA":"Comments are turned off for this topic","repliesTurnedOff.OCCASION":"Comments are turned off for this topic","infoText":"Stop poking me!"},"localOverride":false},"Category:category:Exchange":{"__typename":"Category","id":"category:Exchange","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Outlook":{"__typename":"Category","id":"category:Outlook","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Community-Info-Center":{"__typename":"Category","id":"category:Community-Info-Center","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:EducationSector":{"__typename":"Category","id":"category:EducationSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:DrivingAdoption":{"__typename":"Category","id":"category:DrivingAdoption","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Azure":{"__typename":"Category","id":"category:Azure","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows-Server":{"__typename":"Category","id":"category:Windows-Server","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftTeams":{"__typename":"Category","id":"category:MicrosoftTeams","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PublicSector":{"__typename":"Category","id":"category:PublicSector","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft365":{"__typename":"Category","id":"category:microsoft365","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:IoT":{"__typename":"Category","id":"category:IoT","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:HealthcareAndLifeSciences":{"__typename":"Category","id":"category:HealthcareAndLifeSciences","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:ITOpsTalk":{"__typename":"Category","id":"category:ITOpsTalk","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftLearn":{"__typename":"Category","id":"category:MicrosoftLearn","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Blog:board:MicrosoftLearnBlog":{"__typename":"Blog","id":"board:MicrosoftLearnBlog","blogPolicies":{"__typename":"BlogPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}},"boardPolicies":{"__typename":"BoardPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftMechanics":{"__typename":"Category","id":"category:MicrosoftMechanics","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:MicrosoftforNonprofits":{"__typename":"Category","id":"category:MicrosoftforNonprofits","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:StartupsatMicrosoft":{"__typename":"Category","id":"category:StartupsatMicrosoft","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:PartnerCommunity":{"__typename":"Category","id":"category:PartnerCommunity","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Microsoft365Copilot":{"__typename":"Category","id":"category:Microsoft365Copilot","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Windows":{"__typename":"Category","id":"category:Windows","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:Content_Management":{"__typename":"Category","id":"category:Content_Management","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoft-security":{"__typename":"Category","id":"category:microsoft-security","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"Category:category:microsoftintune":{"__typename":"Category","id":"category:microsoftintune","categoryPolicies":{"__typename":"CategoryPolicies","canReadNode":{"__typename":"PolicyResult","failureReason":null}}},"User:user:2618628":{"__typename":"User","id":"user:2618628","uid":2618628,"login":"robertrita","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2024-08-12T01:18:06.976-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/images/dS0yNjE4NjI4LVJGNmp6eA?image-coordinates=0%2C0%2C600%2C600"},"rank":{"__ref":"Rank:rank:4"},"entityType":"USER","eventPath":"community:gxcuf89792/user:2618628"},"ModerationData:moderation_data:4285697":{"__typename":"ModerationData","id":"moderation_data:4285697","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4285697":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:2618628"},"id":"message:4285697","revisionNum":1,"uid":4285697,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:4271924"},"conversation":{"__ref":"Conversation:conversation:4271924"},"subject":"Re: Building a Contextual Retrieval System for Improving RAG Accuracy","moderationData":{"__ref":"ModerationData:moderation_data:4285697"},"body":"

mrajguru which tool did you use to create this GIF diagram?

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"66","kudosSumWeight":0,"repliesCount":0,"postTime":"2024-11-03T16:51:25.938-08:00","lastPublishTime":"2024-11-03T16:51:25.938-08:00","metrics":{"__typename":"MessageMetrics","views":620},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:4271924/message:4285697","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"Rank:rank:37":{"__typename":"Rank","id":"rank:37","position":18,"name":"Copper Contributor","color":"333333","icon":null,"rankStyle":"TEXT"},"User:user:1066329":{"__typename":"User","id":"user:1066329","uid":1066329,"login":"the1abel","biography":null,"registrationData":{"__typename":"RegistrationData","status":null,"registrationTime":"2021-05-28T22:02:15.481-07:00"},"deleted":false,"email":"","avatar":{"__typename":"UserAvatar","url":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/m_assets/avatars/default/avatar-9.svg?time=0"},"rank":{"__ref":"Rank:rank:37"},"entityType":"USER","eventPath":"community:gxcuf89792/user:1066329"},"ModerationData:moderation_data:4273669":{"__typename":"ModerationData","id":"moderation_data:4273669","status":"APPROVED","rejectReason":null,"isReportedAbuse":false,"rejectUser":null,"rejectTime":null,"rejectActorType":null},"BlogReplyMessage:message:4273669":{"__typename":"BlogReplyMessage","author":{"__ref":"User:user:1066329"},"id":"message:4273669","revisionNum":1,"uid":4273669,"depth":1,"hasGivenKudo":false,"subscribed":false,"board":{"__ref":"Blog:board:Azure-AI-Services-blog"},"parent":{"__ref":"BlogTopicMessage:message:4271924"},"conversation":{"__ref":"Conversation:conversation:4271924"},"subject":"Re: Building a Contextual Retrieval System for Improving RAG Accuracy","moderationData":{"__ref":"ModerationData:moderation_data:4273669"},"body":"

You're a rock star, Manoranjan!

Just last month Anthropic said that \"Contextual Embeddings and Contextual BM25... can reduce the number of failed retrievals by 49% and, when combined with reranking, by 67%\" (Introducing Contextual Retrieval).

","body@stripHtml({\"removeProcessingText\":false,\"removeSpoilerMarkup\":false,\"removeTocMarkup\":false,\"truncateLength\":200})@stringLength":"208","kudosSumWeight":1,"repliesCount":0,"postTime":"2024-10-18T00:19:36.483-07:00","lastPublishTime":"2024-10-18T00:19:36.483-07:00","metrics":{"__typename":"MessageMetrics","views":2361},"visibilityScope":"PUBLIC","placeholder":false,"originalMessageForPlaceholder":null,"entityType":"BLOG_REPLY","eventPath":"category:AI/category:solutions/category:communities/community:gxcuf89792board:Azure-AI-Services-blog/message:4271924/message:4273669","replies":{"__typename":"MessageConnection","pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null},"edges":[]},"customFields":[],"attachments":{"__typename":"AttachmentConnection","edges":[],"pageInfo":{"__typename":"PageInfo","hasNextPage":false,"endCursor":null,"hasPreviousPage":false,"startCursor":null}}},"CachedAsset:text:en_US-components/community/Navbar-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/community/Navbar-1745505307000","value":{"community":"Community Home","inbox":"Inbox","manageContent":"Manage Content","tos":"Terms of Service","forgotPassword":"Forgot Password","themeEditor":"Theme Editor","edit":"Edit Navigation Bar","skipContent":"Skip to content","gxcuf89792":"Tech Community","external-1":"Events","s-m-b":"Nonprofit Community","windows-server":"Windows Server","education-sector":"Education Sector","driving-adoption":"Driving Adoption","Common-content_management-link":"Content Management","microsoft-learn":"Microsoft Learn","s-q-l-server":"Content Management","partner-community":"Microsoft Partner Community","microsoft365":"Microsoft 365","external-9":".NET","external-8":"Teams","external-7":"Github","products-services":"Products","external-6":"Power Platform","communities-1":"Topics","external-5":"Microsoft Security","planner":"Outlook","external-4":"Microsoft 365","external-3":"Dynamics 365","azure":"Azure","healthcare-and-life-sciences":"Healthcare and Life Sciences","external-2":"Azure","microsoft-mechanics":"Microsoft Mechanics","microsoft-learn-1":"Community","external-10":"Learning Room Directory","microsoft-learn-blog":"Blog","windows":"Windows","i-t-ops-talk":"ITOps Talk","external-link-1":"View All","microsoft-securityand-compliance":"Microsoft Security","public-sector":"Public Sector","community-info-center":"Lounge","external-link-2":"View All","microsoft-teams":"Microsoft Teams","external":"Blogs","microsoft-endpoint-manager":"Microsoft Intune","startupsat-microsoft":"Startups at Microsoft","exchange":"Exchange","a-i":"AI and Machine Learning","io-t":"Internet of Things (IoT)","Common-microsoft365-copilot-link":"Microsoft 365 Copilot","outlook":"Microsoft 365 Copilot","external-link":"Community Hubs","communities":"Products"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarHamburgerDropdown-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarHamburgerDropdown-1745505307000","value":{"hamburgerLabel":"Side Menu"},"localOverride":false},"CachedAsset:text:en_US-components/community/BrandLogo-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/community/BrandLogo-1745505307000","value":{"logoAlt":"Khoros","themeLogoAlt":"Brand Logo"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarTextLinks-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarTextLinks-1745505307000","value":{"more":"More"},"localOverride":false},"CachedAsset:text:en_US-components/authentication/AuthenticationLink-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/authentication/AuthenticationLink-1745505307000","value":{"title.login":"Sign In","title.registration":"Register","title.forgotPassword":"Forgot Password","title.multiAuthLogin":"Sign In"},"localOverride":false},"CachedAsset:text:en_US-components/nodes/NodeLink-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/nodes/NodeLink-1745505307000","value":{"place":"Place {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCoverImage-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCoverImage-1745505307000","value":{"coverImageTitle":"Cover Image"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeTitle-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeTitle-1745505307000","value":{"nodeTitle":"{nodeTitle, select, community {Community} other {{nodeTitle}}} "},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTimeToRead-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTimeToRead-1745505307000","value":{"minReadText":"{min} MIN READ"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageSubject-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageSubject-1745505307000","value":{"noSubject":"(no subject)"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserLink-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserLink-1745505307000","value":{"authorName":"View Profile: {author}","anonymous":"Anonymous"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserRank-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserRank-1745505307000","value":{"rankName":"{rankName}","userRank":"Author rank {rankName}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageTime-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageTime-1745505307000","value":{"postTime":"Published: {time}","lastPublishTime":"Last Update: {time}","conversation.lastPostingActivityTime":"Last posting activity time: {time}","conversation.lastPostTime":"Last post time: {time}","moderationData.rejectTime":"Rejected time: {time}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageBody-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageBody-1745505307000","value":{"showMessageBody":"Show More","mentionsErrorTitle":"{mentionsType, select, board {Board} user {User} message {Message} other {}} No Longer Available","mentionsErrorMessage":"The {mentionsType} you are trying to view has been removed from the community.","videoProcessing":"Video is being processed. Please try again in a few minutes.","bannerTitle":"Video provider requires cookies to play the video. Accept to continue or {url} it directly on the provider's site.","buttonTitle":"Accept","urlText":"watch"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageCustomFields-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageCustomFields-1745505307000","value":{"CustomField.default.label":"Value of {name}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageRevision-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageRevision-1745505307000","value":{"lastUpdatedDatePublished":"{publishCount, plural, one{Published} other{Updated}} {date}","lastUpdatedDateDraft":"Created {date}","version":"Version {major}.{minor}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/common/QueryHandler-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/common/QueryHandler-1745505307000","value":{"title":"Query Handler"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageReplyButton-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageReplyButton-1745505307000","value":{"repliesCount":"{count}","title":"Reply","title@board:BLOG@message:root":"Comment","title@board:TKB@message:root":"Comment","title@board:IDEA@message:root":"Comment","title@board:OCCASION@message:root":"Comment"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageAuthorBio-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageAuthorBio-1745505307000","value":{"sendMessage":"Send Message","actionMessage":"Follow this blog board to get notified when there's new activity","coAuthor":"CO-PUBLISHER","contributor":"CONTRIBUTOR","userProfile":"View Profile","iconlink":"Go to {name} {type}"},"localOverride":false},"CachedAsset:text:en_US-components/community/NavbarDropdownToggle-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/community/NavbarDropdownToggle-1745505307000","value":{"ariaLabelClosed":"Press the down arrow to open the menu"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/users/UserAvatar-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/users/UserAvatar-1745505307000","value":{"altText":"{login}'s avatar","altTextGeneric":"User's avatar"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/ranks/UserRankLabel-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/ranks/UserRankLabel-1745505307000","value":{"altTitle":"Icon for {rankName} rank"},"localOverride":false},"CachedAsset:text:en_US-components/tags/TagView/TagViewChip-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/tags/TagView/TagViewChip-1745505307000","value":{"tagLabelName":"Tag name {tagName}"},"localOverride":false},"CachedAsset:text:en_US-components/users/UserRegistrationDate-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/users/UserRegistrationDate-1745505307000","value":{"noPrefix":"{date}","withPrefix":"Joined {date}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeAvatar-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeAvatar-1745505307000","value":{"altTitle":"Node avatar for {nodeTitle}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeDescription-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeDescription-1745505307000","value":{"description":"{description}"},"localOverride":false},"CachedAsset:text:en_US-components/messages/MessageListMenu-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-components/messages/MessageListMenu-1745505307000","value":{"postTimeAsc":"Oldest","postTimeDesc":"Newest","kudosSumWeightAsc":"Least Liked","kudosSumWeightDesc":"Most Liked","sortTitle":"Sort By","sortedBy.item":" { itemName, select, postTimeAsc {Oldest} postTimeDesc {Newest} kudosSumWeightAsc {Least Liked} kudosSumWeightDesc {Most Liked} other {}}"},"localOverride":false},"CachedAsset:text:en_US-shared/client/components/nodes/NodeIcon-1745505307000":{"__typename":"CachedAsset","id":"text:en_US-shared/client/components/nodes/NodeIcon-1745505307000","value":{"contentType":"Content Type {style, select, FORUM {Forum} BLOG {Blog} TKB {Knowledge Base} IDEA {Ideas} OCCASION {Events} other {}} icon"},"localOverride":false}}}},"page":"/blogs/BlogMessagePage/BlogMessagePage","query":{"boardId":"azure-ai-services-blog","messageSubject":"building-a-contextual-retrieval-system-for-improving-rag-accuracy","messageId":"4271924"},"buildId":"-gVUpXaWnPcjlrLJZ92B7","runtimeConfig":{"buildInformationVisible":false,"logLevelApp":"info","logLevelMetrics":"info","openTelemetryClientEnabled":false,"openTelemetryConfigName":"o365","openTelemetryServiceVersion":"25.3.0","openTelemetryUniverse":"prod","openTelemetryCollector":"http://localhost:4318","openTelemetryRouteChangeAllowedTime":"5000","apolloDevToolsEnabled":false,"inboxMuteWipFeatureEnabled":false},"isFallback":false,"isExperimentalCompile":false,"dynamicIds":["./components/community/Navbar/NavbarWidget.tsx","./components/community/Breadcrumb/BreadcrumbWidget.tsx","./components/customComponent/CustomComponent/CustomComponent.tsx","./components/blogs/BlogArticleWidget/BlogArticleWidget.tsx","./components/messages/MessageView/MessageViewStandard/MessageViewStandard.tsx","./components/messages/ThreadedReplyList/ThreadedReplyList.tsx","./components/external/components/ExternalComponent.tsx","./components/customComponent/CustomComponentContent/TemplateContent.tsx","../shared/client/components/common/List/UnwrappedList/UnwrappedList.tsx","./components/tags/TagView/TagView.tsx","./components/tags/TagView/TagViewChip/TagViewChip.tsx","../shared/client/components/common/List/UnstyledList/UnstyledList.tsx","./components/messages/MessageView/MessageView.tsx"],"appGip":true,"scriptLoader":[{"id":"analytics","src":"https://techcommunity.microsoft.com/t5/s/gxcuf89792/pagescripts/1730819800000/analytics.js?page.id=BlogMessagePage&entity.id=board%3Aazure-ai-services-blog&entity.id=message%3A4271924","strategy":"afterInteractive"}]}