Microsoft Ignite 2021
40 TopicsManaged Instance link – connecting SQL Server to Azure reimagined
Link feature for Managed Instance is a new feature reimagining the connection between SQL Server hosted anywhere and the fully managed PaaS service Azure SQL Managed Instance, providing unprecedented hybrid flexibility and database mobility. With an approach that uses near real-time data replication to Azure, you can offload workloads to read-only secondaries on Azure to take advantage of a fully managed database platform, performance, and scale. The link can be operated for as long as you need it – months and years at a time, empowering you to get all the modern benefits of Azure today without migrating to the cloud. On your modernization journey, when and if you are ready to migrate to the cloud, the link de-risks your migration experience allowing you to validate your workloads in Azure prior to migrating with a seamless and instant experience, and at your own pace. This article provides deeper insights into this new feature.19KViews4likes9CommentsAnnouncing General Availability for Virtual Machine Scale Sets – Flexible orchestration mode
Increase availability at Scale with Virtual Machine Scale Sets - Flexible orchestration mode, now available in GA. VM Scale Sets is a great platform for you to run your mission critical, dynamic and scalable applications.21KViews3likes1CommentImprove cost savings with the new Azure Virtual Machine Offerings
The Azure Infrastructure as a Service (IaaS) portfolio continues to expand to help increase the cost efficiency for your workloads. This week at Microsoft Ignite, we announced several important additions to our Azure IaaS portfolio.9.4KViews3likes2CommentsAnnouncing the new premium-series hardware for SQL Managed Instance
Learn about the new premium-series hardware generations for Azure SQL Managed Instance, which offer significantly improved performance and scalability and allow you to migrate your more demanding database workloads to Azure SQL Managed Instance13KViews2likes8CommentsDatabase templates in Azure Synapse Analytics
Azure Synapse Analytics is a limitless analytics service that brings together data integration, enterprise data warehousing, and big data analytics. It gives you the freedom to query data on your terms, using either serverless or dedicated resources—at scale. Azure Synapse brings these worlds together with a unified experience to ingest, explore, prepare, manage, and serve data for immediate BI and machine learning needs. One of the challenges that users in key industry areas face is how to describe and shape the mass of data that they are gathering. Most of this data is currently stored in data lakes or in application-specific data silos. The challenge is to bring all this data together in a standardized format enabling it to be more easily analyzed and understood and for ML and AI to be applied to it. Azure Synapse solves this problem by introducing industry-specific templates for your data, providing a standardized way to store and shape data. These templates provide schemas for predefined business areas, enabling data to be loaded into a database in a structured way. Database templates in Azure Synapse are industry-specific schema definitions that provide a quick method of creating a database known as a lake database. As with any database, it contains a well-defined schema for a business solution. This schema includes tables, columns, and relationships that represent transactional, operational, and business semantic data. Azure Synapse is used to perform big data operations on a lake database via either SQL or Spark compute pools. By using database templates, we are leveraging decades of specific industry experience to form an extensible schema. This schema can be expanded or derived from your own business terminology and taxonomies. Data processing pipelines in Azure Synapse provide hundreds of connectors (e.g., SAP ECC, Dynamics CRM, Magento), making it easy to connect to different source systems. The data in the lake database is stored in , and creates the foundation of an enterprise data lake, where data from the different sources are combined for analytics and reporting. Finally, database templates have been built with an ecosystem in mind. Customers and partners can rapidly build analytics-infused industry use cases by customizing and extending the standard templates using the database editor in Azure Synapse. Here’s what some of the early adopters have noted: “Having an opportunity to test and use Azure Synapse database templates, our team at dunnhumby were impressed by the breadth of data domain coverage, along with Azure Synapse’s feature and tools for development, engineering, and delivery of outstanding data science. As a global leader in retail data science and knowing how hard navigating data fundamentals can be - we can see the benefits for Azure Synapse customers in helping them to rapidly unlock the value in their data assets, enabling them to evolve and scale their insight capabilities. Azure Synapse database templates can be a key enabler in breaking down data silos and unlocking potential value in enterprise data.” - David Jack | dunnhumby Chief Technology Officer “We have further deepened our Qlik Data Integration capabilities with Azure Synapse with the availability of database templates. Our retail customers now have increased ability to access and transform SAP’s complex, application-specific data structures from any SAP source, and into formats optimized for analytics within Azure Synapse” – Matt Hayes, VP SAP Business at Qlik Currently, Azure Synapse includes database templates for Retail, Consumer Goods, Banking, Fund Management, and Property and Casualty Insurance, with more industry-specific templates to be added in the near future: Getting started with database templates Here’s how the database templates can be used from Azure Synapse Studio (the browser-based editor for Azure Synapse). 1. Select a database template from the Azure Synapse gallery. Let’s use Retail as an example: 2. You’ll see a set of eight tables pre-populated in a lightweight data model editor to get you started. From here you can add, remove or edit, tables, columns and relationships. Click on “Create Database” when done: 3. In the database designer, you can further refine your data model by making edits to the tables specified previously. You can also add tables from an existing data lake or create brand new ones; the former being ideal if you already have a data lake in use. The Properties tab allows you to specify the name of your lake database, data format (delimited text or parquet) and storage account settings. The default storage account is the one that comes with your Synapse workspace. Click on “Publish All” to commit your changes: That’s it! In a few minutes you’re up and going with a lake database and ready to load it with data. The data can be loaded via Synapse Pipelines; an ELT engine with the lake database being the target, and your operational data being the source. With hundreds of data connectors (including 3 rd party, ODBC, REST, OData, HTTP), you can ensure that any source data can be loaded to your lake database. After the data is loaded, you can take advantage of pre-built AI and ML models that understand your data based on the lake database template schema. An example is the Retail-Product recommendation solution in the Gallery: Knowing the shape of the data allows us to provide pre-built industry AI solutions. The AI solution for Retail Product Recommendation provides a robust and scalable recommendation engine for out-of-the-box development in Synapse. No additional data shaping is needed, the solution can work on the data out of the box. This accelerates productivity of existing or emerging data scientists for solving a specific problem in the Retail domain. Considering database templates as a core component in your next big data project will help you with a better integrated and scalable architecture: Benefits of database templates By leveraging Azure Synapse’s library of database templates derived from decades of industry implementations, you can Accelerate time to insights based on a standardized business area schemas for different industries Identify gaps and opportunities in your existing enterprise data model Consolidate data silos and query from a single pane of glass (Synapse Studio) Create a well-formed data lake ready for the analytics at scale Enrich your data with Azure Cognitive Services and Azure Machine Learning Develop reports easily using Power BI Conclusion Azure Synapse Analytics gives you the freedom to query data on your terms, using either serverless or dedicated resources—at scale. It solves many of the productivity and scalability challenges that prevent you from maximizing the value of your data assets with a service that is ready to meet your current and future business needs. To learn more, visit: Azure Synapse Analytics documentation Database templates in Azure Synapse