Containers
116 TopicsAzure at KubeCon India 2024 | Delhi, India – 11-12 December
Welcome to KubeCon + CloudNativeCon India 2024! We're excited to be part of the inaugural event, where we'll highlight the newest advancements in Azure and Azure Kubernetes Service (AKS) and engage with the vibrant cloud-native community in India. We are pleased to announce several new capabilities in Azure Kubernetes Service focused on AI apps development, ease of use, and features to enhance security, scalability, and networking. Here are the key highlights: Simplifying AI Apps Development AI is becoming increasingly crucial as it empowers organizations to leverage cutting-edge technologies to drive innovation and improve their products and services. By providing intuitive tools and extensions, we aim to make AI more accessible to developers, enabling them to deploy and manage AI models with ease. The AI toolchain operator (KAITO) managed add-on is now available in the AKS Visual Studio Code extension. This add-on simplifies AI inference development with an intuitive and visually engaging UI, allowing customers to deploy open-source AI models to their AKS cluster directly from VSCode. AKS plugins in GitHub Copilot for Azure enable various tasks related to AKS directly from the GitHub Copilot Chat view, including creating an AKS cluster, deploying a manifest, and generating kubectl commands. Easily specify your GPU driver type for your Windows GPU node pools to ensure workload and driver compatibility and run compute-intensive Kubernetes workloads. Enhanced Security, Scalability, and Networking Security, scalability, and networking are critical for ensuring the robustness and reliability of Kubernetes deployments. We provide users with the tools they need to maintain high availability and secure their environments, and are rolling out features thatimprove disaster recovery, protection, and network management. A new managed solution in AKS restricts IMDS endpoint access for customer pods, enhancing overall security. Vaulted backups for AKS enable cross-region disaster recovery, long-term retention, and enhanced security with immutable backups through Azure Backup. Support for private ingress on cluster creation or through API grants users more granular control over ingress controller configuration. Ease of use AKS is also introducing new capabilities to streamline the user experience and reduce the complexity of managing Kubernetes environments. This includes simplifying notifications, defaulting to parallel image pulls in AKS 1.31, improving the UI for automated deployments, and enhancing logging capabilities to help users save time. AKS Communication Manager simplifies notifications for all AKS maintenance tasks, providing timely alerts on event triggers and outcomes. Enhanced AKS logs with Kubernetes metadata and logs filtering, provide richer context and improved visibility into workloads. We’re excited to meet up with you at KubeCon + CloudNativeCon We hope you’re as excited as we are about the first ever KubeCon + CloudNativeCon India 2024. Azure and Kubernetes have some exciting innovations to offer, and we’re eager to share them with you. Be sure to connect with our team on site: Don’t miss the keynote with Microsoft speaker: On Thursday 12 December 2024 at 10:00 AM IST, Lachlan Evenson will deliver a keynote on how to get started in the open-source and Kubernetes community. Check out these sessions by Microsoft engineers: 11 Dec 2024 5:40pm - 6:15pm IST: Effortless Clustering: Rethinking ClusterAPI with Systemd-Systext 12 Dec 2024 11:30am - 12:55pm IST: Flatcar Container Linux Deep Dive: Deploying, Managing and Automating Workloads Securely Visit the Microsoft booth (G1): Stop by our booth to watch live demos, learn from experts, ask questions, and more. Demos at Booth G1: 11 Dec 2024 Running LLMs on Azure Kubernetes Service with KAITO Partner demo: Cost optimization for AI on Kubernetes with CAST AI Persistent storage options for Kubernetes deployment Azure Linux for AKS Azure Backup for AKS Managed Prometheus and Grafana for AKS Application security in Kubernetes Enhance the security of your Container images with Continuous Patching Partner demo: Ultra-fast testing with HyperExecute on AKS 12 Dec 2024 End-to-end developer experience with AKS Automatic Application Gateway for Containers Partner demo: Choreo Internal Developer Platform Azure Container Networking Services Workload Identity at scale with Spinkube on AKS Securing AKS deployments with Azure Firewall AKS add-ons: KEDA, dapr, NAP and more We look forward to connecting with you and hearing your feedback and suggestions. You can also follow us on Xfor more updates and news. Happy KubeCon + CloudNativeCon!193Views0likes0CommentsEasily deploy .NET apps to Azure Container Apps with default configuration for data protection
The Azure Container Apps and .NET team have made it easier than ever to deploy your .NET application by supporting automatic configuration for data protection. This support is currently available as an opt-in feature in the Container Apps API version 2024-02-02-preview. This blog post will discuss the feature and what it enables, how to determine if your application is correctly configured, and how to enable configuration for data protection across a variety of .NET versions.2KViews1like1CommentBuild and Modernize Intelligent Java apps at Scale
Java on Microsoft Azure Java customers and developers are constantly exploring how they can bring their Java applications to the cloud. Some are looking to modernize existing applications, while others are building new cloud-native solutions from scratch. With these changes, they need a platform that lets them keep working the way they know, without sacrificing control or performance. That’s where Microsoft Azure comes in. As a company, Microsoft is committed to making Java developers as efficient and productive as possible, empowering them to use any tool, framework, and application server on any operating system. Microsoft Azure makes it easy to work with the tools and frameworks Java developers already know and love. Whether using IntelliJ, Eclipse, or VS Code, or managing dependencies with Maven or Gradle, developers can keep using their preferred setup. Azure supports trusted Java application servers and popular open-source tools like Spring Boot, JBoss EAP, and WebLogic, making the transition to the cloud seamless and natural. Scaling on Azure is designed with simplicity and security in mind. Developers can count on built-in tools for monitoring, automation, data support, and caching, along with robust security features. With Azure’s flexible services they can scale confidently, manage costs, and build resilient applications that meet business needs. Azure provides everything Java developers need to build and modernize their applications at scale, letting them do so on their own terms. Tooling for Java app migration and modernization priorities Moving your Java applications to the cloud is easier with the right tools. Azure offers a full set of solutions for every type of migration, whether you are rehosting, re-platforming, refactoring, or rearchitecting. These tools work together to help you transition smoothly, allowing you to work faster, more efficiently, and with greater insight. With Azure, you can achieve meaningful results for your business as you modernize your applications. Azure Migrate and Partner-built Solutions Azure Migrate is a key resource in this process. It provides a holistic view of your server and application estate and generates a cloud-readiness report. With app centricity, you can now assess applications at a portfolio level rather than server by server. This makes it easier for IT decision-makers to plan migrations on a larger scale while aligning with business priorities. In addition to Azure Migrate, you can leverage several partner-built solutions such as CAST, Unify, Dr. Migrate, and others to support additional use cases and scenarios. Azure Migrate application and code assessment For developers, Azure Migrate’s app and code assessment tool (AppCAT) offers in-depth code scanning for Java applications. With this tool, you can assess code changes needed to run your apps in the cloud right from within your preferred terminals, like Bash. GitHub Copilot Chat integration further simplifies the planning process, making it easy to explore modernization options through a conversational approach. AppCAT is especially useful for detailed assessments for refactoring and rearchitecting. GitHub Copilot upgrade assistant for Java A major advancement in this toolkit is the new GitHub Copilot upgrade assistant for Java. Upgrading Java code, runtimes, frameworks, and dependencies can be time-consuming, but with the upgrade assistant, you can streamline the process significantly. Start with your local Java project, receive an AI-powered upgrade strategy, and let Copilot handle the bulk of the work. This powerful tool helps you modernize faster, allowing you to focus on building intelligent applications at scale with confidence. Ready to save time upgrading Java? You can apply for the waitlist to the Technical Preview right here – aka.ms/GHCP-for-Java. This early access is open to a limited number of customers, so we encourage you to sign up soon and share your feedback! Deploy and Scale Java Apps on Azure The Java ecosystem is diverse, encompassing technologies like Java SE, Jakarta EE, Spring, and various application servers. Whatever your Java workload – whether building a monolithic app or a cloud-native microservice – Azure provides a comprehensive platform to support it. Azure offers multiple deployment paths to help meet your specific project goals. For those migrating existing Java applications, infrastructure-as-a-service (IaaS) options like Azure Virtual Machines allow you to lift and shift applications without significant re-architecture. Meanwhile, container options, such as Azure Kubernetes Service (AKS), Azure Container Apps and Azure Red Hat OpenShift, make it easier to manage Java applications in containers. Fully managed platform-as-a-service (PaaS) offerings, like Azure App Service, provide out-of-the-box scalability, DevOps integration, and automation for streamlined management. The following diagram shows recommended Azure services for every Java application type deployed as source or binaries: The following diagram shows the recommended Azure services for every Java application type deployed as containers: Building on Azure's reputation as a versatile platform for various applications, we now turn our focus to three specific offerings that demonstrate this flexibility. Today, we highlight JBoss EAP on Azure App Service, Java on Azure Container Apps, and WebSphere Liberty on Azure Kubernetes Service and how to quickly bring your apps to production with Landing Zone Accelerator. We will also walk you through how to build and modernize intelligent Java apps at scale with the latest AI tools and models. JBoss EAP on Azure App Service Azure App Service offers a fully managed platform with specific enhancements for Java, making it an excellent choice for running enterprise Java applications. Recently, several updates have been introduced to bring even greater value to Java developers using JBoss EAP on App Service: Reduced Licensing Costs: Licensing fees for JBoss EAP on App Service have been cut by over 60%, making it more accessible to a wider range of users. Free Tier Availability: A new free tier is available for those interested in testing the service without an upfront cost, providing an easy entry point for trials and evaluation. Affordable Paid Tiers: Lower-cost paid tiers of App Service Plan for JBoss EAP have been introduced, catering to businesses seeking a cost-effective, production-ready environment. Bring Your Own License Support: Soon, customers will be able to apply existing Red Hat volume licenses to further reduce operational costs, adding flexibility for organizations already invested in Red Hat JBoss EAP. These updates provide significant savings, making JBoss EAP on App Service a smart choice for those looking to optimize costs while running Java applications on a reliable, managed platform. Java on Azure Container Apps Azure Container Apps is a popular serverless platform for Java developers who want to deploy and scale containerized applications with minimal management overhead. Designed for microservices, APIs, and event-driven workloads, Azure Container Apps makes it simple to scale applications from zero up to millions of requests, adapting dynamically to meet real-time demand. Azure Container Apps includes several features tailored specifically for Java: Managed Components for Java: With built-in Spring Cloud services like Service Registry and Config Server, managing Java applications is straightforward. These components simplify service registration, discovery, and configuration management. Enhanced Java Monitoring: Azure Monitor provides Java-specific insights, giving developers visibility into their applications and enabling proactive management with detailed metrics. Effortless Scaling: Container Apps can scale down to zero during periods of low demand and scale out as traffic grows, helping optimize costs. The platform also supports GPU-enabled workloads, perfect for AI-powered Java applications. This fully managed platform supports a range of Java frameworks and runtimes, from Spring Boot to Quarkus to Open Liberty and beyond. With built-in DevOps, secure networking, role-based access, and pay-as-you-go pricing, Azure Container Apps offers a powerful and flexible foundation to build, deploy, and monitor any Java application type. WebSphere Liberty on Azure Kubernetes Service IBM's WebSphere is one of the most widely used middleware platforms globally, especially in large enterprises. Many organizations rely on WebSphere Traditional applications, which have strong market penetration in enterprise environments. As IBM focuses on cloud-native solutions, it is encouraging organizations to migrate from WebSphere Traditional to WebSphere Liberty - a more modern, cloud-native Java runtime. With Azure Kubernetes Service, this migration becomes straightforward and manageable, allowing organizations to bring existing WebSphere Traditional apps into a more flexible, scalable environment. Why Azure Kubernetes Service? AKS provides a powerful platform for running containerized Java applications without the complexity of setting up and maintaining Kubernetes yourself. It’s a fully managed Kubernetes service, integrated end-to-end with Azure’s foundational infrastructure, CI/CD, registry, monitoring, and managed services. Because AKS is based on vanilla Kubernetes, all Kubernetes tools work, and there’s no risk of lock-in. AKS offers global availability, enterprise-grade security, automated upgrades, and compliance, making it a reliable choice for organizations aiming to modernize WebSphere applications. Competitive pricing and cost optimization make AKS even more attractive. Why Transform to WebSphere Liberty? WebSphere Liberty, along with Open Liberty, offers compatibility with WebSphere Traditional, creating an easy migration path. Liberty is a lightweight, modular runtime that’s better suited for cloud-native applications. It reduces resource costs, requiring less memory and CPU than WebSphere Traditional and has quicker startup times. Liberty also embraces modern standards, like Jakarta EE Core Profile and MicroProfile, making it ideal for cloud-native applications. Organizations can even re-purpose existing WebSphere Traditional licenses, significantly reducing migration costs. Running WebSphere Liberty on Azure Kubernetes Service is simple and flexible. IBM and Microsoft have certified Liberty on AKS, providing a reliable path for enterprises to move their WebSphere applications to the cloud. With a solution template available in the Azure Marketplace, you can deploy WebSphere Liberty on AKS in a few clicks. This setup works with both new and existing AKS clusters, as well as any container registry, allowing you to deploy quickly and scale as needed. By combining WebSphere Liberty with AKS, you gain the agility of containers and Kubernetes, along with the robust features of a cloud-native runtime on a trusted enterprise platform. Build Right and Fast! Build Your Java or Spring Apps Environment: Development, Test, or Production in Just 15-30 Minutes with Landing Zone Accelerator! To ensure the scalability and quality of your cloud journey, we re-introduce Landing Zone Accelerators, specifically designed for Azure app destinations such as App Service, Azure Container Apps, and Azure Kubernetes Service. An accelerator allows you to establish secure, complaint, and scalable development, test, or production environments within 15-30 minutes. Adhering to Azure's best practices and embedding security by default, a Landing Zone Accelerator ensures that your cloud transition is not only swift but also robust and scalable. It paves the way for both application and platform teams to thrive in the cloud environment. From realizing cost efficiency to streamlining your migration and modernization journey to ensuring the scalability of your cloud operations, our goal is to demonstrate how your cloud transition can drive innovation, and efficiency, and accelerate business value. The Landing Zone Accelerators for App Service, Azure Container Apps, and Azure Kubernetes Service represent an authoritative, proven, and prescriptive infrastructure-as-code solution, designed to assist enterprise customers in establishing a robust environment for deploying Java, Spring, and polyglot apps. It not only expedites the deployment process but also provides a comprehensive design framework, allowing for the clear planning and designing of Azure environments based on established standards. Build Intelligent Java Apps at Scale Today, many enterprise applications are built with Java. As AI grows in popularity and delivers greater business outcomes, Java developers wonder how to integrate it with their apps. Python is popular for AI - particularly for model building, deploying and fine tuning LLMs, and data handling - but moving an app to a new language can be complex and costly. Instead, Java developers can use Azure to combine their Java apps with AI, building intelligent apps without needing to master Python. Azure makes it simple to bring AI into your existing Java applications. Many customers are already using the Azure platform to add intelligence to their Java apps, delivering more value to their businesses. Whether starting fresh or modernizing existing systems, Azure provides the tools needed to build powerful, intelligent applications that scale. Modernize and Build New Intelligent Apps with Azure. Wherever you are in your cloud journey, Azure helps you modernize and build intelligent apps. Azure offers app platform services, data handling at scale, and AI tools that make it easy to create applications that deliver meaningful business value. Intelligent apps can drive growth, amplify team capabilities, and improve productivity. With Azure, you can bring your Java apps into the future and stay ahead of the competition. The Right Tools for Intelligent Java Apps. Building intelligent applications requires a strong foundation. Azure provides essential services like a robust cloud platform, scalable data solutions, and AI tools, including pretrained models and responsible AI practices. These tools ensure your apps are efficient, scalable, and aligned with best practices. Azure offers several key services for this: Azure AI Studio: A one-stop platform for experimenting and deploying AI solutions. It provides tools for model benchmarking, solution testing, and monitoring, making it easy to develop use cases like customer segmentation and predictive maintenance. Azure OpenAI Service: With access to advanced AI models like GPT-4, this service is ideal for content generation, summarization, and semantic search. Build chatbots, create marketing content, or add AI-driven features to your Java apps. Azure Machine Learning: An end-to-end platform for building and deploying machine learning models. It supports various use cases such as recommendation systems, predictive analytics, and anomaly detection. MLOps capabilities ensure your models are continuously improved and managed. Azure AI Search: Uses retrieval-augmented generation (RAG) technology for powerful search capabilities. Enhance user experience with intelligent search options, helping users quickly find relevant information. Azure Cosmos DB: A globally distributed, multi-model database service ideal for high-performance, low-latency applications. It offers turnkey global distribution, automatic scalability, and integration with other Azure services, making it a strong choice for intelligent apps that handle large amounts of data. Azure Database for PostgreSQL with PGVector: This managed PostgreSQL service now includes the PGVector extension, designed for handling vector embeddings in AI applications. It’s a valuable tool for applications requiring fast, similarity-based searches and supports applications involving recommendation engines, semantic search, and personalization. Azure AI Infrastructure: Provides high-performance infrastructure for AI workloads. Whether training large models or performing real-time inference, Azure’s AI infrastructure meets demanding needs. Get Started with AI in Java. If you are a Java app developer, now is a great time to start integrating AI into your apps. Spring developers can use Spring AI for quick integration, and developers using Quarkus or Jakarta EE or any other app type can take advantage of LangChain4j. You can also use Microsoft Azure AI client libraries for Java. No matter what your framework is, Azure has the tools to help you add intelligence to your applications. Meet the Java team at the Microsoft Ignite 2024 Come meet the Java team at Microsoft Ignite 2024! Join our breakout session, "Java on Azure: Modernize and scale enterprise Java applications on Azure" BRK147, for a close look at the newest ways to build, scale, and modernize Java apps on Azure. In this session, our engineers and product experts will share the latest updates and tools for Java developers. You’ll learn about cost-saving options, new cloud tools, and how to add smart features to your apps. This is a session for all Java developers, whether you're moving apps to the cloud or building cloud-native apps from scratch. Everyone can join - either in person at Ignite or virtually from anywhere in the world. The virtual option is free, so you can attend without leaving your desk. Don’t miss the chance to connect with the Java team, ask questions, and get tips to make your Java apps succeed on Azure! Start Today! Join Us at Java + AI Events Worldwide. Sign Up for upcoming Java and AI events like JDConf 2025 and JavaOne 2025. You’ll also find our developer advocates sharing insights and tips at Java conferences and events around the world. Begin framing your app migration plans with resources to guide you through each step. Get started here – aka.ms/Start-Java. Explore the docs and deploy your first Java or Spring app in the cloud. Follow the quick steps here – aka.ms/Java-Hub. Use our tools and information to build a plan and show your leaders the benefits of Java app modernization. Get the details here – azure.com/Java. Start building, planning, and exploring Azure for Java today!250Views0likes0CommentsElasticsearch custom container on Azure App Services
In this blog, we will cover how to deploy Elasticsearch container on Azure App Service we are using the container image elasticsearch:7.17.25 available on Docker Hubelasticsearch - Official Image | Docker Hub While deploying the container image on Azure App Service, the Docker container encounters the following error: 2024-11-14T12:37:41.643855847Z {"type": "server", "timestamp": "2024-11-14T12:37:41,643Z", "level": "INFO", "component": "o.e.x.m.Monitoring", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "creating template [.monitoring-es] with version [7]" } 2024-11-14T12:37:41.645055848Z {"type": "server", "timestamp": "2024-11-14T12:37:41,644Z", "level": "INFO", "component": "o.e.x.m.Monitoring", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "creating template [.monitoring-kibana] with version [7]" } 2024-11-14T12:37:41.646677131Z {"type": "server", "timestamp": "2024-11-14T12:37:41,646Z", "level": "INFO", "component": "o.e.x.m.Monitoring", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "creating template [.monitoring-logstash] with version [7]" } 2024-11-14T12:37:41.650269656Z {"type": "server", "timestamp": "2024-11-14T12:37:41,650Z", "level": "INFO", "component": "o.e.x.m.Monitoring", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "creating template [.monitoring-beats] with version [7]" } 2024-11-14T12:37:41.733555119Z {"type": "server", "timestamp": "2024-11-14T12:37:41,733Z", "level": "INFO", "component": "o.e.b.BootstrapChecks", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "bound or publishing to a non-loopback address, enforcing bootstrap checks" } 2024-11-14T12:37:41.738339565Z 2024-11-14T12:37:41.738374780Z ERROR: [2] bootstrap checks failed. You must address the points described in the following [2] lines before starting Elasticsearch. 2024-11-14T12:37:41.738387734Z bootstrap check failure [1] of [2]: max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144] 2024-11-14T12:37:41.738395509Z bootstrap check failure [2] of [2]: the default discovery settings are unsuitable for production use; at least one of [discovery.seed_hosts, discovery.seed_providers, cluster.initial_master_nodes] must be configured 2024-11-14T12:37:41.738446001Z ERROR: Elasticsearch did not exit normally - check the logs at /usr/share/elasticsearch/logs/docker-cluster.log 2024-11-14T12:37:41.740094676Z {"type": "server", "timestamp": "2024-11-14T12:37:41,739Z", "level": "INFO", "component": "o.e.n.Node", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "stopping ..." } 2024-11-14T12:37:41.748283513Z {"type": "server", "timestamp": "2024-11-14T12:37:41,748Z", "level": "INFO", "component": "o.e.n.Node", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "stopped" } 2024-11-14T12:37:41.748398709Z {"type": "server", "timestamp": "2024-11-14T12:37:41,748Z", "level": "INFO", "component": "o.e.n.Node", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "closing ..." } 2024-11-14T12:37:41.755743691Z {"type": "server", "timestamp": "2024-11-14T12:37:41,755Z", "level": "INFO", "component": "o.e.n.Node", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "closed" } 2024-11-14T12:37:41.757215226Z {"type": "server", "timestamp": "2024-11-14T12:37:41,756Z", "level": "INFO", "component": "o.e.x.m.p.NativeController", "cluster.name": "docker-cluster", "node.name": "e6413475d15a", "message": "Native controller process has stopped - no new native processes can be started" } Since Azure App Services is aPlatform as a Service (PaaS), you do not have the privileges to modify thevm.max_map_count. We can mitigate the issue by adding the app setting discovery.type=single-node,please referBootstrap Checks | Elasticsearch Guide [8.16] | Elastic for more details But you would notice that the container still failing with the same error as the app setting name was modified. You can check the app settings from the kudu "newui" portal Navigate to https://<AppServiceName>.scm.azurewebsites.net/newui --> Environment tab By default, Azure App Service on Linux or WebApp for Containers replaces any periods in app settings with a single underscore (_) Please referConfigure apps - Azure App Service | Microsoft Learn for more details. To address the issue, we will configure discovery.type in the elasticsearch.yml file during the container image build process. Below are the steps to build, run, and push the image to a repository. 1. Please create a folder named "test" and then add Dockerfile and elasticsearch.yml files with the following contents Dockerfile Use the Elasticsearch base image FROM elasticsearch:7.17.25 # Set the environment variable path to override the default configuration COPY elasticsearch.yml /usr/share/elasticsearch/config elasticsearch.yml cluster.name: "docker-cluster" network.host: 0.0.0.0 discovery.type: single-node Test folder structure 2. Build and run the docker image Docker Build Command:docker build -t custom-elasticsearch:7.17.25 Docker Run Command:docker run -d -p 1234:9200 custom-elasticsearch:7.17.25 3. Browse the application viahttps://localhost:1234 4. Now, proceed to push the running Docker image to the Azure Container Registry (ACR) or any other repository of your preference. az acr login -n <ACRname> docker tag custom-elasticsearchlatest:7.17.25 acrname.azurecr.io/custom-elasticsearch:1 docker push acrname.azurecr.io/custom-elasticsearch:1 5. Given that the Elasticsearch Docker image is resource-intensive, please ensure you use a high-memory configuration App Service Plan (ASP) to provide adequate memory. 6. Please update the app service with the latest Docker image and tag and ensure to add the application setting WEBSITES_PORT=9200, as the container is listening on port 9200. 7. The container has started successfully, and the app service is functioning without any issues. Happy Learning 🙂238Views5likes4CommentsSeamlessly Integrating Azure KeyVault with Jarsigner for Enhanced Security
Dive into the world of enhanced security with our step-by-step guide on integrating Azure KeyVault with Jarsigner. Whether you're a beginner or an experienced developer, this guide will walk you through the process of securely signing your Java applications using Azure's robust security features. Learn how to set up, execute, and verify digital signatures with ease, ensuring your applications are protected in an increasingly digital world. Join us to boost your security setup now!6.5KViews0likes1CommentIntroducing Serverless GPUs on Azure Container Apps
We're excited to announce the public preview ofAzure Container Apps Serverless GPUs accelerated by NVIDIA. This feature provides customers with NVIDIA A100 GPUs and NVIDIA T4 GPUs in a serverless environment, enabling effortless scaling and flexibility for real-time custom model inferencing and other machine learning tasks. Serverless GPUs accelerate the speed of your AI development team by allowing you to focus on your core AI code and less on managing infrastructure when using NVIDIA accelerated computing. They provide an excellent middle layer option betweenAzure AI Model Catalog's serverless APIs and hosting models on managed compute. It provides full data governance as your data never leaves the boundaries of your container while still providing a managed, serverless platform from which to build your applications. Serverless GPUs are designed to meet the growing demands of modern applications by providing powerful NVIDIA accelerated computing resources without the need for dedicated infrastructure management. "Azure Container Apps' serverless GPU offering is a leap forward for AI workloads. Serverless NVIDIA GPUs are well suited for a wide array of AI workloads from real-time inferencing scenarios with custom models to fine-tuning. NVIDIA is also working with Microsoft to bring NVIDIA NIM microservices to Azure Container Apps to optimize AI inference performance.” - Dave Salvator, Director, Accelerated Computing Products, NVIDIA Key benefits of serverless GPUs Scale-to zero GPUs: Support for serverless scaling of NVIDIA A100 and T4 GPUs. Per-second billing: Pay only for the GPU compute you use. Built-in data governance: Your data never leaves the container boundary. Flexible compute options: Choose between NVIDIA A100 and T4 GPUs. Middle-layer for AI development: Bring your own model on a managed, serverless compute platform. Scenarios Whether you choose to use NVIDIA A100 or T4 GPUs will depend on the types of apps you're creating. The following are a couple example scenarios. For each scenario with serverless GPUs, you pay only for the compute you use with per-second billing, and your apps will automatically scale in and out from zero to meet the demand. NVIDIA T4 Real-time and batch inferencing: Using custom open-source models with fast startup times, automatic scaling, and a per-second billing model, serverless GPUs are ideal for dynamic applications that don't already have a serverless API in the model catalog. NVIDIA A100 Compute intensive machine learning scenarios: Significantly speed up applications that implement fine-tuned custom generative AI models, deep learning, or neural networks. High performance computing (HPC) and data analytics: Applications that require complex calculations or simulations, such as scientific computing and financial modeling as well as accelerated data processing and analysis among massive datasets. Get started with serverless GPUs Serverless GPUs are now available for workload profile environments in West US 3 and Australia East regions with more regions to come. You will need to have quota enabled on your subscription in order to use serverless GPUs. By default, all Microsoft Enterprise Agreement customers will have one quota. If additional quota is needed, please request it here. Note: In order to achieve the best performance with serverless GPUs, use an Azure Container Registry (ACR) with artifact streaming enabled for your image tag.Follow steps here to enable artifact streaming on your ACR. From the portal, you can select to enable GPUs for your Consumption app in the container tab when creating your Container App or your Container App Job. You can also add a new consumption GPU workload profile to your existing Container App environment through the workload profiles UX in portal or through the CLI commands for managing workload profiles. Deploy a sample Stable Diffusion app To try out serverless GPUs, you can use the stable diffusion image which is provided as a quickstart during the container app create experience: In the container tab select the Use quickstart image box. In the quickstart image dropdown, selectGPU hello world container. If you wish to pull the GPU container image into your own ACR to enable artifact streaming for improved performance, or if you wish to manually enter the image, you can find the image atmcr.microsoft.com/k8se/gpu-quickstart:latest. For full steps on using your own image with serverless GPUs, see the tutorial onusing serverless GPUs in Azure Container Apps. Learn more about serverless GPUs With serverless GPUs, Azure Container Apps now simplifies the development of your AI applications by providing scale-to-zero compute, pay-as you go pricing, reduced infrastructure management, and more. To learn more, visit: Using serverless GPUs in Azure Container Apps (preview) | Microsoft Learn Tutorial: Generate images using serverless GPUs in Azure Container Apps (preview) | Microsoft Learn2.1KViews1like0CommentsConnect Privately to Azure Front Door with Azure Container Apps
Azure Container Apps is a fully managed serverless container service that enables you to deploy and run containerized applications with per-second billing and autoscaling without having to manage infrastructure. The service also provides support for a number of enhanced networking capabilities to address security and compliance needs such as network security groups (NSGs), Azure Firewall, and more. Today, Azure Container Apps is excited to announce public preview for another key networking capability, private endpoints for workload profile environments. This feature allows customers to connect to their Container Apps environment using a private IP address in their Azure Virtual Network, thereby eliminating exposure to the public internet and securing access to their applications. With the introduction of private endpoints for workload profile environments, you can now also establish a direct connection from Azure Front Door to your Container Apps environment viaPrivate Link. By enabling Private Link for an Azure Container Apps origin, customers benefit from an extra layer of security that further isolates their traffic from the public internet. Currently, you can configure this connectivity through CLI (portal support coming soon). In this post, we will do a brief overview of private endpoints on Azure Container Apps and the process of privately connecting it to Azure Front Door. Getting started with private endpoints on Azure Container Apps Private endpoints can be enabled either during the creation of a new environment or within an existing one. For new environments, you simply navigate to theNetworking tab, disable public network access, and enable private endpoints. To manage the creation of private endpoints in an existing environment, you can use the newNetworking blade, which is also in public preview. Since private endpoints use a private IP address, the endpoint for a container app is inaccessible through the public internet. This can be confirmed by the lack of connectivity when opening the application URL. If you prefer using CLI, you can find further guidance in enabling private endpoints at Use a private endpoint with an Azure Container Apps environment (preview). Adding container apps as a private origin for Azure Front Door With private endpoints, you can securely connect them to Azure Front Door through Private Link as well. The current process involves CLI commands that guide you in enabling an origin for Private Link and approving the private endpoint connection. Once approved, Azure Front Door assigns a private IP address from a managed regional private network, and you can verify the connectivity between your container app and the Azure Front Door. For a detailed tutorial, please navigate toCreate a private link to an Azure Container App with Azure Front Door (preview). Troubleshooting Have trouble testing the private endpoints? After creating a private endpoint for a container app, you can build and deploy a virtual machine to test the private connection. With no public inbound ports, this virtual machine would be associated with the virtual network defined during creation of the private endpoint. After creating the virtual machine, you can connect via Bastion and verify the private connectivity. You may find outlined instructions atVerify the private endpoint connection. Conclusion The public preview of private endpoints and private connectivity to Azure Front Door for workload profile environments is a long-awaited feature in Azure Container Apps. We encourage you to implement private endpoints for enhanced security and look forward to your feedback on this experience at our GitHub page. Additional Resources To learn more, please visit the following links to official documentation: Networking in Azure Container Apps environment - Private Endpoints Use a private endpoint with an Azure Container Apps environment Create a private link to an Azure Container App with Azure Front Door (preview) What is a private endpoint? What is Azure Private Link?980Views2likes4CommentsUnlock New AI and Cloud Potential with .NET 9 & Azure: Faster, Smarter, and Built for the Future
.NET 9, now available to developers, marks a significant milestone in the evolution of the .NET platform, pushing the boundaries of performance, cloud-native development, and AI integration. This release, shaped by contributions from over 9,000 community members worldwide, introduces thousands of improvements that set the stage for the future of application development. With seamless integration withAzure and a focus on cloud-native development and AI capabilities, .NET 9 empowers developers to build scalable, intelligent applications with unprecedented ease. Expanding Azure PaaS Support for .NET 9 With the release of .NET 9, a comprehensive range of Azure Platform as a Service (PaaS) offerings now fully support the platform’s new capabilities, including the latest .NET SDK for any Azure developer. This extensive support allows developers to build, deploy, and scale .NET 9 applications with optimal performance and adaptability on Azure. Additionally, developers can access a wealth of architecture references and sample solutions to guide them in creating high-performance .NET 9 applications on Azure’s powerful cloud services: Azure App Service: Run, manage, and scale .NET 9 web applications efficiently. Check out this blog to learn more about what's new in Azure App Service. Azure Functions: Leverage serverless computing to build event-driven .NET 9 applications with improved runtime capabilities. Azure Container Apps: Deploy microservices and containerized .NET 9 workloads with integrated observability. Azure Kubernetes Service (AKS): Run .NET 9 applications in a managed Kubernetes environment with expanded ARM64 support. Azure AI Services and Azure OpenAI Services: Integrate advanced AI and OpenAI capabilities directly into your .NET 9 applications. Azure API Management, Azure Logic Apps, Azure Cognitive Services, and Azure SignalR Service: Ensure seamless integration and scaling for .NET 9 solutions. These services provide developers with a robust platform to build high-performance, scalable, and cloud-native applications while leveraging Azure’s optimized environment for .NET. Streamlined Cloud-Native Development with .NET Aspire .NET Aspire is a game-changer for cloud-native applications, enabling developers to build distributed, production-ready solutions efficiently. Available in preview with .NET 9, Aspire streamlines app development, with cloud efficiency and observability at its core. The latest updates in Aspire include secure defaults, Azure Functions support, and enhanced container management. Key capabilities include: Optimized Azure Integrations: Aspire works seamlessly with Azure, enabling fast deployments, automated scaling, and consistent management of cloud-native applications. Easier Deployments to Azure Container Apps: Designed for containerized environments, .NET Aspire integrates with Azure Container Apps (ACA) to simplify the deployment process. Using the Azure Developer CLI (azd), developers can quickly provision and deploy .NET Aspire projects to ACA, with built-in support for Redis caching, application logging, and scalability. Built-In Observability: A real-time dashboard provides insights into logs, distributed traces, and metrics, enabling local and production monitoring with Azure Monitor. With these capabilities, .NET Aspire allows developers to deploy microservices and containerized applications effortlessly on ACA, streamlining the path from development to production in a fully managed, serverless environment. Integrating AI into .NET: A Seamless Experience In our ongoing effort to empower developers, we’ve made integrating AI into .NET applications simpler than ever. Our strategic partnerships, including collaborations with OpenAI, LlamaIndex, and Qdrant, have enriched the AI ecosystem and strengthened .NET’s capabilities. This year alone, usage of Azure OpenAI services has surged to nearly a billion API calls per month, illustrating the growing impact of AI-powered .NET applications. Real-World AI Solutions with .NET: .NET has been pivotal in driving AI innovations. From internal teams like Microsoft Copilot creating AI experiences with .NET Aspireto tools like GitHub Copilot, developed with .NET to enhance productivity in Visual Studio and VS Code, the platform showcases AI at its best. KPMG Clara is a prime example, developed to enhance audit quality and efficiency for 95,000 auditors worldwide. By leveraging .NET and scaling securely on Azure, KPMG implemented robust AI features aligned with strict industry standards, underscoring .NET and Azure as the backbone for high-performing, scalable AI solutions. Performance Enhancements in .NET 9: Raising the Bar for Azure Workloads .NET 9 introduces substantial performance upgrades with over 7,500 merged pull requests focused on speed and efficiency, ensuring .NET 9 applications run optimally on Azure. These improvements contribute to reduced cloud costs and provide a high-performance experience across Windows, Linux, and macOS. To see how significant these performance gains can be for cloud services, take a look at what past .NET upgrades achieved for Microsoft’s high-scale internal services: Bing achieved a major reduction in startup times, enhanced efficiency, and decreased latency across its high-performance search workflows. Microsoft Teams improved efficiency by 50%, reduced latency by 30–45%, and achieved up to 100% gains in CPU utilization for key services, resulting in faster user interactions. Microsoft Copilot and other AI-powered applications benefited from optimized runtime performance, enabling scalable, high-quality experiences for users. Upgrading to the latest .NET version offers similar benefits for cloud apps, optimizing both performance and cost-efficiency. For more information on updating your applications, check out the .NET Upgrade Assistant. For additional details on ASP.NET Core, .NET MAUI, NuGet, and more enhancements across the .NET platform, check out the full Announcing .NET 9 blog post. Conclusion: Your Path to the Future with .NET 9 and Azure .NET 9 isn’t just an upgrade—it’s a leap forward, combining cutting-edge AI integration, cloud-native development, and unparalleled performance. Paired with Azure’s scalability, these advancements provide a trusted, high-performance foundation for modern applications. Get started by downloading .NET 9 and exploring its features. Leverage .NET Aspire for streamlined cloud-native development, deploy scalable apps with Azure, and embrace new productivity enhancements to build for the future. For additional insights on ASP.NET, .NET MAUI, NuGet, and more, check out the full Announcing .NET 9 blog post. Explore the future of cloud-native and AI development with .NET 9 and Azure—your toolkit for creating the next generation of intelligent applications.5.3KViews1like0CommentsWhat's New in Azure App Service at Ignite 2024
Learn about the GA of sidecar extensibility on Linux and see team members demonstrating the latest tools for AI assisted web application migration and modernization as well as the latest updates to Java JBoss EAP on Azure App Service. Team members will also demonstrate integrating the Phi-3 small language model with a web application via the new sidecar extensibility using existing App Service hardware! Also new for this year’s Ignite, many topics that attendees see in App Service related sessions are also available for hands-on learning across multiple hands-on labs (HoLs). Don’t just watch team members demonstrating concepts on-stage, drop by one of the many HoL sessions and test drive the functionality yourself! Azure App Service team members will also be in attendance at the Expert Meetup area on the third floor in the Hub – drop by and chat if you are attending in-person! Additional demos, presentations and hands-on labs covering App Service are listed at the end of this blog post for easy reference. Sidecar Extensibility GA for Azure App Service on Linux Sidecar extensibility for Azure App Service on Linux is now GA! Linux applications deployed from source-code as well as applications deployed using custom containers can take advantage of sidecar extensibility. Sidecars enable developers to attach additional capabilities like third-party application monitoring providers, in-memory caches, or even local SLM (small language model) support to their applications without having to bake that functionality directly into their applications. Developers can configure up to four sidecar containers per application, with each sidecar being associated with its own container registry and (optional) startup command. Examples of configuring an OpenTelemetry collector sidecar are available in the documentation for both container-based applications and source-code based applications. There are also several recent blog posts demonstrating additional sidecar scenarios. One example walks through using a Redis cache sidecar as an in-memory cache to accelerate data retrieval in a web application (sample code here). Another example demonstrates adding a sidecar containing the Phi-3 SLM to a custom container web application (sample code here). Once the web app is running with the SLM sidecar, Phi-3 processes text prompts directly on the web server without the need to call remote LLMs or host models on scarce GPU hardware. Similar examples for source deployed applications are available in the Ignite 2024 hands on lab demonstrating sidecars. Exercise three walks through attaching an OTel sidecar to a source-code based application, and exercise four shows how to attach a Phi-3 sidecar to a source-code based application. Looking ahead to the future, App Service will be adding “curated sidecars” to the platform to make it easier for developers to integrate common sidecar scenarios. Development is already underway to include options for popular third-party application monitoring providers, Redis cache support, as well as a curated sidecar encapsulating the Phi-3 SLM example mentioned earlier. Stay tuned for these enhancements in the future! If you are attending Microsoft Ignite 2024 in person, drop by the theater session “Modernize your apps with AI without completely rewriting your code” (session code:THR 614) which demonstrates using sidecar extensibility to add Open Telemetry monitoring as well as Phi-3 SLM support to applications on App Service for Linux! .NET 9 GA, JBoss EAP and More Language Updates! With the recent GA of .NET 9 last week developers can deploy applications running .NET 9 GA on both Windows and Linux variants of App Service! Visual Studio, Visual Studio Code, Azure DevOps and GitHub Actions all support building and deploying .NET 9 applications onto App Service. Start a new project using .NET 9 or upgrade your existing .NET applications in-place and take advantage of .NET 9! For JBoss EAP on App Service for Linux, customers will soon be able to bring their existing JBoss licenses with them when moving JBoss EAP workloads onto App Service for Linux. This change will make it easier and more cost effective than ever for JBoss EAP customers to migrate existing workloads to App Service, including JBoss versions 7.3, 7.4 and 8.0! As a quick reminder, last month App Service also announced reduced pricing for JBoss EAP licenses (for net-new workloads) as well as expanded hardware support (both memory-optimized and Free tier are now supported for JBoss EAP applications). App Service is planning to release both Node 22 and Python 3.13 onto App Service for Linux with expected availability in December! Python 3.13 is the latest stable Python release which means developers will be able to leverage this version with confidence given long term support runs into 2029. Node 22 is the latest active LTS release of Node and is a great version for developers to adopt with its long-term support lasting into 2026. A special note for Linux Python developers, App Service now supports “auto-instrumentation” in public preview for Python versions 3.8 through 3.12.This makes it trivial for source-code based Python applications to enable Application Insights monitoring for their applications by simply turning the feature “on” in the Azure Portal. If you ever thought to yourself that it can be a hassle setting up application monitoring and hence find yourself procrastinating, this is the monitoring feature for you! Looking ahead just a few short weeks until December, App Service also plans to release PHP 8.4 for developers on App Service for Linux. This will enable PHP developers to leverage the latest fully supported PHP release with an expected support cycle stretching into 2028. For WordPress customers Azure App Service has added support for managed identities when connecting to MySQL database as well as storage accounts. The platform has also transitioned WordPress from Alpine Linux to Debian, aligning with App Service for Linux to offer a more secure platform. Looking ahead, App Service is excited to introduce some new features by the end of the year, including an App Service plugin for WordPress! This plugin will enable users to manage WordPress integration with Azure Communication Services email, set up Single Sign-On using Microsoft Entra ID, and diagnose performance bottlenecks. Stay tuned for upcoming WordPress announcements! End-to-End TLS & Min TLS Cipher Suite are now GA End-to-end TLS encryption for public multi-tenant App Service is now GA! When E2E TLS is configured, traffic between the App Service frontends and individual workers is secured using a platform supplied TLS certificate. This additional level of security is available for both Windows and Linux sites using Standard SKU and above as well as Isolatedv2 SKUs. You can enable this feature easily in the Azure Portal by going to your resource, clicking the “Configuration” blade and turning the feature “On” as shown below: Configuration of the minimum TLS cipher suite for a web application is also GA! With this feature developers can choose from a pre-determined list of cipher suites. When a minimum cipher suite is selected, the App Service frontends will reject any incoming requests that use a cipher suite weaker than the selected minimum cipher suite. This feature is supported for both Windows and Linux applications using Basic SKU and higher as well as Isolatedv2 SKUs. You configure a minimum TLS cipher suite in the Azure Portal by going to the “Configuration” blade for a website and selecting “Change” for the Minimum Inbound TLS Cipher Suite setting. In the resulting blade (shown below) you can select the minimum cipher suite for your application: To learn more about these and other TLS features on App Service, please refer to the App Service TLS overview. AI-Powered Conversational Diagnostics Building on the Conversational Diagnostics AI-powered tool and the guided decision making path introduced in Diagnostic Workflows, the team has created a new AI-driven natural language-based diagnostics solution for App Service on Linux. The new solution brings together previous functionality to create an experience that comprehends user intent, selects the appropriate Diagnostic Workflow, and keeps users engaged by providing real-time updates and actionable insights through chat. Conversational Diagnostics also provides the grounding data that the generative AI back-end uses to produce recommendations thus empowering users to check the conclusions. The integration of Conversational Diagnostics and Diagnostic Workflows marks a significant advancement in the platform’s diagnostic capabilities. Stay tuned for more updates and experience the transformative power of Generative AI-driven diagnostics firsthand! App Service Migration and Modernization The team just recently introduced new architectural guidance around evolving and modernizing web applications with the Modern Web Application pattern for .NET andJava! This guidance builds on the Reliable Web App pattern for .NET and Java as well as the Azure Migrate application and code assessment tool. With the newly released Modern Web Application guidance, there is a well-documented path for migrating web applications from on-premises/VM deployments using the application and code assessment tool, iterating and evolving web applications with best practices using guidance from the Reliable Web App pattern, and subsequently going deeper on modernization and re-factoring following guidance from the Modern Web Application pattern. Best of all customers can choose to “enter” this journey at any point and progress as far down the modernization path as needed based on their unique business and technical requirements! As a quick recap on the code assessment tool, it is a guided experience inside of Visual Studio with GitHub Copilot providing actionable guidance and feedback on recommended changes needed to migrate applications to a variety of Azure services including Azure App Service. Combined with AI-powered Conversational Diagnostics (mentioned earlier), developers now have AI-guided journeys supporting them from migration all the way through deployment and runtime operation on App Service! Networking and ASE Updates As of November 1, 2024, we are excited to announce that App Service multi-plan subnet join is generally available across all public Azure regions! Multi-plan subnet join eases network management by reducing subnet sprawl, enabling developers to connect multiple app service plans to a single subnet. There is no limit to the number of app service plans that connect to a single subnet. However, developers should keep in mind the number of available IPs since tasks such as changing the SKU for an app service plan will temporarily double the number of IP addresses used in a connected subnet. For more information as well as examples on using multi-plan subnet join see the documentation! App Service also recently announced GA of memory optimized options for Isolatedv2 on App Service Environment v3. The new memory-optimized options range from two virtual cores with 16 GB RAM in I1mv2 (compared to two virtual cores, 8 GB RAM in I1v2) all the way up to 32 virtual cores with 256 GB RAM in I5mv2. The new plansare available in most regions. Check back regularly to see if your preferred region is supported. For more details on the technical specifications of these plans, as well as information on the complete range of tiers and plans forMicrosoft Azure App Service, visit ourpricing page. Using services such as Application Gateway and Azure Front Door with App Service as entry points for client traffic is a common scenario that many of our customers implement. However, when using these services together, there are integration challenges around the default cookie domain for HTTP cookies, including the ARRAffinity cookie used for session affinity. App Service collaborated with the Application Gateway team to introduce a simple solution that addresses the session affinity problem. App Service introduced a new session affinity proxy configuration setting in October which tells App Service to always set the hostname for outbound cookies based on the upstream hostname seen by Application Gateway or Azure Front Door. This simplifies integration with a single-click experience for App Service developers who front-end their websites using one of Azure’s reverse proxies, and it solves the challenge of round-tripping the ArrAffinity cookie when upstream proxies are involved. Looking ahead to early 2025, App Service will shortly be expanding support for IPv6 to include both inbound and outbound connections (currently only inbound connections are supported). The current public preview includes dual-stack support for both IPv4 and IPv6, allowing for a smooth transition and compatibility with existing systems. Read more about the latest status of the IPv6 public preview on App Service here ! Lastly, the new application naming and hostname convention that was rolled out a few months earlier for App Service is now GA for App Service. The platform has also extended this new naming convention to Azure Functions where it is now available in public preview for newly created functions. To learn more about the new naming convention and the protection it provides against subdomain takeover take a look at the introductory blog post about the unique default hostname feature. Upcoming Availability Zone Improvements New Availability Zone features are currently rolling out that will make zone redundant App Service deployments more cost efficient and simpler to manage in early 2025! The platform will be changing the minimum requirement for enabling Availability Zones to two instances instead of three, while still maintaining a 99.99% SLA. Many existing app service plans with two or more instances will also automatically become capable of supporting Availability Zones without requiring additional setup. Additionally, the zone redundant setting will be mutable throughout the life of an app service plan. This upcoming improvement will allow customers on Premium V2, Premium V3, or Isolated V2 plans, to toggle zone redundancy on or off as needed. Customers will also gain enhanced visibility into Availability Zone information, including physical zone placement and counts. As a sneak peek into the future, the screenshot below shows what the new experience will look like in the Azure Portal: Stay tuned for Availability Zone updates coming to App Service in early 2025! Next Steps Developers can learn more about Azure App Service at Getting Started with Azure App Service. Stay up to date on new features and innovations on Azure App Service via Azure Updatesas well as the Azure App Service (@AzAppService) X feed. There is always a steady stream of great deep-dive technical articles about App Service as well as the breadth of developer focused Azure services over on the Apps on Azure blog. Azure App Service (virtually!) attended the recently completed November .Net Conf 2024. App Service functionality was featured showing a .NET 9.0 app using Azure Sql’s recently releasednative vector data type support that enables developers to perform hybrid text searches on Azure Sql data using vectors generated via Azure OpenAI embeddings! And lastly take a look at Azure App Service Community Standups hosted on the Microsoft Azure Developers YouTube channel. The Azure App Service Community Standup series regularly features walkthroughs of new and upcoming features from folks that work directly on the product! Ignite 2024 Session Reference (Note: some sessions/labs have more than one timeslot spanning multiple days). (Note: all times below are listed in Chicago time - Central Standard Time). Modernize your apps with AI without completely rewriting your code Modernize your apps with AI without completely rewriting your code [Note: this session includes a demonstration of the Phi-3 sidecar scenario] Wednesday, November 20 th 1:00 PM - 1:30 PM Central Standard Time Theater Session – In-Person Only (THR614) McCormick Place West Building – Level 3, Hub, Theater C Unlock AI: Assess your app and data estate for AI-powered innovation Unlock AI: Assess your app and data estate for AI-powered innovation Wednesday, November 20 th 1:15 PM – 2:00 PM Central Time McCormick Place West Building – Level 1, Room W183c Breakout and Recorded Session (BRK137) Modernize and scale enterprise Java applications on Azure Modernize and scale enterprise Java applications on Azure Thursday, November 21 st 8:30 AM - 9:15 AM Central Time McCormick Place West Building – Level 1, Room W183c Breakout and Recorded Session (BRK147) Assess apps with Azure Migrate and replatform to Azure App Service Assess apps with Azure Migrate and replatform to Azure App Service Tuesday, November 19 th 1:15 PM - 2:30 PM Central Time McCormick Place West Building – Level 4, Room W475 Hands on Lab – In-Person Only (LAB408) Integrate GenAI capabilities into your .NET apps with minimal code changes Integrate GenAI capabilities into your .NET apps with minimal code changes [Note: Lab participants will be able to try out the Phi-3 sidecar scenario in this lab.] Wednesday, November 20 th 8:30 AM - 9:45 AM Central Time McCormick Place West Building – Level 4, Room W475 Hands on Lab – In-Person Only (LAB411) Assess apps with Azure Migrate and replatform to Azure App Service Assess apps with Azure Migrate and replatform to Azure App Service Wednesday, November 20 th 6:30 PM - 7:45 PM Central Time McCormick Place West Building – Level 4, Room W470b Hands on Lab – In-Person Only (LAB408-R1) Integrate GenAI capabilities into your .NET apps with minimal code changes Integrate GenAI capabilities into your .NET apps with minimal code changes [Note: Lab participants will be able to try out the Phi-3 sidecar scenario in this lab.] Thursday, November 21 st 10:15 AM - 11:30 AM Central Time McCormick Place West Building – Level 1, Room W180 Hands on Lab – In-Person Only (LAB411-R1) Assess apps with Azure Migrate and replatform to Azure App Service Assess apps with Azure Migrate and replatform to Azure App Service Friday, November 22 nd 9:00 AM – 10:15 AM Central Time McCormick Place West Building – Level 4, Room W474 Hands on Lab – In-Person Only (LAB408-R2)1.5KViews0likes0Comments